淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1706202011561700
中文論文名稱 類芽孢桿菌及地衣芽孢桿菌發酵含幾丁質水產副產物所生產幾丁聚醣酶及蛋白酶之研究
英文論文名稱 Studies on the production of chitinases and proteases from Paenibacillus sp. and Bacillus licheniformis by fermentation of chitin-containing fishery processing by-products
校院名稱 淡江大學
系所名稱(中) 化學學系博士班
系所名稱(英) Department of Chemistry
學年度 108
學期 2
出版年 109
研究生中文姓名 董建潭
研究生英文姓名 Chien-Thang Doan
電子信箱 doanthng@gmail.com
學號 806165014
學位類別 博士
語文別 英文
口試日期 2020-06-05
論文頁數 74頁
口試委員 指導教授-王三郎
共同指導教授-阮安順
委員-謝淳仁
委員-王三郎
委員-王全祿
委員-呂誌翼
委員-糜福龍
中文關鍵字 地衣芽孢桿菌  類芽孢桿菌  幾丁質  幾丁聚醣  蝦頭  魷魚軟骨  幾丁聚醣酶  蛋白酶  葡萄糖苷酶抑制劑  抗氧化劑. 
英文關鍵字 Bacillus licheniformis  Paenibacillus  chitin  chitosan  shrimp heads  squid pens  chitosanase  protease  α-glucosidase inhibitor  antioxidant. 
學科別分類
中文摘要 諸如蝦頭、蝦殼、蟹殼、魷魚軟骨之類的含幾丁質水產副產物因於多種領域之應用價值而備受重視。Paenibacillus sp. TKU042 所生產幾丁聚醣酶、蛋白酶以及Paenibacillus sp. TKU047 所生產幾丁聚醣酶,於含魷魚軟骨(SPP)培養基可得最高產率,而P. mucilaginosus TKU032所生產幾丁聚醣酶以及Bacillus licheniformis TKU004所生產具葡萄糖苷酶抑制活性(AAG)之蛋白質(TKU004P),則於含蝦頭粉(SHP)之培養基可得最高產率。針對上述所得產物進行分離,並且利用SDS-PAGE分析分子量結果,TKU004P分子量為29 kDa, Paenibacillus sp. TKU042 之幾丁聚醣酶及蛋白酶之分子量分別為70 kDa 及35 kDa。P. mulcilaginosus TKU032之幾丁聚醣酶之分子量為59 kDa, Panibacillus sp. TKU047 之幾丁聚醣酶之分子量為23 kDa。TKU004P 為具水解酵母菌AAG活性之一種蛋白酶。P. mucilaginosus TKU032及Paenibacillus sp. TKU032 所生產幾丁聚醣酶皆屬能用來生產幾丁聚寡醣(COS)之外切型幾丁聚醣酶。TKU032幾丁聚醣酶水解懸浮態幾丁聚醣所得三個COS區分當中,第一區分具有最高之葡萄糖苷酶抑制活性(65.86%, 20 mg/mL), 區分二和區分三則分別具有較強DPPH抗氧化活性, 分別為 79.00%, 12 mg/mL 以及 73.29%, 16 mg/mL。完全去乙醯幾丁聚醣經TKU047幾丁聚醣酶水解所得COS (GlcN)2-9 具有較市售COS更強之DPPH抗氧化活性。
英文摘要 Chitinous fishery by-products such as shrimp heads, shrimp shells, crab shells, squid pens are received great attention due to their applications in many fields. In this study, chitosanase, and protease from Paenibacillus sp. TKU042 and chitosanase from Paenibacillus sp. TKU047 possessed the highest productivity on squid pen powder (SPP), whereas a chitosanase from P. mucilaginosus TKU032 and a protein with anti-α-glucosidase (AAG) activity from Bacillus licheniformis TKU004 (TKU004P) were on shrimp head powder (SHP). The purification process was performed to obtain the purified proteins. Using SDS-PAGE analysis, the molecular weight of those enzymes and TKU004P was determined, for instance, TKU004P was 29 kDa, chitosanase and protease from Paenibacillus TKU042 were 70 kDa and 35 kDa (respectively), chitosanase from P. mucilaginosus TKU032 was 59 kDa, and chitosanase from Paenibacillus sp. TKU047 was 23 kDa. TKU004P was then investigated as a protease and demonstrated AAG activity by degrading yeast α-glucosidase. Chitosanases from P. mucilaginosus TKU032 and Paenibacillus sp. TKU047 were investigated as the endochitosanases, which could be used to produce chitosan oligosaccharide (COS). Three COS fractions were obtained from hydrolyzed colloidal chitosan that was catalyzed by TKU032 chitosanase. Among them, fraction I showed the highest α-glucosidase inhibitor (aGI) activity (65.86% at 20 mg/mL), and fractions II and III exhibited strong 2,2-diphenyl1-picrylhydrazyl (DPPH) radical scavenging activity (79.00% at 12 mg/mL and 73.29% at 16 mg/mL, respectively). The COS obtained from the hydrolysis of fully deacetylated chitosan catalyzed by TKU047 chitosanase was (GlcN)2-9 and expressed a higher DPPH radical scavenging activity than that from the commercial COSs.
論文目次 Acknowledgments I
Abstract II
Abbreviation Used IV
Catalog V
List of Figures VIII
List of Tables X
Introduction 1
Chapter 1. Conversion of Squid Pens to Chitosanases and Proteases via Paenibacillus sp. TKU042 4
1.1. Introduction 4
1.2. Results and Discussion 6
1.2.1. Screening of Chitinous Materials as sole C/N for Chitosanase Production 6
1.2.2. Effect of SPP Concentration on Chitosanase, Protease and αGI Production 6
1.2.3. Production of Chitosanase, Protease and αGI from SPP and deCSP by Different Bacteria 7
1.2.4. Purification and Characterization of Chitosanase and Protease 10
1.3. Materials and Methods 12
1.3.1. Materials 12
1.3.2. Measurement of Enzyme Activities 13
1.3.3. Measurement of Alpha Glucosidase Inhibitor 13
1.3.4. Screening of Chitinous Materials as Sole C/N for Enzyme Activity 14
1.3.5. Effect of SPP Concentration on Enzymes and αGI Activity 14
1.3.6. Production of Enzymes and αGI from SPP and deCSP Using Different Bacteria 14
1.3.7. Purification of Chitosanase and Protease 15
1.4. Conclusions 15
Chapter 2. Anti-α-Glucosidase Activity by a Protease from Bacillus licheniformis 19
2.1. Introduction 19
2.2. Results and Discussion 20
2.2.1. Extraction of AAG Protein 20
2.2.2. AAG Mechanism 22
2.2.3. Proteolytic Activity 24
2.2.4. pH Stability of TKU004P 25
2.2.5. Utilization of C/N Source for TKU004P Production 26
2.2.6. Effect of TKU004P on Different Enzymes 27
2.2.7. Comparison of AAG Activity by Different Proteases 27
2.3. Materials and Methods 28
2.3.1. Materials 28
2.3.2. AAG Activity 29
2.3.3. Protease Activity Assay 29
2.3.4. Extraction of TKU004P 29
2.3.5. AAG Mechanism 30
2.3.6. Proteolytic Activity 30
2.3.7. pH Stability 30
2.3.8. Utilization of C/N Source for TKU004P Production 30
2.3.9. Effect of TKU004P on Different Enzymes 31
2.3.10. Comparison of AAG Activity by Different Proteases 31
2.4. Conclusions 31
Chapter 3. Production of a Thermostable Chitosanase from Shrimp Heads via Peanibacillus mucilaginosus TKU032 Conversion and its Application in the Preparation of Bioactive Chitosan Oligosaccharides 35
3.1. Introduction 35
3.2. Results and Discussion 36
3.2.1. Screening of Chitinous Materials as Sole C/N Source for Chitosanase Production 36
3.2.2. Comparison of Chitosanase Production from SHP using Different Bacteria 37
3.2.3. Purification and Characterization of Chitosanase 38
3.2.4. Effects of pH and Temperature on Activity and Stability of Chitosanase 39
3.2.5. Effect of Metal Ions on Activity of Chitosanase 40
3.2.6. Substrate Specificity of Chitosanase 41
3.2.7. COS Production 42
3.2.8. Evaluation of Antioxidant and aGI Activities of COS Fractions 43
3.3. Materials and Methods 45
3.3.1. Materials 45
3.3.2. Measurement of chitosanase activity 45
3.3.3. Screening of Chitinous Materials as Sole C/N Source for Chitosanase Activity 45
3.3.4. Purification of Chitosanase 45
3.3.5. Effects of pH and Temperature on Activity and Stability of Chitosanase 46
3.3.6. Effect of Metal Ions on Chitosanase Activity 46
3.3.7. Substrate Specificity of Chitosanase 46
3.3.8. Antioxidant Activity Assay 46
3.3.9. αGI Activity Assay 46
3. 4. Conclusions 47
Chapter 4. Bioprocessing of Squid Pens Waste into Chitosanase by Paenibacillus sp. TKU047 and Its Application in Low-Molecular Weight Chitosan Oligosaccharides Production 52
4.1. Introduction 52
4.2. Results and Discussion 54
4.2.1. Screening of Suitable C/N Source for Chitosanase Production by Paenibacillus sp. TKU047 54
4.2.2. Isolation of Paenibacillus sp. TKU047 Chitosanase 56
4.2.3. Effects of Temperature and pH 58
4.2.4. Effects of Divalent Metal Ions, EDTA, and Surfactants 59
4.2.5. Substrate Specificity and Hydrolysis Products 60
4.2.6. Preparation of COS 62
4.2.7. Antioxidant Activity of COS 63
4.3. Materials and Methods 65
4.3.1. Materials 65
4.3.2. Chitosanase Assay 65
4.3.3. Screening of Suitable C/N Source for Chitosanase Production 66
4.3.4. Isolation of Paenibacillus sp. TKU047 Chitosanase 66
4.3.5. Effects of Temperature and pH 67
4.3.6. Effect of Divalent Metal Ions, Surfactants, and EDTA 67
4.3.7. Substrate Specificity and Hydrolysis Products 67
4.3.8. Preparation of COS 68
4.3.9. Antioxidant Activity Assay 68
4.4. Conclusions 68
Appendix 74
List of Figures
Figure 1.1. Effect of SPP concentration on the production of chitosanase, protease and αGI by Paenibacillus sp. TKU042. 7
Figure 1.2. Effect of combining SPP with deCSP on the production of chitosanase, protease and αGI by Paenibacillus sp. TKU042. 7
Figure 1.3. Elution profile of chitosanase and protease on Macro-Prep High S 11
Figure 1.4. SDS-PAGE analysis of the protease and chitosanase produced by TKU042. 12
Figure 2.1. Elution profile of TKU004P on Macro-Prep High S chromatography 21
Figure 2.2. Anti-α-glucosidase (AAG) activity of TKU004P and acarbose. 21
Figure 2.3. SDS-PAGE analysis of the protease produced by B. licheniformis TKU004 22
Figure 2.4. Lineweaver–Burk plot analysis of AAG by TKU004P 23
Figure 2.5. HPLC analysis of the time-course reaction of TKU004P and yeast α-glucosidase 23
Figure 2.6. Effect of pH on the stability of TKU004P 25
Figure 2.7. Effect of the C/N source on AAG (a), optical density (OD) (b) and protease activity production (c) of B. licheniformis TKU004 26
Figure 2.8. Effect of TKU004P on different enzymes. 27
Figure 3.1. Production of chitosanase by P. mulaginosus TKU032. 37
Figure 3.2. A typical elution profile of chitosanase on Macro-prep High S column 38
Figure 3.3. SDS-PAGE analysis of the chitosanase produced by TKU032. 39
Figure 3.4. Effect of pH (a) and temperature (b) on activity (●) and stability (□) of TKU032 chitosanase. 40
Figure 3.5. Substrate specificity of P. mucilaginosus TKU032 chitosanase 41
Figure 3.6. Flow chart for the isolation of COS produced by hydrolyzing chitosan with TKU032 chitosanase 42
Figure 3.7. HPLC profiles of chitosan oligosaccharide fractions. (A) references; (B) chitosan oligosaccharide fractions 43
Figure 3.8. (A) antioxidant and (B) aGI activities of COS fractions 44
Figure 3.9. Lineweaver-Burk plot analysis of aGI activity by COS fraction I 44
Figure 4.1. Screening of suitable C/N source for chitosanase production by Paenibacillus sp. TKU047 55
Figure 4.2. SDS-PAGE and zymogram profiles of Paenibacillus sp. TKU047 chitosanase. 57
Figure 4.3. Effects of temperature and pH on the activity and stability of Paenibacillus sp. TKU047 chitosanase 59
Figure 4.4. Effects of some chemicals on the activity of Paenibacillus sp. TKU047 chitosanase 60
Figure 4.5. Substrates specificity of Paenibacillus sp. TKU047 chitosanase (a) and TLC profile of hydrolysis products of fully deacetylated chitosan by the purified enzyme (b). 61
Figure 4.6. MALDI-TOF mass spectrometry profile of the COS prepared from the chitosan hydrolysis process catalyzed by Paenibacillus sp. TKU047 chitosanase 63
Figure 4.7. DPPH radical scavenging activity of some COSs 64

List of Tables
Table 1.1. Comparison of chitinolytic enzyme, protease and αGI production by various bacteria using deCSP as C/N source 8
Table 1.2. Comparison of chitinolytic enzyme, protease and αGI production by various bacteria using SPP as C/N source 9
Table 1.3. Purification of the chitosanase from Paenibacillus sp. TKU042 11
Table 1.4. Purification of the protease from Paenibacillus sp. TKU042 11
Table 2.1. Result of time-course reaction of TKU004P and yeast α-glucosidase. 24
Table 2.2. Substrate specificity of TKU004P 25
Table 2.3. Comparison of the AAG activity produced by various proteases 28
Table 3.1. Comparison of chitosanase, chitinase, and exochitinase production by different Paenibacillus and Bacillus strains 38
Table 3.2. Purification of chitosanase from P. mucilaginosus TKU032 39
Table 3.3. Effect of metal ions on the activity of chitosanase 41
Table 4.1. Purification of Paenibacillus sp. TKU047 chitosanase 56
Table 4.2. Comparison of chitinase/chitosanase produced by Paenibacillus strains 58
Table 4.3. The characteristics of COS, CCOS_1, and CCOS_2. 63
Table 4.4. The IC50 value of DPPH radical scavenging activity of some COSs 65
參考文獻 introduction
[1] Wang, S.L.; Liang, T.W. Microbial reclamation of squid pens and shrimp shells. Res. Chem. Intermed. 2017, 43, 3445.
[2] Besednova, N.N.; Zaporozhets, T.S.; Kovalev, N.N.; Makarenkova, I.D.; Yakovlev, Y.M. Cephalopods: The potential for their use in medicine. Russ. J. Mar. Biol. 2017, 43, 101–110.
[3] Liang, T.W.; Hsieh, J.L.; Wang, S.L. Production and purification of a protease, a chitosanase and chitin oligosaccharides by Bacillus cereus TKU022 fermentation. Carbohydr. Res. 2012, 362, 38-46.
[4] Liang, T.W.; Chen, W.T.; Lin, Z.H.; Kuo, Y.H.; Nguyen A.D.; Pan, P.S.; Wang, S.L. An amphiprotic novel chitosanase from Bacillus mycoides and its application in the production of chitooligomers with their antioxidant and anti-inflammatory evaluation. Int. J. Mol. Sci. 2017, 17, 1302.
[5] Tran, T.N.; Doan, C.T.; Nguyen, V.B.; Nguyen, A.D.; Wang, S.L. The isolation of chitinase from Streptomyces thermocarboxydus and its application in the preparation of chitin oligomers. Res. Chem. Intermed. 2019, 45, 727-742.
[6] Liang, T.W.; Tseng, S.C.; Wang, S.L. Production and characterization of antioxidant properties of exopolysaccharides from Paenibacillus mucilaginosus TKU032. Mar. Drugs. 2016, 12, 40-51.
[7] Wang, S.L.; Su, Y.C.; Nguyen, V.B.; Nguyen, A.D. Reclamation of shrimp heads for the production of α-glucosidase inhibitors by Staphylococcus sp. TKU043. Res. Chem. Intermed. 2018, 44, 4929–4937.
[8] Younes, I.; Rinaudo, M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar. Drugs 2015, 13, 1133-1174.
[9] Jung, W.J.; Park, R.D. Bioproduction of chitooligosaccharides: present and perspectives. Mar. Drugs 2014, 12, 5328-56.
[10] Elieh-Ali-Komi, D.; Hamblin, M.R. Chitin and chitosan: production and application of versatile biomedical nanomaterials. Int. J. Adv. Res. (Indore) 2016, 4, 411-427.
[11] Doan, C. T.; Tran, T. N.; Nguyen, V. B.; Vo, T. P. K.; Nguyen, A. D.; Wang, S. L. Chitin extraction from shrimp waste by liquid fermentation using an alkaline protease-producing strain, Brevibacillus parabrevis. Int. J. Biol. Macromol. 2019, 131, 706-715.
[12] Grady, E.N.; MacDonald, J.; Liu, L.; Richman, A.; Yuan, Z.C. Current knowledge and perspectives of Paenibacillus: a review. Microb. Cell Fact. 2016, 15, 203.
[13] Nguyen, V.B.; Wang, S.L. Reclamation of marine chitinous materials for the production of α-glucosidase inhibitors via microbial conversion. Mar. Drugs 2017, 15, 350.

Chapter 1
[1] Wang, S.L.; Liang, T. Microbial reclamation of squid pens and shrimp shells. Res. Chem. Intermed. 2017, 43, 3445–3462.
[2] Wang, S.L. Microbial reclamation of squid pen. Biocatal. Agric. Biotechnol. 2012, 1, 177–180.
[3] Kaur, S.; Dhillon, G.S. Recent trends in biological extraction of chitin from marine shell wastes: A review. Crit. Rev. Biotechnol. 2015, 35, 44–61.
[4] Younes, I.; Rinaudo, M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar. Drugs 2015, 13, 1133–1174.
[5] Younes, I.; Hajji, S.; Rinaudo, M.; Chaabouni, M.; Jellouli, K.; Nasri, M. Optimization of proteins and minerals removal from shrimp shells to produce highly acetylated chitin. Int. J. Biol. Macromol. 2016, 84, 246–253.
[6] Ghorbel-Bellaaj, O.; Jellouli, K.; Younes, I.; Manni, L.; Ouled Salem, M.; Nasri, M. A solvent-stable metalloprotease produced by Pseudomonas aeruginosa A2 grown on shrimp shell waste and its application in chitin extraction. Appl. Biochem. Biotechnol. 2011, 164, 410–425.
[7] Liang, T.W.; Chen, Y.Y.; Pan, P.S.; Wang, S.L. Purification of chitinase/chitosanase from Bacillus cereus and discovery of an enzyme inhibitor. Int. J. Biol. Macromol. 2014, 63, 8–14
[8] Liang, T.W.; Lo, B.C.; Wang, S.L. Chitinolytic bacteria-assisted conversion of squid pen and its effect on dyes and adsorption. Mar. Drugs 2015, 13, 4576–4593.
[9] Wang, C.L.; Su, J.W.; Liang, T.W.; Nguyen, A.D.; Wang, S.L. Production, purification and characterization of a chitosanase from Bacillus cereus. Res. Chem. Intermed. 2014, 40, 2237–2248.
[10] Liang, T.W.; Chen, W.T.; Lin, Z.H.; Kuo, Y.H.; Nguyen, A.D.; Pan, P.S.; Wang, S.L. An amphiprotic novel chitosanase from Bacillus mycoides and its application in the production of chitooligomers with their antioxidant and anti-inflammatory evaluation. Int. J. Mol. Sci. 2016, 17, 1302.
[11] Liang, T.W.; Jen, S.N.; Nguyen, A.D.; Wang, S.L. Application of chitinous materials in production and purification of a poly (L-lactic acid) depolymerase from Pseudomonas tamsuii TKU015. Polymers 2016, 8, 98.
[12] Wang, S.L.; Chen, S.J.; Liang, T.W.; Lin, Y.D. A novel nattokinase produced by Pseudomonas sp. TKU015 using shrimp shells as substrate. Process Biochem. 2009, 44, 70–76.
[13] Kuo, Y.H.; Liang, T.W.; Liu, K.C.; Hsu, Y.W.; Hsu, H.; Wang, S.L. Isolation and identification of a novel antioxidant with antitumor activity from Serratia ureilytica using squid pen as fermentation substrate. Mar. Biotechnol. 2011, 13, 451–461
[14] Wang, S.L.; Li, H.T.; Zhang, L.J.; Lin, Z.H.; Kuo, Y.H. Conversion of squid pen to homogentisic acid via Paenibacillus sp. TKU036 and the antioxidant and anti-inflammatory activities of homogentisic acid. Mar. Drugs 2016, 14, 183.
[15] Wang, S.L.; Wu, P.C.; Liang, T.W. Utilization of squid pen for the efficient production of chitosanase and antioxidants through prolonged autoclave treatment. Carbohydr. Res. 2009, 244, 979–984.
[16] Nguyen V.B.; Nguyen A.D.; Wang, S.L. Utilization of fishery processing by product squid pens for Paenibacillus sp. fermentation on producing potent α-glucosidase inhibitors. Mar. Drugs 2017, 15, 274.
[17] Nguyen, V.B.; Wang, S.L. Reclamation of marine chitinous materials for the production of α-glucosidase inhibitors via microbial conversion. Mar. Drugs 2017, 15, 350.
[18] Nguyen, V.B.; Wang, S.L. New novel α-glucosidase inhibitors produced by microbial conversion. Process Biochem. 2017, 65, 228–232.
[19] Wang, S.L.; Huang, T.Y.; Wang, C.Y.; Liang, T.W.; Yen, Y.H.; Sakata, Y. Bioconversion of squid pen by Lactobacillus paracasei subsp paracasei TKU010 for the production of proteases and lettuce enhancing biofertilizers. Bioresour. Technol. 2008, 99, 5436–5443.
[20] Wang, S.L.; Hsu, W.H.; Liang, T.W. Conversion of squid pen by Pseudomonas aeruginosa K-187 fermentation for the production of N-acetyl chitooligosaccharides and biofertilizers. Carbohydr. Res. 2010, 345, 880–885.
[21] Liang, T.W.; Wu, C.C.; Cheng, W.T.; Chen, Y.C.; Wang, C.L.; Wang, I.L.; Wang, S.L. Exopolysaccharides and antimicrobial biosurfactants produced by Paenibacillus macerans TKU029. Appl. Biochem. Biotechnol. 2014, 172, 933–950.
[22] Liang, T.W.; Tseng, S.C.; Wang, S.L. Production and characterization of antioxidant properties of exopolysaccharides from Paenibacillus mucilaginosus TKU032. Mar. Drugs 2016, 14, 40–51
[23] Liang, T.W.; Wang, S.L. Recent advances in exopolysaccharides from Paenibacillus spp.: Production, isolation, structure, and bioactivities. Mar. Drugs 2015, 13, 1847–1863.
[24] Wang, S.L.; Wang, C.Y.; Yen, Y.H.; Liang, T.W.; Chen, S.Y.; Chen, C.H. Enhanced production of insecticidal prodigiosin from Serratia marcescens TKU011 in media containing squid pen. Process Biochem. 2012, 47,
1684–1690.
[25] Hsu, C.H.; Nguyen, A.D.; Chen, Y.W.; Wang, S.L. Tyrosinase inhibitors and insecticidal materials produced by Burkholderia cepacia using squid pen as the sole carbon and nitrogen source. Res. Chem. Intermed. 2014, 40, 2249–2258.
[26] Grady, E.N.; MacDonald, J.; Liu, L.; Richman, A.; Yuan, Z.C. Current knowledge and perspectives of Paenibacillus: A review. Microb. Cell Fact. 2016, 15, 203, doi: 10.1186/s12934-016-0603-7.
[27] Zhu, Y.P.; Yamaki, K.; Yoshihashi, T.; Ohnishi, K.M.; Li, X.T.; Cheng, Y.Q.; Mori, Y.; Li, L.T. Purification and identification of 1-deoxynojirimycin (DNJ) in okara fermented by Bacillus subtilis B2 from Chinese traditional food (meitaoza). J. Agric. Food Chem. 2010, 58, 4097–4103.
[28] Nam, H.; Jung, H.; Karuppasamy, S.; Park, Y.S.; Cho, Y.S.; Lee, J.Y.; Seong, S.; Suh, J.G. Anti-diabetic effect of the soybean extract fermented by Bacillus subtilis MORI in db/db mice. Food Sci. Biotechnol. 2012, 21, 1669–1676.
[29] Wang, C.L.; Huang, T.H.; Liang, T.W.; Wang, S.L. Production and characterization of exopolysaccharides and antioxidant from Paenibacillus sp. TKU023. N. Biotechnol. 2011, 28, 559–565.
[30] Liu, J.; Luo, J.; Ye, H.; Sun, Y.; Lu, Z.; Zeng, X. Production, characterization and antioxidant activities in vitro of exopolysaccharides from endophytic bacterium Paenibacillus polymyxa EJS-3. Carbohydr. Polym. 2009, 78, 275–281.
[31] Fang, Y.; Liu, S; Lu, M.; Jiao, Y.; Wang, S. A novel method for promoting antioxidant exopolysaccharides production of Bacillus licheniformis. Carbohydr. Polym. 2013, 92, 1172–1176.
[32] Ash, C.; Priest, F.G.; Collins, M.D. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie Van Leewenhoek 1993, 64, 253–260.
[33] Pagnoncelli, M.G.B.; de Araújo1, N.K.; da Silva, N.M.P.; de Assis, C.F.; Rodrigues, S.; de Macedo, G.B. Chitosanase production by Paenibacillus ehimensis and its application for chitosan hydrolysis. Braz. Arch. Biol. Technol. 2010, 53, 1461–1468.
[34] Omumasaba, C.A.; Yoshida, N.; Sekiguchi, Y.; Kariya, K.; Ogawa, K. Purification and some properties of a novel chitosanase from Bacillus subtilis KH1. J. Gen. Appl. Microbiol. 2000, 46, 19–27.
[35] Akiyama, K.; Fujita, T.; Kuroshima, K.; Sakane, T.; Yokota, A.; Takata, R. Purification and gene cloning of a chitosanase from Bacillus ehimensis EAG1. J. Biosci. Bioeng. 1999, 87, 383–385.
[36] Chiang, C.L.; Chang, C.T.; Sung, H.Y. Purification and properties of chitosanase from a mutant of Bacillus subtilis IMR-NK1. Enzyme Microb. Technol. 2003, 32, 260–267.
[37] Yilmaz, B.; Baltaci, M.O.; Sisecioglu, M.; Adiguzel, A. Thermotolerant alkaline protease enzyme from Bacillus licheniformis A10: Purification, characterization, effects of surfactants and organic solvents. J. Enzyme Inhib. Med. Chem. 2016, 31, 1241–1247.
[38] Pelletier, A.; Sygusch, J. Purification and characterization of three chitosanase activities from Bacillus megaterium P1. Appl. Environ. Microbiol. 1990, 56, 844–848.
[39] Kurakake, M.; You, S.; Nakagawa, K.; Sugihara, M.; Komaki, T. Properties of chitosanase from Bacillus cereus S1. Curr. Microbiol. 2000, 40, 6–9.
[40] Choi, Y.J.; Kim, E.J.; Piao, Z.; Yun, Y.C.; Shin, Y.C. Purification and characterization of chitosanase from Bacillus sp. strain KCTC 0377BP and its application for the production of chitosan oligosaccharides. Appl. Environ. Microbiol. 2004, 70, 4522–4531.
[41] Jo, Y.Y.; Jo, K.J.; Jin, Y.L.; Kim, K.Y.; Shin, J.H.; Kim, Y.W.; Park, R.D. Characterization and kinetics of 45 kDa chitosanase from Bacillus sp. P16. Biosci. Biotechnol. Biochem. 2003, 67, 1875–1882.
[42] Kim, P.I.; Kang, T.H.; Chung, K.J.; Kim, I.S.; Chung, K.C. Purification of a constitutive chitosanase produced by Bacillus sp. MET 1299 with cloning and expression of the gene. FEMS Microbiol. Lett. 2004, 240, 31–39.
[43] Zitouni, M.; Fortin, M.; Scheerle, R.K.; Letzel. T.; Matteau, D.; Rodrigue, S.; Brzezinski, R. Biochemical and molecular characterization of a thermostable chitosanase produced by the strain Paenibacillus sp. 1794 newly isolated from compost. Appl. Microbiol. Biotechnol. 2013, 97, 5801–5813.
[44] Kimoto, H.; Kusaoke, H.; Yamamoto, I.; Fujii, Y. Biochemical and genetic properties of Paenibacillus glycosyl hydrolase having chitosanase activity and discoidin domain. J. Biol. Chem. 2002, 17, 14695–14702.
[45] Rai, S.K.; Roy, J.K.; Mukherjee, A.K. Characterisation of a detergent-stable alkaline protease from a novel thermophilic strain Paenibacillus tezpurensis sp. nov. AS-S24-II. Appl. Microbiol. Biotechnol. 2010, 85, 1437–1450.
[46] Li, Y.; Pan, Y.; She, Q.; Chen, L. A novel carboxyl-terminal protease derived from Paenibacillus lautus CHN26 exhibiting high activities at multiple sites of substrates. BMC Biotechnol. 2013, 13, 89.
[47] Mothe, T.; Sultanpuram, V.R. Production, purification and characterization of a thermotolerant alkaline serine protease from a novel species Bacillus caseinilyticus. Biotechnol. 2016, 6, 53.
[48] Rahman, R.N.Z.A.; Razak, C.N.; Ampon, K.; Basri, M.; Yunus, W.M.Z.; Salleh, A.B. Purification and characterization of a heat-stable alkaline protease from Bacillus stearothermophilus Fl. Appl. Microbiol. Biotechnol. 1994, 40, 822–827.
[49] Takami, H.; Akiba, T.; Horikoshi, K. Production of extremely thermostable alkaline protease from Bacillus sp. AH-101. Appl. Microbiol. Biotechnol. 1989, 30, 120–124.

Chapter 2
[1] Ichiki, H.; Miura, T.; Ishihara, E.; Komatsu, Y.; Tanigawa, K.; Okada, M. New antidiabetic compounds, mangiferin and its glucoside. Biol. Pharm. Bull. 1998, 21, 1389–1390.
[2] Agrawal, P.B.; Pandit, A.B. Isolation of α-glucosidase from Saccharomyces cerevisiae: Cell disruption and adsorption. Biochem. Eng. J. 2003, 15, 37–45.
[3] Yoshikawa, K.; Yamamoto, K.; Okada, S. Classification of some α-glucosidases and α-xylosidases on the basis of substrate specificity. Biosci. Biotechnol. Biochem. 1994, 58, 1392–1398.
[4] Nakai, H.; Ito, T.; Hayashi, M.; Yamamoto, T.; Matsubara, K.; Kim, Y.M.; Jimtanart, W.; Okuyama, M.; Mori, H.; Chiba, S.; et al. Multiple forms of α-glucosidase in rice seeds (Oryza sativa L., var Nipponbare). Biochimie 2007, 89, 49–62.
[5] Jeffrey, P.L.; Brown, D.H.; Brown, B.I. Studies of lysosomal alpha-glucosidase. I. Purification and properties of the rat liver enzyme. Biochemistry 1970, 9, 1403–1415.
[6] Suzuki, Y.; Kishigami, T.; Abe, S. Production of extracellular alpha-glucosidase by a thermophilic Bacillus species. Appl. Environ. Microbiol. 1976, 31, 807–812.
[7] Malunga, L.N.; Eck, P.; Beta, T. Inhibition of intestinal α-glucosidase and glucose absorption by feruloylated arabinoxylan mono- and oligosaccharides from corn bran and wheata aleurone. J. Nutr. Metab. 2016, 2016, 1932532, doi:10.1155/2016/1932532.
[8] Sheliya, M.A.; Begum, R.; Pillai, K.K.; Aeri, V.; Mir, S.R.; Ali, A.; Sharma, M. In vitro α-glucosidase and α-amylase inhibition by aqueous, hydroalcoholic, and alcoholic extract of Euphorbia hirta L. Drug Dev. Ther. 2016, 7, 26–30.
[9] Konrad, B.; Anna, D.; Marek, S.; Marta, P.; Aleksandra, Z.; Jozefa, C. The evaluation of dipeptidyl peptidase (DPP)-IV, α-glucosidase and angiotensin converting enzyme (ACE) inhibitory activities of whey proteins hydrolyzed with serine protease isolated from Asian pumpkin (Cucurbita ficifolia). Int. J. Prept. Res. Ther. 2014, 20, 483–491.
[10] Kim, S.D. α-Glucosidase inhibitor isolated from coffee. J. Microbiol. Biotechnol. 2015, 25, 174–177.
[11] Nguyen, V.B.; Wang, S.L.; Nguyen, A.D.; Doan, C.T.; Tran, T.N.; Huang, H.T.; Kuo, Y.H. Bioactivity-guided purification of novel herbal antioxidant and anti-NO compounds from Euonymus laxiflorus Champ. Molecules 2018, 24, 120.
[12] Huang, T.T.; Wang, S.L.; Nguyen, V.B.; Kuo, Y.H. Isolation and identification of potent antidiabetic compounds from Antrodia cinnamomea—An edible Taiwanese mushroom. Molecules 2018, 23, 2864.
[13] Nguyen, V.B.; Wang, S.L.; Nguyen, T.H.; Nguyen, M.T.; Doan, C.T.; Tran, T.N.; Lin, Z.H.; Nguyen, Q.V.; Kuo, Y.H.; Nguyen, A.D. Novel potent hypoglycemic compounds from Euonymus laxiflorus Champ. and their effect on reducing plasma glucose in an ICR mouse model. Molecules 2018, 23, 1928.
[14] Nguyen, V.B.; Wang, S.L.; Ngu, T.N.; Nguyen, T.H.; Nguyen, P.D.N.; Do, H.N.; Nguyen, M.C. New records of potent in-vitro antidiabetic properties of Dalbergia tonkinensis heartwood and the bioactivity-guided isolation of active compounds. Molecules 2018, 23, 1589.
[15] Nguyen, V.B.; Wang, S.L. New novel α–glucosidase inhibitors produced by microbial conversion. Process Biochem. 2018, 65, 228–232.
[16] Nguyen, V.B.; Nguyen, T.H.; Doan, C.T.; Tran, T.N.; Nguyen, A.D.; Kuo, Y.H.; Wang, S.L. Production and bioactivity-guided isolation of antioxidants with α-glucosidase inhibitory and anti-NO properties from marine chitinous material. Molecules 2018, 23, 1124.
[17] Nguyen, Q.V.; Wang, S.L.; Nguyen, A.D. In vitro α-glucosidase and α-amylase inhibition, and in vivo anti-hyperglycemic effects of Psidium littorale Raddi leaf extract. Res. Chem. Intermed. 2018, 44, 1745–1753.
[18] Sulistiyani; Safithri, M.; Sari, Y.P. Inhibition of α-glucosidase activity by ethanolic extract of Melia azedarach L. leaves. IOP Conf. Ser. Earth Environ. Sci. 2016, 31, 012025.
[19] Nguyen, V.B.; Wang, S.L. Production of potent antidiabetic compounds from shrimp head powder via Paenibacillus conversion. Process Biochem. 2019, 76, 18–24.
[20] Doan, C.T.; Tran, T.N.; Nguyen, V.B.; Nguyen, A.D.; Wang, S.L. Conversion of squid pens to chitosanases and proteases via Paenibacillus sp. TKU042. Mar. Drugs 2018, 16, 83.
[21] Wang, S.L.; Su, Y.C.; Nguyen, V.B.; Nguyen, A.D. Reclamation of shrimp heads for the production of α-glucosidase inhibitors by Staphylococcus sp. TKU043. Res. Chem. Intermed. 2018, 44, 4929–4937.
[22] Hsu, C.H.; Nguyen, V.B.; Nguyen, A.D.; Wang, S.L. Conversion of shrimp heads to α-glucosidase inhibitors via co-culture of Bacillus mycoides TKU040 and Rhizobium sp. TKU041. Res. Chem. Intermed. 2018, 44, 4597–4607.
[23] Nguyen, V.B.; Nguyen, A.D.; Wang, S.L. Utilization of fishery processing byproduct squid pens for Paenibacillus sp. fermentation on producing potent α-glucosidase inhibitors. Mar. Drugs 2017, 15, 274.
[24] Nguyen, V.B.; Wang, S.L. Reclamation of marine chitinous materials for the production of α-glucosidase inhibitors via microbial conversion. Mar. Drugs 2017, 15, 350.
[25] Onose, S.; Ikeda, R.; Nakagawa, K.; Kimura, T.; Yamagishi, K.; Higuchi, O.; Miyazawa, T. Production of the α-glycosidase inhibitor 1-deoxynojirimycin from Bacillus species. Food Chem. 2013, 138, 51–523.
[26] Nam, H.; Jung, H.; Karuppasamy, S.; Park, Y.S.; Cho, Y.S.; Lee, J.Y.; Seong, S.; Suh, J.G. Anti-diabetic effect of the soybean extract fermented by Bacillus subtilis MORI in db/db mice. Food Sci. Biotechnol. 2012, 21, 1669–1676.
[27] Zhu, Y.P.; Yamaki, K.; Yoshihashi, T.; Ohnishi, K.M.; Li, X.T.; Cheng, Y.Q.; Mori, Y.; Li, L.T. Purification and identification of 1-deoxynojirimycin (DNJ) in okara fermented by Bacillus subtilis B2 from Chinese traditional food (meitaoza). J. Agric. Food Chem. 2010, 58, 4097–4103.
[28] Cho. Y.S.; Park. Y.S.; Lee. J.Y.; Kang, K.D.; Hwang, K.Y.; Seong, S.I. Hypoglycemic effect of culture broth of Bacillus subtilis S10 producing 1-deoxynojirimycin. J. Korean Soc. Food Sci. Nutr. 2008, 37, 1401–1407.
[29] Ezure, Y.; Maruo, S.; Miyazaki, K.; Kawamata, M. Moranoline (1-deoxynojirimycin) fermentation and its improvement. Agric. Biol. Chem. 1985, 49, 1119–1125.
[30] Kameda, Y.; Asano, M.; Yoshikawa, M.; Takeuchi, M.; Yamaguchi, T.; Matsui, K.; Horii, S.; Fukase, H. Valiolamine, a new alpha-glucosidase inhibiting aminocyclitol produced by Streptomyces hygroscopicus. J. Antibiot. 1984, 37, 1301–1307.
[31] Schmidt, D.D.; Frommer, W.; Junge, B.; Muller, L.; Wingender, W.; Truscheit, E.; Schafer, D. α-Glucosidase inhibitors. Naturwissenschaften 1977, 64, 535–536.
[32] Zheng, Y.G.; Xue, Y.P.; Shen, Y.C. Production of valienamine by a newly isolated strain: Stenotrophomonas maltrophilia. Enzym. Microb. Technol. 2006, 39, 1060–1065.
[33] Artanti, N.; Tachibana, S.; Kardono, L.B.; Sukiman, H. Screening of endophytic fungi having ability for antioxidative and alpha-glucosidase inhibitor activities isolated from Taxus sumatrana. Pak. J. Biol. Sci. 2011, 14, 1019–1029.
[34] Su, C.H.; Lai, M.N.; Ng, L.T. Inhibitory effects of medicinal mushrooms on α-amylase and α-glucosidase – enzymes related to hyperglycemia. Food Funct. 2013, 4, 644–649.
[35] Wang, S.L.; Kao, T.Y.; Wang, C.L.; Yen, Y.H.; Chern, M.K.; Chen, Y.H. A solvent stable metalloprotease produced by Bacillus sp. TKU004 and its application in the deproteinization of squid pen for β-chitin preparation. Enzym. Microb. Technol. 2006, 39, 724–731.
[36] Matsu, T.; Oki, T.; Osajima, Y. Isolation and identification of peptidic a-glucosidase inhibitors derived from sardine muscle hydrolyzate. Z. Naturforsch. C. 1999, 54, 259–263.
[37] González-Montoya, M.; Hernández-Ledesma, B.; Mora-Escobedo, R.; Martínez-Villaluenga, C. Bioactive peptides from germinated soybean with anti-diabetic potential by inhibition of dipeptidyl peptidase-IV, α-amylase, and α-glucosidase enzymes. Int. J. Mol. Sci. 2018, 19, 2883.
[38] Strongin, A.Y.; Abramov, Z.T.; Yaroslavtseva, N.G.; Baratova, L.A.; Shaginyan, K.A.; Belyanova, L.P.; Stepanov, V.M. Direct comparison of the subtilisin-like intracellular protease of Bacillus licheniformis with the homologous enzymes of Bacillus subtilis. J. Bacteriol. 1979, 137, 1017–1019.
[39] Wells, J.A.; Ferrari, E.; Henner, D.J.; Estell, D.A.; Chen, E.Y. Cloning, sequencing, and secretion of Bacillus amyloliquefaciens subtilisin in Bacillus subtilis. Nucleic Acids Res. 1983, 11, 7911–7925.
[40] Mikhailova, E.O.; Balaban, N.P.; Mardannova, A.M.; Rudakova, N.L.; Ilyinskaya, O.N.; Rudenskaya, G.N.; Rizvanov, A.A.; Sharipova, M.R. Purification of a subtilisin-like serine proteinase from recombinant Bacillus subtilis during different phases of growth. Ann. Microbilol. 2009, 59, 301–307.
[41] Miyaji, T.; Otta, Y.; Nakagawa, T.; Watanabe, T.; Niimura, Y.; Tomizuka, N. Purification and molecular characterization of subtilisin-like alkaline protease BPP-A from Bacillus pumilus strain MS-1. Lett. Appl. Microbiol. 2006, 42, 242–247.
[42] Wang, S.L.; Liu, C.P.; Liang, T.W. Fermented and enzymatic production of chitin/chitosan oligosaccharides by extracellular chitinases from Bacillus cereus TKU027. Carbohydr. Polym. 2012, 90, 1305–1313.
[43] Wang, S.L.; Wu, Y.Y.; Liang, T.W. Purification and biochemical characterization of a nattokinase by conversion of shrimp shell with Bacillus subtilis TKU007. New Biotechnol. 2011, 28, 196–202.
[44] Liang, T.W.; Hsieh, J.L.; Wang, S.L. Production and purification of a protease, a chitosanase, and chitin oligosaccharides by Bacillus cereus TKU022 fermentation. Carbohydr. Res. 2012, 362, 38–46.
[45] Tran, T.N.; Doan, C.T.; Nguyen, V.B.; Nguyen, A.D.; Wang, S.L. The isolation of chitinase from Streptomyces thermocarboxydus and its application in the preparation of chitin oligomers. Res. Chem. Intermed. 2019, 45, 727–742.

Chapter 3
[1] Zitouni, M.; Fortin, M.; Scheerle, R.K.; Letzel, T.; Matteau, D.; Rodrigue, S.; Brzezinski, R. Biochemical and molecular characterization of a thermostable chitosanase produced by the strain Paenibacillus sp. 1794 newly isolated from compost. Appl. Microbiol. Biotechnol. 2013, 97, 5801-5813.
[2] Kumar, M.N.V.R. A review of chitin and chitosan applications. React. Funct. Polym. 2000, 46, 1-27.
[3] Wang, S.L.; Liang, T.W. Microbial reclamation of squid pens and shrimp shells. Res. Chem. Intermed. 2017, 43, 3445.
[4] Elieh-Ali-Komi, D.; Hamblin, M.R. Chitin and chitosan: Production and application of versatile biomedical nanomaterials. Int. J. Adv. Res. (Indore). 2016, 4, 411-427.
[5] Liang, T.W.; Chen, W.T.; Lin, Z.H.; Kuo, Y.H.; Nguyen A.D.; Pan, P.S.; Wang, S.L. An amphiprotic novel chitosanase from Bacillus mycoides and its application in the production of chitooligomers with their antioxidant and anti-inflammatory evaluation. Int. J. Mol. Sci. 2017, 17, 1302.
[6] Jo, S.H.; Ha, K.S.; Moon, K.S.; Kim, J.G; Oh, C.G.; Kim, Y.C.; Apostolidis, E.; Kwon, Y.I. Molecular weight dependent glucose lowering effect of low molecular weight chitosan oligosaccharide (GO2KA1) on postprandial blood glucose level in SD rats model. Int. J. Mol. Sci. 2013, 14, 14214-14224.
[7] Lee, H.W.; Park, Y.S.; Choi J.W.; Yi. S.Y.; Shin, W.S. Antidiabetic effects of chitosan oligosaccharides in neonatal streptozotocin-induced noninsulin-dependent diabetes mellitus in rats. Biol. Pharm. Bull. 2003, 26, 1100-3.
[8] Tran, T.N.; Doan, C.T.; Nguyen, V.B.; Nguyen, A.D.; Wang, S.L. The isolation of chitinase from Streptomyces thermocarboxydus and its application in the preparation of chitin oligomers. Res. Chem. Intermed. 2019, 45, 727-742.
[9] Doan, C.T.; Tran, T.N.; Nguyen, V.B.; Nguyen, A.D.; Wang, S.L. Reclamation of marine chitinous materials for chitosanase production via microbial conversion by Paenibacillus macerans. Mar. Drugs. 2018, 16, 429.
[10] Azuma, K.; Osaki, T.; Minami, S.; Okamoto, Y. (2015). Anticancer and anti-inflammatory properties of chitin and chitosan oligosaccharides. J. Funct. Biomater. 2015, 6, 33-49.
[11] Liang, T.W.; Chen, Y.J.; Yen, Y.H.; Wang, S.L. The antitumor activity of the hydrolysates of chitinous materials hydrolyzed by crude enzyme from Bacillus amyloliquefaciens V656. Process Biochem. 2007, 42, 527-534.
[12] No, H.K.; Park, N.Y.; Lee, S.H.; Meyers, S.P. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int. J. Food Microbiol. 2002, 74, 65-72.
[13] Sun, T.; Qin, Y.; Xu, H.; Xie, J.; Hu, D.; Xue, B.; Hua, X. Antibacterial activities and preservative effect of chitosan oligosaccharide Maillard reaction products on Penaeus vannamei. Int. J. Biol. Macromol. 2017, 105, 764-768
[14] Wang, S.L.; Liu, C.P.; Liang, T.W. Fermented and enzymatic production of chitin/chitosan oligosaccharides by extracellular chitinases from Bacillus cereus TKU027. Carbohydr. Polym. 2012, 90, 1305–1313.
[15] Liang, T.W.; Liu, C.P.; Wu, C.; Wang, S.L. Applied development of crude enzyme from Bacillus cereus in prebiotics and microbial community changes in soil. Carbohydr. Polym. 2013, 92, 2141-2148.
[16] Nguyen A.D.; Huang, C.C.;Liang, T.W.; Nguyen, V.B.; Pan, P.S.; Wang, S.L. Production and purification of a fungal chitosanase and chitooligomers from Penicillium janthinellum D4 and discovery of the enzyme activators. Carbohydr. Polym. 2014, 108, 331–337.
[17] Park, J.K.; Shimono, K.; Ochiai, N.; Shigeru, K.; Kurita, M.; Ohta, Y.; Tanaka, K.; Matsuda, H. Kawamukai, M. Purification, characterization, and gene analysis of a chitosanase (ChoA) from Matsuebacter chitosanotabidus 3001. J. Bacteriol. 1999, 181, 6642-6649.
[18] Doan, C.T.; Tran, T.N.; Nguyen, V.B.; Nguyen A.D.; Wang, S.L. Conversion of squid pens to chitosanases and proteases via Paenibacillus sp. TKU042. Mar. Drugs, 2018, 16, 83.
[19] Wang, S.L.; Yu, H.T.; Tsai, M.H.; Doan, C.T.; Nguyen, V.B.; Do, V.C.; Nguyen, A.D. Conversion of squid pens to chitosanases and dye adsorbents via Bacillus cereus. Res. Chem. Intermed. 2018, 44, 4903-4911.
[20] Wang, C.L.; Su, J.W.; Liang, T.W.; Nguyen, A.D.; Wang, S.L. Production, purification and characterization of a chitosanase from Bacillus cereus. Res. Chem. Intermed. 2014, 40, 2237-2248.
[21] Liang, T.W.; Chen, Y.Y.; Pan, P.S.; Wang, S.L. (2014 Feb) Purification of chitinase/chitosanase from Bacillus cereus and discovery of an enzyme inhibitor. Int. J. Biol. Macromol., 2014, 63, 08-14.
[22] Liang, T.W.; Hsieh, J.L.; Wang, S.L. Production and purification of a protease, a chitosanase and chitin oligosaccharides by Bacillus cereus TKU022 fermentation. Carbohydr. Res. 2012, 362, 38-46.
[23] Wang, S.L.; Chen, T.R.; Liang, T.W.; Wu, P.C. (2009) Conversion and degradation of shellfish wastes by Bacillus cereus TKU018 fermentation for the production of chitosanase and bioactive materials. Biochem. Eng. J. 2009, 48, 111-117.
[24] Liang, T.W.; Kuo, Y.H.; Wu, P.C.; Wang, C.L.; Nguyen, A.D.; Wang, S.L. Purification and characterization of a chitosanase and a protease by conversion of shrimp shell wastes fermented by Serratia marcescens subsp. sakuensis TKU019. J. Chin. Chem. Soc-Taip. 2010, 57, 857-863.
[25] Boucher, I.; Dupuy, A.; Vidal, P.; Neugebauer, W.A.; Brzezinski, R. Purification and characterization of a chitosanase from Streptomyces N174. Appl. Microbiol. Biotechnol. 1992, 38, 188-193.
[26] Liang, T.W.; Lo, B.C.; Wang, S.L. Chitinolytic bacteria-assisted conversion of squid pen and its effect on dyes and adsorption. Mar. Drugs, 2015, 13, 4576–4593.
[27] Wang, S.L.; Wu, P.C.; Liang, T.W. Utilization of squid pen for the efficient production of chitosanase and antioxidants through prolonged autoclave treatment. Carbohydr. Res. 2009, 244, 979–984.
[28] Wang, S.L.; Chen, S.J.; Liang, T.W.; Lin, Y.D. A novel nattokinase produced by Pseudomonas sp. TKU015 using shrimp shells as substrate. Process Biochem. 2009, 44, 70–76.
[29] Wang, S.L.; Su, Y.C.; Nguyen, V.B.; Nguyen, A.D. Reclamation of shrimp heads for the production of α-glucosidase inhibitors by Staphylococcus sp. TKU043. Res. Chem. Intermed. 2018, 44, 4929–4937.
[30] Wang, S.L.; Wu, Y.Y.; Liang, T.W. Purification and biochemical characterization of a nattokinase by conversion of shrimp shell with Bacillus subtilis TKU007. N. Biotechnol. 2011, 28, 196–202.
[31] Doan, C.T.; Tran, T.N.; Nguyen, M.T.; Nguyen, V.B.; Nguyen, A.D.; Wang. S.L. Anti-α-Glucosidase Activity by a Protease from Bacillus licheniformis. Molecules. 2019, 24, 691.
[32] Nguyen, V.B.; Wang, S.L. New novel α–glucosidase inhibitors produced by microbial conversion. Process Biochem. 2018, 65, 228–232.
[33] Nguyen, V.B.; Nguyen, T.H.; Doan, C.T.; Tran, T.N.; Nguyen, A.D.; Kuo, Y.H.; Wang, S.L. Production and bioactivity-guided isolation of antioxidants with α-glucosidase inhibitory and anti-NO properties from marine chitinous material. Molecules 2018, 23, 1124.
[34] Nguyen, V.B.; Wang, S.L. Production of potent antidiabetic compounds from shrimp head powder via Paenibacillus conversion. Process Biochem. 2019, 76, 18–24.
[35] Nguyen, V.B.; Nguyen, A.D.; Wang, S.L. Utilization of fishery processing byproduct squid pens for Paenibacillus sp. fermentation on producing potent α-glucosidase inhibitors. Mar. Drugs. 2017, 15, 274.
[36] Nguyen, V.B.; Wang, S.L. Reclamation of marine chitinous materials for the production of α-glucosidase inhibitors via microbial conversion. Mar. Drugs. 2017, 15, 350.
[37] Liang, T.W.; Tseng, S.C.; Wang, S.L. Production and characterization of antioxidant properties of exopolysaccharides from Paenibacillus mucilaginosus TKU032. Mar. Drugs. 2016, 12, 40-51.
[38] Liang, T.W.; Wu, C.C.; Cheng, W.T.;Chen, Y.C.; Wang, C.L.; Wang, I.L.; Wang, S.L. (2014) Exopolysaccharides and antimicrobial biosurfactants produced by Paenibacillus macerans TKU029. Appl. Biochem. Biotech. 2014, 172, 933-950.
[39] Garcia-Gonzalez, E.; Poppinga, L.; Fünfhaus, A.; Hertlein, G.; Hedtke, K.; Jakubowska, A.; Genersch, E. Paenibacillus larvae chitin-degrading protein PlCBP49 is a key virulence factor in American foulbrood of honey bees. PLoS Pathogen. 2014, 10, e1004284.
[40] Singh, A.K.; Chhatpar, H.S. Purification and characterization of chitinase from Paenibacillus sp. D1. Appl. Biochem. Biotechnol. 2011, 164, 77-88.
[41] Kim, Y.H.; Park, S.K.; Hur, J.Y.; Kim, Y.C. Purification and characterization of a major extracellular chitinase from a biocontrol bacterium, Paenibacillus elgii HOA73. Plant Pathol. J. 2017, 33, 318-328.
[42] Itoh, T.; Sugimoto, I.; Hibi, T.; Suzuki, F.; Matsuo, K.; Fujii, Y.; Taketo, A.; Kimoto, H. Overexpression, purification, and characterization of Paenibacillus cell surface-expressed chitinase ChiW with two catalytic domains. Biosci. Biotechnol. Biochem. 2014, 78, 624-34.
[43] Loni, P.P.; Patil, J.U.; Phugare, S.S.; Bajekal, S.S. Purification and characterization of alkaline chitinase from Paenibacillus pasadenensis NCIM 5434. J. Basic Microbiol. 2014, 54, 1080-1089.
[44] Ueda, J.; Kurosawa, N. Characterization of an extracellular thermophilic chitinase from Paenibacillus thermoaerophilus strain TC22-2b isolated from compost. World J. Microbiol. Biotechnol. 2015, 31, 135-143.
[45] Jung, W.J.; Kuk, J.K.; Kim, K.Y.; Kim, T.H.; Park, R.D. Purification and characterization of chitinase from Paenibacillus illinoisensis KJA-424. J. Microbiol. Biotechnol. 2005, 15, 274-280.
[46] Fu, X.; Yan, Q.; Wang, J.; Yang, S.; Jiang, Z. Purification and biochemical characterization of novel acidic chitinase from Paenibacillus barengoltzii. Int. J. Biol. Macromol. 2016, 91, 973-979.
[47] Guo, X.; Xu, P.; Zong, M.; Lou, W. Purification and characterization of alkaline chitinase from Paenibacillus pasadenensis CS0611. Chin. J. Catal. 2017, 38, 665-672.
[48] Kimoto, H.; Kusaoke, H.; Yamamoto, I.; Fujii, Y.; Onodera, T.; Taketo, A. Biochemical and genetic properties of Paenibacillus glycosyl hydrolase having chitosanase activity and discoidin domain. J. Biol. Chem. 2002, 277, 14695-14702.
[49] Meena, S.; Gothwal, R.K.; Saxena, J.; Nehra, S.; Mohan, M.K.; Ghosh, P. Effect of metal ions and chemical compounds on chitinase produced by a newly isolated thermotolerant Paenibacillus sp. BISR-047 and its shelf-life. Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 872-881.
[50] Nguyen. V.B.; Wang. S.L.; Nguyen, A.D.; Lin, Z.H.; Doan, C.T.; Tran, T.N.; Huang, H.T.; Kuo, Y.H. Bioactivity-guided purification of novel herbal antioxidant and anti-NO compounds from Euonymus laxiflorus Champ. Molecules. 2019, 24, 120.
[51] Naveed, M.; Phil, L.; Sohail, M.; Hasnat, M.; Baig, M.M.F.A.; Ihsan, A.U.; Shumzaid, M.; Kakar, M.U.; Khan, T.M.; Akabar, M.D.; Hussain, M.I.; Zhou, Q.G. Chitosan oligosaccharide (COS): An overview. Int. J. Biol. Macromol. 2019, 129, 827-843.

Chapter 4
[1] Younes, I.; Rinaudo, M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar. Drugs 2015, 13, 1133-1174.
[2] Jung, W.J.; Park, R.D. Bioproduction of chitooligosaccharides: Present and perspectives. Mar. Drugs 2014, 12, 5328–5356.
[3] Elieh-Ali-Komi, D.; Hamblin, M.R. Chitin and chitosan: Production and application of versatile biomedical nanomaterials. Int. J. Adv. Res. 2016, 4, 411–427.
[4] Wang, S.L.; Liang, T.W. Microbial reclamation of squid pens and shrimp shells. Res. Chem. Intermed. 2017, 43, 3445.
[5] Kumar, M.N.V.R. A review of chitin and chitosan applications. React. Funct. Polym. 2000, 46, 1–27.
[6] Tran, T.N.; Doan, C.T.; Nguyen, V.B.; Nguyen, A.D.; Wang, S.L. Anti-oxidant and andti-diabetes potential of water-soluble chitosan-glucose derivatives produced by Maillard reaction. Polymers 2019, 11, 1714.
[7] Tran, N.V.N.; Yu, Q.J.; Nguyen, T.P.; Wang, S.L. Coagulation of chitin production wastewater from shrimp scraps with by-product chitosan and chemical coagulants. Polymers 2020, 12, 607.
[8] Doan, C.T.; Tran, T.N.; Nguyen, V.B.; Nguyen, A.D.; Wang, S.L. Production of a thermostable chitosanase from shrimp heads via Paenibacillus mucilaginosus TKU032 conversion and its application in the preparation of bioactive chitosan oligosaccharides. Mar. Drugs 2019, 17, 217.
[9] Sun, T.; Qin, Y.; Xu, H.; Xie, J.; Hu, D.; Xue, B.; Hua, X. Antibacterial activities and preservative effect of chitosan oligosaccharide Maillard reaction products on Penaeus vannamei. Int. J. Biol. Macromol. 2017, 105, 764–768.
[10] Liang, T.W.; Chen, W.T.; Lin, Z.H.; Kuo, Y.H.; Nguyen, A.D.; Pan, P.S.; Wang, S.L. An amphiprotic novel chitosanase from Bacillus mycoides and its application in the production of chitooligomers with their antioxidant and anti-inflammatory evaluation. Int. J. Mol. Sci. 2017, 17, 1302.
[11] Lee, H.W.; Park, Y.S.; Choi, J.W.; Yi. S.Y.; Shin, W.S. Antidiabetic effects of chitosan oligosaccharides in neonatal streptozotocin-induced noninsulin-dependent diabetes mellitus in rats. Biol. Pharm. Bull. 2003, 26, 1100–1103.
[12] Jo, S.H.; Ha, K.S.; Moon, K.S.; Kim, J.G.; Oh, C.G.; Kim, Y.C.; Apostolidis, E.; Kwon, Y.I. Molecular weight dependent glucose lowering effect of low molecular weight chitosan oligosaccharide (GO2KA1) on postprandial blood glucose level in SD rats model. Int. J. Mol. Sci. 2013, 14, 14214–14224.
[13] Doan, C.T.; Tran, T.N.; Nguyen, V.B.; Nguyen, A.D.; Wang, S.L. Reclamation of Marine Chitinous Materials for Chitosanase Production via Microbial Conversion by Paenibacillus macerans. Mar. Drugs 2018, 16, 429.
[14] Tran, T.N.; Doan, C.T.; Nguyen, V.B.; Nguyen, A.D.; Wang, S.L. The isolation of chitinase from Streptomyces thermocarboxydus and its application in the preparation of chitin oligomers. Res. Chem. Intermed. 2019, 45, 727–742.
[15] Liang, T.W.; Chen, Y.J.; Yen, Y.H.; Wang, S.L. The antitumor activity of the hydrolysates of chitinous materials hydrolyzed by crude enzyme from Bacillus amyloliquefaciens V656. Process Biochem. 2007, 42, 527–534.
[16] Azuma, K.; Osaki, T.; Minami, S.; Okamoto, Y. Anticancer and anti-inflammatory properties of chitin and chitosan oligosaccharides. J. Funct. Biomater. 2015, 6, 33–49.
[17] No, H.K.; Park, N.Y.; Lee, S.H.; Meyers, S.P. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int. J. Food Microbiol. 2002, 74, 65–72.
[18] de Araújo, N.K.; Pagnoncelli, M.G.; Pimentel, V.C.; Xavier, M.L.; Padilha, C.E.; de Macedo, G.R.; Dos Santos, E.S. Single-step purification of chitosanases from Bacillus cereus using expanded bed chromatography. Int. J. Biol. Macromol. 2016, 82, 291–298.
[19] Zhang, H.; Du, Y.; Yu, X.; Mitsumoto, M.; Aiba, S. Preparation of chitooligosaccharides from chitosan by a complex enzyme. Carbohydr. Res. 1999, 320, 257–260.
[20] Jeon, Y.J.; Park, P.J.; Byun, H.G.; Kim, S.K. Production of chitosan oligosaccharides using chitin-immobilized enzyme. KSBB J. 1998, 13, 147–154.
[21] Jeon, Y.J.; Kim, S.K.; Production of chitooligosaccharides using an ultrafiltration membrane reactor and their antibacterial activity. Carbohyd. Polym. 2000, 41, 133–141.
[22] Rebah, F.B.; Miled, N. Fish processing wastes for microbial enzyme production: A review. 3 Biotech. 2013, 3, 255–265.
[23] Wang, S.L.; Liu, C.P.; Liang, T.W. Fermented and enzymatic production of chitin/chitosan oligosaccharides by extracellular chitinases from Bacillus cereus TKU027. Carbohydr. Polym. 2012, 90, 1305–1313.
[24] Liang, T.W.; Liu, C.P.; Wu, C.; Wang, S.L. Applied development of crude enzyme from Bacillus cereus in prebiotics and microbial community changes in soil. Carbohydr. Polym. 2013, 92, 2141–2148.
[25] Wang, S.L.; Yu, H.T.; Tsai, M.H.; Doan, C.T.; Nguyen, V.B.; Do, V.C.; Nguyen, A.D. Conversion of squid pens to chitosanases and dye adsorbents via Bacillus cereus. Res. Chem. Intermed. 2018, 44, 4903–4911.
[26] Wang, S.L.; Chen, T.R.; Liang, T.W.; Wu, P.C. Conversion and degradation of shellfish wastes by Bacillus cereus TKU018 fermentation for the production of chitosanase and bioactive materials. Biochem. Eng. J. 2009, 48, 111–117.
[27] Liang, T.W.; Hsieh, J.L.; Wang, S.L. Production and purification of a protease, a chitosanase and chitin oligosaccharides by Bacillus cereus TKU022 fermentation. Carbohyd. Res. 2012, 362, 38–46.
[28] Liang, T.W.; Chen, Y.Y.; Pan, P.S.; Wang, S.L. (2014 Feb) Purification of chitinase/chitosanase from Bacillus cereus and discovery of an enzyme inhibitor. Int. J. Biol. Macromol. 2014, 63, 08–14.
[29] Wang, C.L.; Su, J.W.; Liang, T.W.; Nguyen, A.D.; Wang, S.L. Production, purification and characterization of a chitosanase from Bacillus cereus. Res. Chem. Intermed. 2014, 40, 2237–2248.
[30] Zitouni, M.; Fortin, M.; Scheerle, R.K.; Letzel, T.; Matteau, D.; Rodrigue, S.; Brzezinski, R. Biochemical and molecular characterization of a thermostable chitosanase produced by the strain Paenibacillus sp. 1794 newly isolated from compost. Appl. Microbiol. Biotechnol. 2013, 97, 5801–5813.
[31] Doan, C.T.; Tran, T.N.; Nguyen, V.B.; Nguyen, A.D.; Wang, S.L. Conversion of squid pens to chitosanases and proteases via Paenibacillus sp. TKU042. Mar. Drugs 2018, 16, 83.
[32] Meena, S.; Gothwal, R.K.; Saxena, J.; Nehra, S.; Mohan, M.K.; Ghosh, P. Effect of metal ions and chemical compounds on chitinase produced by a newly isolated thermotolerant Paenibacillus sp. BISR-047 and its shelf-life. Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 872–881.
[33] Kim, Y.H.; Park, S.K.; Hur, J.Y.; Kim, Y.C. Purification and characterization of a major extracellular chitinase from a biocontrol bacterium, Paenibacillus elgii HOA73. Plant Pathol. J. 2017, 33, 318–328.
[34] Singh, A.K.; Chhatpar, H.S. Purification and characterization of chitinase from Paenibacillus sp. D1. Appl. Biochem. Biotechnol. 2011, 164, 77–88.
[35] Itoh, T.; Sugimoto, I.; Hibi, T.; Suzuki, F.; Matsuo, K.; Fujii, Y.; Taketo, A.; Kimoto, H. Overexpression, purification, and characterization of Paenibacillus cell surface-expressed chitinase ChiW with two catalytic domains. Biosci. Biotechnol. Biochem. 2014, 78, 624–634.
[36] Loni, P.P.; Patil, J.U.; Phugare, S.S.; Bajekal, S.S. Purification and characterization of alkaline chitinase from Paenibacillus pasadenensis NCIM 5434. J. Basic Microbiol. 2014, 54, 1080–1089.
[37] Jung, W.J.; Kuk, J.K.; Kim, K.Y.; Kim, T.H.; Park, R.D. Purification and characterization of chitinase from Paenibacillus illinoisensis KJA-424. J. Microbiol. Biotechnol. 2005, 15, 274–280.
[38] Ueda, J.; Kurosawa, N. Characterization of an extracellular thermophilic chitinase from Paenibacillus thermoaerophilus strain TC22-2b isolated from compost. World J. Microbiol. Biotechnol. 2015, 31, 135–143.
[39] Guo, X.; Xu, P.; Zong, M.; Lou, W. Purification and characterization of alkaline chitinase from Paenibacillus pasadenensis CS0611. Chin. J. Catalys. 2017, 38, 665–672.
[40] Kimoto, H.; Kusaoke, H.; Yamamoto, I.; Fujii, Y.; Onodera, T.; Taketo, A. Biochemical and genetic properties of Paenibacillus glycosyl hydrolase having chitosanase activity and discoidin domain. J. Biol. Chem. 2002, 277, 14695–14702.
[41] Liu, C.; Shen, N.; Wu, J; Jiang, M.; Shi, S.; Wang, J.; Wei, Y.; Yang, L. Cloning, expression and characterization of a chitinase from Paenibacillus chitinolyticus strain UMBR 0002. PeerJ. 2020, 8, e8964.
[42] Shimosaka, M.; Nogawa, M.; Wang, X.; Kumehara, M.; Okazaki, M. Production of two chitosanases from a chitosan-assimilating bacterium, Acinetobacter sp. strain CHB101. Appl. Environ. Microbiol. 1995, 61, 438–442.
[43] Wang, S.L.; Tseng, W.N.; Liang, T.W. Biodegradation of shellfish wastes and production of chitosanases by a squid pen-assimilating bacterium, Acinetobacter calcoaceticus TKU024. Biodegradation 2011, 22, 939–948.
[44] Tran, T.N.; Doan, C.T.; Nguyen, M.T.; Nguyen, V.B.; Vo, T.P.K.; Nguyen, A.D.; Wang, S.L. An exochitinase with N-acetyl-β-glucosaminidase-like activity from shrimp head conversion by Streptomyces speibonae and its application in hydrolyzing β-chitin powder to produce N-acetyl-Dglucosamine. Polymers 2019, 11, 1600.
[45] Liang, T.W.; Kuo, Y.H.; Wu, P.C.; Wang, C.L.; Nguyen, A.D.; Wang, S.L. Purification and characterization of a chitosanase and a protease by conversion of shrimp shell wastes fermented by Serratia marcescens subsp. sakuensis TKU019. J. Chin. Chem. Soc-Taip. 2010, 57, 857–863.
[46] Wang, S.L.; Chen, S.J.; Wang, C.L. Purification and characterization of chitinases and chitosanases from a new species strain Pseudomonas sp. TKU015 using shrimp shells as a substrate. Carbohyd. Res. 2008, 343, 1171–1179.
[47] Doan, C. T.; Tran, T.N.; Nguyen, V.B.; Vo, T.P.K.; Nguyen, A.D.; Wang, S.L. Chitin extraction from shrimp waste by liquid fermentation using an alkaline protease-producing strain, Brevibacillus parabrevis. Int. J. Biol. Macromol. 2019, 131, 706–715.
[48] Wang, S.L.; Chen, S.J.; Liang, T.W.; Lin, Y.D. A novel nattokinase produced by Pseudomonas sp. TKU015 using shrimp shells as substrate. Process Biochem. 2009, 44, 70–76.
[49] Wang, S.L.; Su, Y.C.; Nguyen, V.B.; Nguyen, A.D. Reclamation of shrimp heads for the production of α-glucosidase inhibitors by Staphylococcus sp. TKU043. Res. Chem. Intermed. 2018, 44, 4929–4937.
[50] Wang, S.L.; Wu, Y.Y.; Liang, T.W. Purification and biochemical characterization of a nattokinase by conversion of shrimp shell with Bacillus subtilis TKU007. New Biotechnol. 2011, 28, 196–202.
[51] Nguyen, V.B.; Chan, S.P.; Nguyen, T.H.; Nguyen, M.T.; Tran, T.T.T.; Doan, C.T.; Tran, T.N.; Nguyen, A.D.; Kuo, Y.H.; Wang, S.L. Novel efficient bioprocessing of marine chitins into active anticancer prodigiosin. Mar. Drugs 2020, 18, 15.
[52] Doan, C.T.; Tran, T.N.; Nguyen, M.T.; Nguyen, V.B.; Nguyen, A.D.; Wang. S.L. Anti-α-Glucosidase Activity by a Protease from Bacillus licheniformis. Molecules 2019, 24, 691.
[53] Nguyen, V.B.; Wang, S.L. New novel α–glucosidase inhibitors produced by microbial conversion. Process Biochem. 2018, 65, 228–232.
[54] Doan, C.T.; Tran, T.N.; Wen, I.H.; Nguyen, V.B.; Nguyen, A.D.; Wang, S.L. Conversion of shrimp head waste for production of a thermotolerant, detergent-stable, alkaline protease by Paenibacillus sp. Catalysts 2019, 9, 798.
[55] Nguyen, V.B.; Nguyen, T.H.; Doan, C.T.; Tran, T.N.; Nguyen, A.D.; Kuo, Y.H.; Wang, S.L. Production and bioactivity-guided isolation of antioxidants with α-glucosidase inhibitory and anti-NO properties from marine chitinous material. Molecules 2018, 23, 1124.
[56] Nguyen, V.B.; Wang, S.L. Reclamation of marine chitinous materials for the production of α-glucosidase inhibitors via microbial conversion. Mar. Drugs 2017, 15, 350.
[57] Liang, T.W.; Tseng, S.C.; Wang, S.L. Production and characterization of antioxidant properties of exopolysaccharides from Paenibacillus mucilaginosus TKU032. Mar. Drugs 2016, 12, 40–51.
[58] Grady, E.N.; MacDonald, J.; Liu, L.; Richman, A.; Yuan, Z.C. Current knowledge and perspectives of Paenibacillus: A review. Microb. Cell Fact. 2016, 15, 203.
[59] Seo, D.J.; Lee, Y.S.; Kim, K.Y.; Jung, W.J. Antifungal activity of chitinase obtained from Paenibacillus ehimensis MA2012 against conidial of Collectotrichum gloeosporioides in vitro. Microb. Pathog. 2016, 96, 10–14.
[60] Wang, C.H.; Doan, C.T.; Nguyen, A.D.; Nguyen, V.B.; Wang, S.L. Reclamation of fishery processing waste: A mini-review. Molecules 2019, 24, 2234.
[61] Song, Y.S.; Seo, D.J.; Kim, K.Y.; Park, R.D.; Jung, W.J. Expression patterns of chitinase produced from Paenibacillus chitinolyticus with different two culture media. Carbohyd. Polym. 2012, 90, 1187–1192.
[62] Itoh, T.; Hibi, T.; Fujii, Y.; Sugimoto, I.; Fujiwara, A.; Suzuki, F.; Iwasaki, Y.; Kim, J.K.; Taketo, A.; Kimoto, H. Cooperative degradation of chitin by extracellular and cell surface-expressed chitinases from Paenibacillus sp. strain FPU-7. Appl. Environ. Microbiol. 2013, 79, 7482–7490.
[63] Sun, H.; Mao, X.; Guo, N.; Zhao, L.; Cao, R.; Liu, Q. Discovery and characterization of a novel chitosanase from Paenibacillus dendritiformis by phylogeny-based enzymatic product specificity prediction. J. Agric. Food Chem. 2018, 66, 4645–4651.
[64] Yahiaoui, M.; Laribi-Habchi, H.; Bouacem, K.; A, K.L.; Mechri, S.; Harir, M.; Bendif, H.; Fertas, R.A.E.; Jaouadi, B. Purification and biochemical characterization of a new organic solvent-tolerant chitinase from Paenibacillus timonensis strain LK-DZ15 isolated from the Djurdjura Mountains in Kabylia, Algeria. Carbohyd. Res. 2019, 483, 107747.
[65] Fu, X.; Yan, Q.; Wang, J.; Yang, S.; Jiang, Z. Purification and biochemical characterization of novel acidic chitinase from Paenicibacillus barengoltzii. Int. J. Biol. Macromol. 2016, 91, 973–979.
[66] Singh, A.K.; Mehta, G.; Chhatpar, H.S. Optimization of medium constituents for improved chitinase production by Paenibacillus sp. D1 using statistical approach. Lett. Appl. Microbiol. 2009, 49, 708–714.
[67] Liang, T.W.; Lo. B.C.; Wang, S.L. Chitinolytic bacteria-assisted conversion of squid pen and its effect on dyes and pigments adsorption. Mar. Drugs 2015, 13, 4576–4593.
[68] Muga, A.; Arrondo, J.L.; Bellon, T.; Sancho, J.; Bernabeu, C. Structural and functional studies on the interaction of sodium dodecyl sulfate with beta-galactosidase. Arch. Biochem. Biophys. 1993, 300, 451–457.
[69] Roncal, T.; Oviedo, A.; Lopez de Armentia, I.; Fernandez, L.; Villaran, MC. High yield production of monomer-free chitosan oligosaccharides by pepsin catalyzed hydrolysis of a high deacetylation degree chitosan. Carbohydr. Res. 2007, 342, 2750–2756.
[70] Kurakake, M.; Yo-u, S.; Nakagawa, K.; Sugihara, M.; Komaki, T. Properties of chitosanase from Bacillus cereus S1. Curr. Microbiol. 2000, 40, 6–9.
[71] Lv, M.; Hu, Y.; Gänzle, M.G.; Lin, J.; Wang, C.; Cai, J. Preparation of chitooligosaccharides from fungal waste mycelium by recombinant chitinase. Carbohydr. Res. 2016, 430, 1–7.
[72] Fawzya, Y.N.; Trisdayanti.; Wibowo, S.; Noriko, N. Antifungal activity of chitosan oligomer prepared using chitosanase of Aeromonas media KLU 11.16. IOP Conf. Ser. Earth Environ. Sci. 2019, 278, 012026.
[73] Ming, M.; Kuroiwa, T.; Ichikawa, S.; Sato, S.; Mukataka, S. Production of chitosan oligosaccharides at high concentration by immobilized chitosanase. Food Sci. Technol. Res. 2006. 12, 85-90.
[74] Trombotto, S.; Ladaviere, C.; Delolme, F.; Domard, A. Chemical preparation and structure characterization of homogeneous series of chitin/chitosan oligomers. Biomacromolecules 2008, 9, 1731–1738.
[75] Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci. 2008, 4, 89–96.
[76] Kim, S.K.; Rajapakse, N. Enzymatic production and biological activities of chitosan oligosaccharides (COS): A review. Carbohyd. Polym. 2005, 62, 357–368.
[77] Avelelas, F.; Horta, A.; Pinto, L.F.V.; Cotrim Marques, S.; Marques Nunes, P.; Pedrosa, R.; Leandro, S.M. Antifungal and antioxidant properties of chitosan polymers obtained from nontraditional Polybius henslowii sources. Mar. Drugs 2019, 17, 237.
[78] Je, J.Y.; Park, P.J.; Kim, S.K. Free radical scavenging properties of hetero-chitooligosaccharides using an ESR spectroscopy. Food Chem. Toxicol. 2004, 42, 381–387.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2020-07-03公開。
  • 同意授權瀏覽/列印電子全文服務,於2020-07-03起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信