§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1706201412471000
DOI 10.6846/TKU.2014.00614
論文名稱(中文) 下世代無線通訊系統效能評估及研析
論文名稱(英文) Study and system performance evaluation for next generation wireless communication system
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系博士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 102
學期 2
出版年 103
研究生(中文) 李偉辰
研究生(英文) Wei-Chen Lee
學號 896440038
學位類別 博士
語言別 繁體中文
第二語言別
口試日期 2014-06-12
論文頁數 85頁
口試委員 指導教授 - 詹益光
共同指導教授 - 李揚漢
委員 - 曹恆偉
委員 - 李揚漢
委員 - 丘建青
委員 - 蘇木春
委員 - 許獻聰
委員 - 詹益光
委員 - 翁慶昌
關鍵字(中) 全球互通微波存取
混合式自動重送請求
闕斯合併
階層式調變
都卜勒位移
正交分頻多工
關鍵字(英) WiMAX(Worldwide Interoperability for Microwave Access)
HARQ(Hybrid Automatic Repeat request)
Chase Combining
Hierarchical modulation
Doppler Shift
OFDM(Orthogonal frequency-division multiplexing)
第三語言關鍵字
學科別分類
中文摘要
近年來由於無線通訊系統新規格的積極發展,皆朝著高速移動之行動台做為研究和研發之外,但是伴隨而來的卻是各種環境的干擾和來自通道的衰減,因此造成通訊系統封包傳送的失敗,為了確保傳送時的準確性,所以有了不同的重傳機制的提出。
混合式自動重傳請求(Hybrid Automatic Repeat reQuest,HARQ) 是一種結合了FEC與ARQ 方法的技術,由前一次錯誤封包中記錄下有用的資訊,提供之後的解碼使用。本論文以現行無線通訊蜂巢式系統為基礎,模擬了包含一般通道探討時必備的大範圍訊號衰減所造成的遮蔽衰落模型、路徑衰減模型,小範圍訊號衰減所造成的Rayleigh衰落。在自動回覆請求機制,以原始的Type I型配合AMC和新型的Type I型(Chase Combining)的HARQ為主,而最終重傳機制選擇的方式為根據模擬時系統規格的要求,例如重傳次數限制、重傳暫存器大小限制,PER(Packet Error Rate)小於10%等限制為我們選擇的要件。
由於無線通訊系統的進步,可以不被拘限在有線網路系統的限制,例如跨越地形上的障礙,克服通訊距離,減少纜線的鋪設,在台灣各處可見的監控系統而言,不論交通、社區或校園,漸漸改用無線網路技術來建置,在未來都是被關注的焦點。本論文在台灣大學地區實際測試針對以無線網路系統去建置無線校園監控系統之可行性,採用目前營運之WiMAX,以及現有的HSDPA(3.5G)、EDGE(2.5G)等技術透過Skype軟體來同時傳輸影像、VoIP,本論文最後會總結此三種無線網路技術傳輸後之結果與討論。
正交分頻多工系統已成為無線通訊應用中最熱門的傳輸選擇,由於此技術擁有高速率的傳輸,在無線環境中,可以簡單並且有效的做傳送與接收,而為了能夠在接收端估計通道,在傳送端會配置領航訊號 ( Pilot signal ),利用傳送端以及接收端已知的領航訊號來估計通道的變異。本論文則利用領航位元作階層式調變,利用階層式調變後的領航位元的每一個階層之間位元錯誤率的不同來估計載波頻率飄移。
英文摘要
Hybrid automatic repeat request (HARQ), is a technique that combines the forward error (FEC) correction technique and the ARQ process. In this study we consider a basic cellular communication system and propose a complete system simulation model that it not only includes the common simulation model as discussed in the wireless communication system such as the shadowing fading due to large-scale attenuation, path-loss attenuation and small- scale Rayleigh fading etc. In this study we propose the system architecture for HARQ retransmission in a wireless communication system, two retransmission mechanisms are considered in the architecture, one is the combination of the conventional Type I retransmission with AMC and the other is the new Type I retransmission, Chase Combining. It depends on the system requirements and system specifications such as the maximum retransmission number allowed, the buffer size in the store of the retransmitted packets and packet error rate (PER) etc. to determine which retransmission mechanism will be exploited.
Due to the development and advancement of wireless communication, many technologies utilizing communication as their core technologies will not be restricted and confined in the wired line network systems. In the installations of wireless communication system, it has many advantages such as to reduce the terrain barrier, to conquer the communication distance restriction and to reduce the amount of cable installations. In Taiwan for its existing and ubiquitous installed monitoring systems, if in their future new systems installations, no matter they are for traffic, community or campus, and if they are installed with wireless monitoring networks then they will become the focal attentions in the convenience and its cost effectiveness with the wireless systems installations.
In this report we study the feasibility of the installation of wireless campus monitoring network through the field trials in the campuses of National Taiwan University and National Taiwan University of Sciences and Technology. We adopt the just in service WiMAX and the available HSDPA (3.5G), EDGE (2.5G) technologies to proceed in the system performance test when video, VoIP signals are simultaneously transmitted through the system by using Skype software. The transmission of HRV (Heart Rate Variation) through FTP format with these three systems is also studied. The resulting system performance and their characteristics of using WiMAX, HSPDA and EDGE in the transmission of video, VoIP and HRV are summarized and compared. With these test data and results it may provide some valuable reference data to the system designers and service providers when they are considering the installations of wireless surveillance system in the university campus.
Currently orthogonal frequency division multiplexing wireless communication systems have become the most popular application of transmission choice, because this technology has a transmission rate of speed in a wireless environment, you can make a simple and efficient transmission and reception, and be able to order at the receiving end estimated channel, the sender will be configured navigator signal (Pilot signal), the variance using the sender and the receiver side known navigator signals to estimate the channel. In this paper, the use of navigator bit as hierarchical modulation, bit error rates between not using hierarchical modulation after every bit of the same class navigator to estimate the carrier frequency drift.
第三語言摘要
論文目次
中文摘要………………………………………………………	I
英文摘要...……………………………………………..……...	III
目錄………..……………………………………………..….....	V

圖目錄……….………………………………………….…......	VII
表目錄…………………………………………………………	X
	
第一章 序論………………..………………………...………	1
	
1.1研究動機……………………………………………..……..	1
1.2論文概要……………………………………………………	4
	
第二章 IEEE 802.16m系統中HARQ效能分析.........	7
	
2.1	Introduction…………………………………………..……..	7
2.2自動重傳請求(ARQ)………….………………………..…..	8
2.3	混合式自動重傳(HARQ)機制…...………….……………..	10
2.4 Chase Combining…………………………………………...	12
2.5 Incremental Redundancy……………………………………	13
2.6同步與非同步………………………………………………	17
2.7自適應與非自適應…………………………………………	17
2.8模擬環境的建立……………………………………………	18
2.9 HARQ重傳的判斷…………………………………………	26
2.10 HARQ的運作……………………………………………..	28

第三章WiMAX基地台訊號實測與分析...................44	
3.1 Introduction............................................................................	44
3.2 WiMAX訊號量測環境與系統參數....................................	45
3.3通道模型...............................................................................	48
3.4實測數據與模擬....................................................................	50
	
第四章正交分頻多工系統之階層式調變偵測載波頻率飄移………………………………………………...59	
	
4.1 Introduction………………………………………...……….	59
4.2正交分頻多工系統……….……...………….......................	60
4.3無線通道設計…………………………...............................	62
4.4 載波頻率飄移估計與階層式調變……………………….	64
4.5 階層式領航訊號………………………………………….	65
4.6 載波頻率飄移估計與模擬……………………………….	71

第五章 結論與未來研究方向…………..………..…79	

	
參考文獻…………………………………………..…….	81
	
	
	
	
	
	
	
	
	
	
	
圖目錄


圖1.1 Organization of this dissertation….…………...…………...……….	6
圖2.1 stop and wait ARQ…………………………………………………	9
圖2.2 go back N ARQ……………………………………………………	9
圖2.3 selective repeat ARQ………………………………………………	10
圖2.4 chase combining傳送端…………………………………………..	13
圖2.5 chase combining接收端…………………………………………..	13
圖2.6 incremental redundancy編碼格式………………………………..	14
圖2.7 incremental redundancy傳送端…………………………………..	14
圖2.8第一次接收之incremental redundancy…………………………..	15
圖2.9 偶數次接收之incremental redundancy…………………………	16
圖2.10奇數次接收之incremental redundancy…………………………	16
圖2.11 cell被格子所均分示意圖……………………………………….	20
圖2.12 不同速度下遮蔽衰退之自相關涵數…………………………...	22
圖2.13 IEEE 802.16m速度80km/hr距離300m SIR圖………………	25
圖2.14 LTE速度80km/hr距離300m SIR圖………………………….	25
圖2.15 HARQ判斷機制………………………………………………..	26
圖2.16 IEEE 802.16m frame structure FDD……………………………	29
圖2.17 LTE frame structure FDD………………………………………	29
圖2.18 IEEE 802.16m HARQ運作時序圖……………………………	30
圖2.19 LTE HARQ運作時序圖……………………………………….	30
圖2.20 HARQ運作流程圖…………………………………………….	32
圖2.21第一個subframe時間下buffer內的情況…………………….	34
圖2.22第二個subframe時間下buffer內的情況…………………….	35
圖2.23第七個subframe時間下buffer內的情況…………………….	36
圖2.24第八個subframe時間下buffer內的情況…………………….	37
圖3.1 WiMAX基地台…………………………………………………	45
圖3.2 訊號覆蓋範圍分佈圖……………………………………………	51
圖3.3 simulation downlink throughput of WiMAX…………………….	53
圖3.4 measured downlink throughput of WiMAX………………………	54
圖3.5 系統架構圖………………………………………………………	56
圖3.6 影音訊號傳輸示意圖……………………………………………	56
圖3.7 訊號量測地點……………………………………………………	57
圖3.8 DL吞吐量比較……………………………………………………	57
圖3.9 UL吞吐量比較……………………………………………………	58
圖4.1 無線通道模型…………………………………………………….	63
圖4.2 階層式調變方塊圖……………………………………………….	65
圖4.3 階層式調變64QAM星座圖…………………………………….	65
圖4.4 階層式領航訊號的正交分頻多工系統傳送端…………………	66
圖4.5 領航訊號調變產生器……………………………………………	67
圖4.6 領航位元擺放位置………………………………………………	69
圖4.7 階層式領航訊號的正交分頻多工系統接收端…………………	70
圖4.8 各階層位元錯誤率(v:30km/hr, fs:7.68MHz)……………………	73
圖4.9各階層位元錯誤率(v:120km/hr, fs:7.68MHz)……………………	74
圖4.10各階層位元錯誤率(v:250km/hr, fs:7.68MHz)…………………..	75
圖4.11各階層位元錯誤率(v:350km/hr, fs:7.68MHz)…………………….	 76
圖4.12各階層位元錯誤率(v:500km/hr, fs:7.68MHz)…………………….	77

	






















	
表目錄


表2.1  IEEE 802.16m遮蔽衰退標準差……….…………………………	20
表2.2 系統模擬參數……………………………………………………..	24
表2.3 IEEE 802.16m HARQ packet size for a subchannel……………….	26
表2.4 LTE HARQ packet size for a subchannel………………………….	26
表2.5 使用Type I with AMC重時需要付出的RU數…………………	27
表2.6 IEEE 802.16m 距離300m速度80km/hr…………………………	38
表2.7 LTE距離300m速度80km/hr…………………………………….	39
表2.8 最高data rate考量下傳輸MCS與重傳方式組合………………	41
表2.9 IEEE 802.16m觀察在300m不同速度時HARQ選擇………….	42
表2.10 LTE觀察在300m不同速度時HARQ選擇……………………	43
表3.1 IEEE 802.16系統參數…………………………………………….	45
表3.2 符號和訊框關係表……………………………………………….	46
表3.3 WiMAX coverage…………………………………………………	50
表3.4 USB無線網路卡…………………………………………………	51
表3.5 WiMAX系統模擬參數…………………………………………..	53
表3.6 實測及模擬的比較表……………………………………………	54
表4.1 多重路徑參數設定………………………………………………	63
表4.2 傳收端設計規格…………………………………………………	71
表4.3 不同速度下最大都卜勒飄移表與正規化都卜勒飄移…………	72
參考文獻
[1]	Nokia, Shkumbin Hamiti, SDD editor, “IEEE 802.16m System Description Document.”IEEE 802.16 Broadband Wireless Access Working Group, April. 2009.
[2]	Roshni Srinivasan, Intel Corporation ,“IEEE 802.16m Evaluation Methodology Document (EMD).” IEEE 802.16 Broadband Wireless Access Working Group, IEEE 802.16m-08/004r4, April. 2009.
[3]	M. Cudak, “IEEE 802.16m System Requiremens,” IEEE 802.16 Broadband Wireless Access Working Group, C802.16m-08/008, Jan. 2008.
[4]	3GPP TS 36.211: "Physical channels and modulation".
[5]	3GPP TS 36.212: "Multiplexing and channel coding".
[6]	3GPP TS 36.213: "Physical layer procedures".
[7]	3GPP TS 36.214: "Physical layer – Measurements".
[8]	Haipeng Lei; Xin Zhang; Dacheng Yang; “A Novel Frequency Reuse Scheme for Multi-Cell OFDMA Systems.” Vehicular Technology Conference, 2007. VTC-2007 Fall. 2007 IEEE 66th , pp. 347 – 351, Oct 2007.
[9]	Mahmudur Rahman, Halim Yanikomeroglu, and William Wong , “Interference Avoidance with Dynamic Inter-Cell Coordination for Downlink LTE System.”
[10]	M. Gudmundson, “Correlation model for shadow fading in mobile radio systems,” Electronics Letters, Vol. 27, Issue 23, Nov. 1991.
[11]	Rajat Prakash, Student Member, IEEE, and Venugopal V. Veeravalli, “Adaptive hard handoff algorithms,” IEEE Journal on Selected Areas in Communications, Vol. 18, Issue 11, Nov. 2000.
[12]	William C. Jakes, “Microwave mobile communication,” New York IEEE Press, 1974.
[13]	Hyungho Park, Doo-Hyun Sung, Eunjong Lee, HanGyu Cho, “Downlink Control Structure related to Hybrid-ARQ.” IEEE 802.16 Broadband Wireless Access Working Group C80216m-08_151, March 2008.
[14]	Sungkyung Kim, Kwangjae Lim, Sungcheol Chang, Seokheon Cho, Jungim Kim, Chulsik Yoon , ETRI, “Hybrid ARQ Operation for IEEE 802.16m.” IEEE C802.16m-08/454r1, May 2008.
[15]	Alexei Davydov, Alexander Maltsev, Intel , “Hybrid ARQ for synchronous allocation in distributed subcarrier mode.” IEEE 802.16 Broadband Wireless Access Working Group, C80216m-08_290r1, May 2008.
[16]	Chiu Chun-Yuan, Fang-Ching Ren, Richard Li, ITRI, “HARQ process timing and HARQ process number.” IEEE 802.16 Broadband Wireless Access Working Group C80216m-08_307, May 2008.
[17]	Arnab Das, Farooq Khan, Ashwin Sampath, Hsuan-jung Su ,“Adaptive, Asynchronous Incremental Redundancy (A2IR) With Fixed Transmission Time Intervals (TTI) For HSDPA.”
[18]	Zhifeng Tao; Anfei Li; Jinyun Zhang; Kuze, T.Performance Improvement for Multichannel HARQ Protocol in Next Generation WiMAX System.” Wireless Communications and Networking Conference, 2008. WCNC 2008. IEEE, pp.2009 – 2014, April 2008.
[19]	Meng-Han Hsieh and Che-Ho Wei, “Channel Estimation for OFDM Systems Based On Comb-Type Pilot Arrangement in Frequency Selective Fading Channels,” Department of Electronics Engineering National Chiao Tung University, Hsinchu, Taiwan, R.O.C.
[20]	M. Saad Akram,“ Pilot-based Channel Estimation in OFDM Systems,” Nokia, June 2007.
[21]	IEEE 802.16 Broadband Wireless Access Working Group “DRAFT Standard for Local and metropolitan area networks Part 16: Air Interface for Broadband Wireless Access Systems .” P802.16Rev2/D8 December 2008.
[22]	Frenger: Stefan Parkvall, and Erik Da.hlman, “Performance Comparison of HARQ with Chase Combining and Incremental Redundancy for HSDPA,” IEEE Vehicular Technology Conference, vol. 3, pp. 1829-1833, 2001.
[23]	Jaehong Kim, Woonhaing Hur, Aditya Ramamoorthy, and Steven W. McLaughlin, “Design of Rate-Compatible Irregular LDPC Codes for Incremental Redundancy Hybrid ARQ Systems,” IEEE International Symposium on, pp. 1139-1143, July 2006.
[24]	D. Chase, “Code combining – A maximum likelihood decoding approach for combining an arbitrary number of noisy packets,” IEEE Trans. Comm., vol.33, pp.385 – 393, May 1985.
[25]	Shu Lin and Yu-Ming Wang, “A Modified Selective-Repeat Type-II Hybrid ARQ System and Its Performance Analysis”, IEEE Trans. on Communications, Vol. COM-31, No.5, May 1983.
[26]	Roshni Srinivasan, Intel Corporation,“IEEE 802.16m Evaluation Methodology Document (EMD).” IEEE 802.16 Broadband Wireless Access Working Group, IEEE 802.16m-08/004r4, April. 2009.
[27]	M. Gudmundson, “Correlation model for shadow fading in mobile radio systems,” Electronics Letters, Vol. 27, Issue 23, Nov. 1991.
[28]	Rajat Prakash, Student Member, IEEE, and Venugopal V. Veeravalli, “Adaptive hard handoff algorithms,” IEEE Journal on Selected Areas in Communications, Vol. 18, Issue 11, Nov. 2000.
[29]	William C. Jakes, “Microwave mobile communication,” New York IEEE Press, 1974.
[30]	Romano Fantacci, Dania Marabissi, Daniele Tarchi, and Ibrahim Habib, “Adaptive Modulation and Coding Techniques for OFDMA Systems,” IEEE Transactions on Wireless Communication, vol. 8, no. 9, pp. 4876-4883, Sep. 2009.     
[31]	Yuan Gao, Peng Xue, Yi Li, Hongyi Yu, Xianfeng Wang, and Shihai Gao “Implementation and Performance Analysis of HARQ in 3GPP LTE System-Level Simulation,” Vol. 238, pp. 1583-1591, 2014.
[32]	Hyungho Park, Doo-Hyun Sung, Eunjong Lee, HanGyu Cho, “Downlink Control Structure related to Hybrid-ARQ.” IEEE 802.16 Broadband Wireless Access Working Group C80216m-08_151, March 2008
[33]	 Sungkyung Kim, Kwangjae Lim, Sungcheol Chang, Seokheon Cho, Jungim Kim, Chulsik Yoon , ETRI, “Hybrid ARQ Operation for IEEE 802.16m.” IEEE C802.16m-08/454r1, May 2008.
[34]	Alexei Davydov, Alexander Maltsev, Intel, “Hybrid ARQ for synchronous allocation in distributed subcarrier mode.” IEEE 802.16 Broadband Wireless Access Working Group, C80216m-08_290r1, May 2008
[35]	Chiu Chun-Yuan, Fang-Ching Ren, Richard Li, ITRI, “HARQ process timing and HARQ process number.” IEEE 802.16 Broadband Wireless Access Working Group C80216m-08_307, May 2008
[36]	Arnab Das, Farooq Khan, Ashwin Sampath, Hsuan-jung Su, “Adaptive, Asynchronous Incremental Redundancy (A2IR) With Fixed Transmission Time Intervals (TTI) For HSDPA.”
[37]	C. Eklund, R.B. Marks, K. Stanwood, and S. Wang, “IEEE Standard 802.16: A Technical Overview of the WirelessMANTM Air Interface for Broadband Wireless Access”, IEEE Commun. Magazine, vol. 6, no. 6, pp. 98-107, June 2002.
[38]	IEEE 802.16 Broadband Wireless Access Working Group, “DRAFT Standard for Local and metropolitan area networks, Part 16: Air Interface for Broadband Wireless Access Systems,” IEEE 802.16 Working Group on Broadband Wireless Access Standards, P802.16Rev2/D9a, March 2009.
[39]	IEEE Std 802.16-2004, “IEEE Standard for Local and Metropolitan Area Networks – Part 16: Air Interface for Fixed Broadband Access Systems”, October 2004.
[40]	Hassan Yaghoobi, Intel Communications Group, Intel Corporation, “Scalable OFDMA Physical Layer in IEEE 802.16 WirelessMAN ”, Intel Technology Journal, Volume 8, Issue 3, 2004.
[41]	C. Eklund, R.B. Marks, K. Stanwood, and S. Wang, “IEEE Standard 802.16: A Technical Overview of the Wireless MANTM Air Interface for Broadband Wireless Access”, IEEE Commun. Magazine, vol. 6, no. 6, pp. 98-107, June 2002.
[42]	IEEE 802.16 Broadband Wireless Access Working Group, “IEEE 802.16m Evaluation Methodology Document (EMD),” IEEE 802.16 Working Group on Broadband Wireless Access Standards, IEEE 802.16m-08/004r5, Jan. 2009.
[43]	Christian Hoymann, “Analysis and performance evaluation of the OFDM-based metropolitan area network IEEE 802.16,” The International Journal of Computer and Telecommunications Networking, vol. 49, pp.341-363, October, 2005.
[44]	Roshni Srinivasan, Jeff Zhuang, Louay Jalloul, Robert Novak, Jeongho Park, “IEEE 802.16m Evaluation Methodology Document,” IEEE 802.16 Broadband Wireless Access Working Group, 80216m-08_003r7(SDD), Jan. 15, 2009.
[45]	V. Erceg, K. V. S. Hari, M. S. Smith, D.S. Baum, and P. Soma, “Channel Models for Fixed Wireless Applications,” IEEE 802.16 Broadband Wireless Access Working Group, C802.16.3c-01/29r4, June 2003.
[46]	Andreas F. Molisch, Henrik Asplund, Ralf Heddergott, Martin Steinbauer, and Thomas Zwick, “The COST259 directional channel model – I. overview and methodology,” IEEE Trans. Wireless Communication, Vol. 5, pp. 3421–3433, 2006.
[47]	Martin Steinbauer, Andreas F. Molisch, and Ernst Bonek, “The double-directional radio channel,” IEEE Antennas and Propagation Magazine, pp. 51–63, August 2001.
[48]	G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading environment when using multiple antennas,” Wireless Personal Communications, Vol. 6, pp. 311–335, Feb. 1998.
[49]	William Stallings, “Wireless communications and networks,” Prentice-Hall, 2002.
[50]	COST Action 231,”Digital Mobile Radio Towards Future Generation systems, Final report,” Tech., Rep., European Communities, EUR 18957, 1999.
[51]	W. C. Jakes, Microwave Mobile Communications. New York: Wiley, 1974.C.H. Hsu, “A Study of Adaptive Modulation with OFDM In High Mobility Environment,” June, 2007.
[52]	 Pavan K. Vitthaladevuni, Mohamed-Slim Alouini, “BER Computation of 4/M-QAM Hierarchical Constellations,” IEEE TRANSACTIONS ON BROADCASTING, VOL. 47, NO. 3, SEPTEMBER 2001.
[53]	“DRAFT Standard for Local and metropolitan area networks,” IEEE P802.16Rev2/D3 ,February, 2008
[54]	A. F. Molisch, Wideband Wireless Digital Communications. Englewood, 92 Cliffs, NJ: Prentice-Hall, 2001.
[55]	“Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems,” IEEE 802.16m ,March, 2008
[56]	C.H. Hsu, “A Study of Adaptive Modulation with OFDM In High Mobility Environment,” June, 2007
[57]	IEEE 802.16m System Description Document, May 2009, http://ieee802.org/16
[58]	3GPP TS 36.521-1 V8.1.0  http://www.3gpp.org/ftp/Specs/html-info/36521-1.htm
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信