淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1707200621565900
中文論文名稱 銅鈷多層膜電化學特性研究
英文論文名稱 Investigation of the Electrochemical Properties of Co/Cu Multilayers
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 94
學期 2
出版年 95
研究生中文姓名 吳宗榮
研究生英文姓名 Zong-Rong Wu
學號 693361353
學位類別 碩士
語文別 中文
口試日期 2006-06-26
論文頁數 58頁
口試委員 指導教授-張裕祺
委員-尹庚鳴
委員-陳錫仁
中文關鍵字 脈衝電鍍  銅鈷多層膜  電化學交流阻抗 
英文關鍵字 pulsed electrodeposition  Co/Cu Multilayers  electrochemical impedance spectroscopy 
學科別分類
中文摘要 本研究利用準穩態動電位掃瞄法、電化學交流阻抗法研究電鍍銅鈷多層膜的電化學特性,並利用X光繞射儀和掃瞄式電子顯微鏡研究鍍層的結晶結構和形態。
經由交流阻抗和電子顯微鏡的結果可以知道,定電位電鍍銅在高電位時會有CuCl產生使鍍層表面變粗糙;鍍鈷時電位愈大所得的晶粒愈小。在銅鈷合金方面,利用Vegard式可以得到直流電鍍的銅鈷鍍層所形成的固溶體(solid solution),組成在89~96%之間,且由X光繞射得知鈷鍍層為面心立方的結構。在銅鈷多層膜方面,由X光繞射可以得知並沒有明顯的伴峰(satellite peak)出現,而從電子顯微鏡的結果可以知道當鍍銅在較大的電位時會有大的顆粒產生,在鍍鈷電位較大時則會有因為氫氧析出而產生的孔洞,而多層膜的截面則因為樣品製備的因素所以沒有明顯的層狀結構。
英文摘要 Electrochemical properties of electrodeposited Cu/Co multilayers were investigated by potentiodynamic curve and electrochemical impedance spectroscope. X-ray diffraction (XRD) and scanning electron microscopy were used to study the sample structure and morphology. It was revealed that CuCl may cover the electrode surface at the higher Cu deposition potential, it makes the electrode surface rough. The higher the Co deposition potential, the smaller the grain size. Using Vegard’s law to calculate the composition of the direct current plated Cu-Co solid solution was 89~96%. According to the result of XRD, the structure of Cu-Co alloy is mainly face-centered cubic phase. The result of XRD of the multilayers did not have obvious satellite peak. At higher Cu deposition potential, there are many grains on the surface of multilayers. At the higher Co deposition potential, there are holes on the multilayers surface resulted from the evolution of H2. Finally, the cross-section of the multilayers did not show obvious layered structure, because the preparation of the sample is difficult.
論文目次 本文目錄
致謝……………………………………………………………………I
中文摘要………………………………………………………………II
英文摘要………………………………………………………………III
本文目錄………………………………………………………………IV
表目錄…………………………………………………………………VII
圖目錄 ……………………………………………………………… VIII
第一章 緒論 ……………………………………………………………1
第二章 文獻回顧 ………………………………………………………2
2.1 磁性多層膜的發展…………………………………………………2
2.2 電鍍法製造多層膜…………………………………………………3
2.2.1 多層膜製備方法的發展…………………………………………3
2.3 不同條件對電鍍多層膜的影響……………………………………5
2.3.1 電鍍方法對GMR的影響 …………………………………………5
2.3.2 pH對鍍層的影響 ………………………………………………6
2.3.3添加劑對多層膜GMR的影響………………………………………8
2.4 多層膜的成長………………………………………………………9
2.5 電鍍鈷和銅鈷合金的結晶結構……………………………………10
2.5.1 鈷的穩態和介穩態結構…………………………………………10
2.5.2 電鍍鈷的結晶結構………………………………………………10
2.5.3 銅鈷合金…………………………………………………………11
2.5.4 多層膜的晶格結構………………………………………………12
2.6 電化學交流阻抗(electrochemical impedance spectroscopy, EIS)………………………………………………………………………13
2.6.1 簡介………………………………………………………………13
第三章 實驗裝置及方法 ………………………………………………16
3.1 實驗儀器……………………………………………………………16
3.2 實驗藥品……………………………………………………………17
3.3 實驗裝置……………………………………………………………18
3.4 實驗方法……………………………………………………………19
3.4.1電極的製備 ………………………………………………………19
3.4.2電鍍前處理 ………………………………………………………19
3.4.3電鍍液 ……………………………………………………………20
3.4.4極化曲線之測量 …………………………………………………20
3.4.5 電化學交流阻抗的量測…………………………………………21
3.4.6 掃描式電子顯微鏡樣品製作……………………………………21
3.4.7 XRD樣品製備 ……………………………………………………21
第四章 結果與討論 ……………………………………………………22
4.1電化學行為分析 ……………………………………………………22
4.1.1 極化曲線…………………………………………………………22
4.1.2電化學交流阻抗 …………………………………………………24
4.1.3 脈衝電鍍…………………………………………………………26
4.2 鍍層結晶結構分析…………………………………………………27
4.3 表面形態分析………………………………………………………29
第五章 結論 ……………………………………………………………53
參考文獻…………………………………………………………………54
附錄A 利用Vegard式計算銅鈷組成……………………………………58

表目錄
表3.1 計算電鍍銅和鈷的厚度資料……………………………………20
表3.2 電鍍液的組成……………………………………………………20
表4.1 以純銅和鈷的a值利用外插法求出銅鈷合金的組成 …………29
表4.2 不同電位不同位置的EDX結果 …………………………………29

圖目錄
圖2.1 不同pH下電鍍銅鈷多層膜的脈衝波形…………………………7
圖2.2 銅鈷多層膜成長時溝槽沿晶界演進的示意圖…………………9
圖2.3 銅鎳多層膜伴峰的X光繞射圖…………………………………13
圖3.1 實驗裝置圖 ……………………………………………………18
圖4.1 不同溶液電鍍在銅底材上的極化曲線圖 ……………………32
圖4.2 不同溶液電鍍在鈷底材上的極化曲線圖 ……………………33
圖4.3 溶液[bg]在-0.2V, -0.4V, -0.6V 時的交流阻抗圖譜 ……34
圖4.4 溶液[bg]在-0.8V, -0.85V, -0.9V 時的交流阻抗圖譜……35
圖4.5 溶液[Cu]在-0.2V, -0.4V, -0.6V 時的交流阻抗圖譜 ……36
圖4.6 溶液[Cu]在-0.8V, -0.85V, -0.9V 時的交流阻抗圖譜……37
圖4.7 溶液[Co]在-0.2V, -0.4V, -0.6V 時的交流阻抗圖譜 ……38
圖4.8 溶液[Co]在-0.8V, -0.85V, -0.9V 時的交流阻抗圖譜……39
圖4.9 溶液[Cu+Co]在-0.2V, -0.4V, -0.6V 時的交流阻抗圖譜…40
圖4.10 溶液[bg]在-0.8V, -0.85V, -0.9V 時的交流阻抗圖譜 …41
圖4.11 多層膜脈衝電鍍第1,2個和第25個鍍鈷的脈衝 ……………42
圖4.12 溶液[Cu+Co]和[Co]在不同電位的XRD圖 …………………43
圖4.13 不同順序、電位電鍍50個雙層的XRD圖……………………43
圖4.14 不同電鍍時間、電位電鍍50個雙層的XRD圖………………44
圖4.15 底材(a)電解拋光銅, 20KX; (b)電解拋光銅, 50KX; (c)電鍍銅底材, 20KX; (d)電鍍銅底材, 20KX; (e)電鍍鈷底材, 20KX; (f)電鍍鈷底材, 20KX;……………………………………………………45
圖4.16 溶液[Cu+Co]在不同電位下電鍍約5nm ……………………46
圖4.17 溶液[Cu+Co]在不同電位下電鍍220秒 ……………………47
圖4.18 溶液[Cu+Co]在不同電位下電鍍220秒 ……………………48
圖4.19 溶液[Cu+Co]在不同電位下電鍍50個雙層的銅鈷多層膜…49
圖4.20 溶液[Cu+Co]在不同電位下電鍍50個雙層的銅鈷多層膜…50
圖4.21 溶液[Cu+Co]在不同電位下電鍍50個雙層的銅鈷多層膜…51
圖4.22 溶液[Cu+Co]在不同電位下電鍍10個雙層的銅鈷多層膜…52
參考文獻 [1] H. S. Nalwa, Encyclopedia of Nanoscience and Nanotechnology. , vol. 3, American Scientific Publishers, pp. 843-864, 2004.
[2] 盧志權, "新世紀科技--自旋電子學與自旋電子元件簡介," 工業材料雜誌, pp. 117-122, 2001.
[3] 黃榮俊, "磁性薄膜與多層膜之成長、觀測與應用," 科學發展月刊, vol. 29, pp. 155-162,
[4] W. Schwarzacher and D. S. Lashmore, "Giant magnetoresistance in electrodeposited films," Magnetics, IEEE Transactions on, vol. 32, pp. 3133-3153, 1996.
[5] T. Cohen-Hyams, J. M. Plitzko, C. J. D. Hetherington, J. L. Hutchison, J. Yahalom and W. D. E. -. Kaplan, "Microstructural dependence of giant-magnetoresistance in electrodeposited Cu-Co alloys," J. Mater. Sci., vol. 39, pp. 5701-5709, 2004.
[6] M. Paunovic and M. Schlesinger, Fundamentals of Electrochemical Deposition. Johan Willey &Sons, pp.265-268, 1998.
[7] E. Toth-Kadar, L. Peter, T. Becsei, J. Toth, L. Pogany, T. Tarnoczi, P. Kamasa, G. Lang, A. Cziraki and W. Schwarzacher, "Preparation and Magnetoresistance Characteristics of Electrodeposited Ni-Cu Alloys and Ni-Cu/Cu Multilayers," J. Electrochem. Soc., vol. 147, pp. 3311-3318, 2000.
[8] V. Weihnacht, L. Peter, J. Toth, J. Padar, Z. Kerner, C. M. Schneider and I. Bakonyi, "Giant Magnetoresistance in Co-Cu/Cu Multilayers Prepared by Various Electrodeposition Control Modes," J. Electrochem. Soc., vol. 150, pp. C507-C515, 2003.
[9] M. Dariel, L. H. Bennett, D. S. Lashmore, P. Lubitz, M. Rubinstein, W. L. Lechter and M. Z. Harford, "Properties of electrodeposited Co-Cu multilayer structures," J. Appl. Phys., vol. 61, pp. 4067-4069, 1987.
[10] E. Gómez, A. Labarta, A. Llorente and E. Vallés, "Characterisation of cobalt/copper multilayers obtained by electrodeposition," Surface and Coatings Technology, vol. 153, pp. 261-266, 2002.
[11] M. Shima, L. G. Salamanca-Riba, R. D. McMichael and T. P. Moffat, "Correlation Between Structural Imperfection and Giant Magnetoresistance in Electrodeposited Co/Cu Multilayers," J. Electrochem. Soc., vol. 148, pp. C518-C523, 2001.
[12] E. Chassaing, A. Morrone and J. E. Schmidt, "Nanometric Cu-Co Multilayers Electrodeposited on Indium-Tin Oxide Glass," J. Electrochem. Soc., vol. 146, pp. 1794-1797, 1999.
[13] L. Peter, A. Cziraki, L. Pogany, Z. Kupay, I. Bakonyi, M. Uhlemann, M. Herrich, B. Arnold, T. Bauer and K. Wetzig, "Microstructure and Giant Magnetoresistance of Electrodeposited Co-Cu/Cu Multilayers," J. Electrochem. Soc., vol. 148, pp. C168-C176, 2001.
[14] A. Fert and L. Piraux, "Magnetic nanowires," J Magn Magn Mater, vol. 200, pp. 338-358, 10. 1999.
[15] L. H. Bennett, D. S. Lashmore, M. P. Dariel, M. J. Kaufman, M. Rubinstein, P. Lubitz, O. Zadok and J. Yahalom, "Magnetic properties of electrodeposited copper-nickel composition-modulated alloys," J Magn Magn Mater, vol. 67, pp. 239-245, 1987.
[16] D. S. Lashmore and M. P. Dariel, "Electrodeposited Cu-Ni Textured Superlattices," J. Electrochem. Soc., vol. 135, pp. 1218-1221, 1998.
[17] P. E. Bradley and D. Landolt, "Pulse-plating of copper–cobalt alloys," Electrochim. Acta, vol. 45, pp. 1077-1087, 1999.
[18] M. Alper, W. Schwarzacher and S. J. Lane, "The Effect of pH Changes on the Giant Magnetoresistance of Electrodeposited Superlattices," J. Electrochem. Soc., vol. 144, pp. 2346-2352, 1997.
[19] L. Peter, Q. Liu, Z. Kerner and I. Bakonyi, "Relevance of the potentiodynamic method in parameter selection for pulse-plating of Co-Cu/Cu multilayers," Electrochim. Acta, vol. 49, pp. 1513-1526, 2004.
[20] M. Alper, M. C. Baykul, L. Péter, J. Tóth and I. Bakony, "Preparation and Characterisation of Electrodeposited Ni-Cu/Cu Multilayers," J. Appl. Electrochem., vol. 34, pp. 841-848, 2004.
[21] E. Chassaing, "Effect of Organic Additives on the Electrocrystallization and the Magnetoresistance of Cu-Co Multilayers," J. Electrochem. Soc., vol. 148, pp. C690-C694, 2001.
[22] J. J. Kelly, P. E. Bradley and D. Landolt, "Additive Effects during Pulsed Deposition of Cu-Co Nanostructures," J. Electrochem. Soc., vol. 147, pp. 2975-2980, 2000.
[23] M. Uhlemann, A. Gebert, M. Herrich, A. Krause, A. Cziraki and L. Schultz, "Electrochemical deposition and modification of Cu/Co–Cu multilayer," Electrochim. Acta, vol. 48, pp. 3005-3011, 2003.
[24] T. Szczurek, T. Rausch, M. Schlesinger, D. D. Snyder and C. H. Olk, "Induced Crystallographic Orientations in Electrodeposited Ni-Cu Multilayers," J. Electrochem. Soc., vol. 146, pp. 1777-1779, 1999.
[25] P. Nallet, E. Chassaing, M. G. Walls and M. J. Hytch, "Interface characterization in electrodeposited Cu--Co multilayers," J. Appl. Phys., vol. 79, pp. 6884-6889, 1996.
[26] A. Vicenzo and P. L. Cavallotti, "Growth modes of electrodeposited cobalt," Electrochim. Acta, vol. 49, pp. 4079-4089, 2004.
[27] E. Gómez, A. Llorente and E. Valles, "Obtention and characterisation of cobalt+copper electrodeposits from a citrate bath," J Electroanal Chem, vol. 495, pp. 19-26, 2000.
[28] T. Cohen-Hyams, W. D. Kaplan, D. Aurbach, Y. S. Cohen and J. Yahalom, "Electrodeposition of Granular Cu-Co Alloys," J. Electrochem. Soc., vol. 150, pp. C28-C35, 2003.
[29] E. Gómez, A. Labarta, A. Llorente and E. Vallés, "Electrochemical behaviour and physical properties of Cu/Co multilayers," Electrochim. Acta, vol. 48, pp. 1005-1013, 2003.
[30] R. A. Meyer, Encyclopedia of Physical Science and Technology. ,2nd ed., vol. 18, Academic Press, inc., pp. 11-24, 1992.
[31] C. Gabrielli, P. Mocoteguy, H. Perrot and R. Wiart, "Mechanism of copper deposition in a sulphate bath containing chlorides," J Electroanal Chem, vol. 572, pp. 367-375, 2004.
[32] E. Chassaing and R. Wiart, "Epitaxial growth and electrode impedance of copper electrodeposits," Electrochim. Acta, vol. 29, pp. 649-660, 1984.
[33] S. Krzewska, "Impedance investigation of the mechanism of copper electrodeposition from acidic perchlorate electrolyte," Electrochim. Acta, vol. 42, pp. 3531-3540, 1997.
[34] J. B. Durkee II, "Another kind of cleaning: Electropolishing I," Met Finish, vol. 101, pp. 59-64, 2003.
[35] J. B. Durkee II, "Another kind of cleaning: Part II," Met Finish, vol. 101, pp. 54-58, 2003.
[36] A. K. Graham, Electroplating Engineering Handbook. ,3rd ed.Van Nostrand Reinhold Company, pp. 197, 1971.
[37] G. G. Láng, M. Ujvári, G. and G. Horányi, "New EQCM, voltammetric and radiotracer evidences proving the role of Cu+ ions in the behavior of the Cu2+–Cu system," J Electroanal Chem, vol. 522, pp. 179-188, 2002.
[38] B. D. Cullity, Elements of X-Ray Diffraction. ,2nd ed.Addison Wesley Publishing Company, 1978, p.352.
[39] F. C. Walsh and M. E. Herron, "Electrocrystallization and electrochemical control of crystal growth: fundamental considerations and electrodeposition of metals," J. Phys. D: Appl. Phys., vol. 24, pp. 217-225, 1991.
[40] C. Suryanavayana and M. G. Norton, X-Ray Diffraction: A Practical Approach. New York: Plenum Press, p. 98, 1998.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2006-07-24公開。
  • 同意授權瀏覽/列印電子全文服務,於2007-07-24起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信