淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1706201012430900
中文論文名稱 凝膠衍生P/Si-TiO2薄膜之相穩定性與光催化性質
英文論文名稱 Phase stabilities and photocatalytic activities of gel-derived P/Si-TiO2 thin films
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 98
學期 2
出版年 99
研究生中文姓名 陳立訓
研究生英文姓名 Li-Hsun Chen
學號 696401479
學位類別 碩士
語文別 中文
口試日期 2010-06-15
論文頁數 94頁
口試委員 指導教授-余宣賦
委員-張裕祺
委員-尹庚鳴
中文關鍵字 二氧化鈦  光觸媒  光催化活性  薄膜  溶膠-凝膠法 
英文關鍵字 titanium dioxide  photocatalyst  photocatalytic activity  thin film  Sol-gel process 
學科別分類
中文摘要 本實驗利用溶膠-凝膠法和旋轉塗佈技術來合成TiO2和P/Si-TiO2光觸媒薄膜。實驗程序中,固定摻雜物(磷、矽)的總莫爾添加量以探討磷、矽的莫爾比的改變(R = [P] / ([P]+[Si]))和煆燒溫度對P/Si-TiO2薄膜結晶相態、晶粒尺寸、薄膜厚度、薄膜表面形態、光穿透率、能隙以及光降解特性的影響,並與未摻雜的TiO2薄膜作性質的比較。實驗的結果顯示:同時摻入磷、矽元素於TiO2結構中的P/Si-TiO2(0.33≦R≦0.67)薄膜可與基材有緊密的結合性並且所製得的銳鈦礦TiO2具有優越的熱穩定性,銳鈦礦結構可維持至900℃。製得薄膜的光催化能力以其對亞甲基藍光降解反應所對應的特性時間常數(τ)予以量化,τ值愈小表示二氧化鈦薄膜具愈高的光催化能力。整體而言,經過800℃煆燒處理後的P/Si-TiO2(R=0.5)薄膜利用365-nm紫外光照射12小時後具有最佳的光催化能力,其可分解90%的亞甲基藍並且特性時間常數為5.7小時。
英文摘要 The P/Si-TiO2 thin films, with a molar ratio [P+Si]/[P/Si-TiO2]=0.03, were synthesized by the sol–gel method and spin-coating technique. Effects of relative ratios of dopants (i.e., R≡[P]/([ P+Si]) and calcination temperatures on phase transformation, grain growth, film thickness, surface morphology, light transmittance, energy gap and photocatalytic activity of the gel-derived P/Si-TiO2 thin films were examined and their results were compared with those of the undoped TiO2 thin films. By simultaneously doping Si and P elements into the Ti-O framework, the P/Si-TiO2 (i.e., 0.33≤ R ≤0.67) thin films calcined at ≦900℃ adhered strongly to the surface of fused-silica substrate and were composed of anatase-TiO2 only. The photocatalytic activities of the thin films were measured and represented using a characteristic time constant (τ) for the MB degradation. The small τ stands for high photocatalytic ability. The P/Si-TiO2 thin film prepared at R = 0.5 and 800℃ gave the best photocatalytic activity; this thin film decomposed about 90 mole% of MB in the water (the corresponding τ = 5.7 h), after 365-nm UV light irradiation for 12 h.
論文目次 主目錄
中文摘要I
英文摘要III
主目錄IV
圖目錄VI
表目錄IX
第一章 緒論1
第二章 文獻回顧6
2-1 二氧化鈦應用與基本性質6
2-2 奈米二氧化鈦薄膜的製備方法10
2-3 二氧化鈦光觸媒光催化原理15
2-4 影響光催化活性的因素17
2-4-1 量子尺寸效應17
2-4-2 結晶形態對於光催化活性的影響19
2-5 提升二氧化鈦光催化效率的方法20
第三章 實驗步驟與特性分析23
3-1 實驗藥品23
3-2 實驗儀器24
3-3 實驗步驟26
3-3-1 基材的清洗26
3-3-2 TiO2溶膠的製備27
3-3-3 P/Si-TiO2溶膠的製備28
3-3-4 TiO2和P/Si-TiO2薄膜的製備與煆燒29
3-4 儀器分析與操作狀態31
3-4-1 X光繞射分析31
3-4-2 掃描式電子顯微鏡32
3-4-3 原子力顯微鏡33
3-4-4 紫外光-可見光光譜儀34
3-4-5 多用途光學量測系統35
3-5 光觸媒活性檢測36
第四章 實驗結果38
4-1 TiO2與Si-TiO2薄膜特性差異38
4-2 P/Si-TiO2特性分析47
第五章 結果討論83
第六章 結論86
參考文獻88

圖目錄
圖1-1 常見化合物半導體的能帶示意圖2
圖1-2 二氧化鈦光觸媒材料在人類環境中可應用的領域3
圖2-1 二氧化鈦的相圖7
圖2-2 金紅石與銳鈦礦的晶體結構8
圖2-3(a) 金紅石相態結構組成 (b)銳鈦礦相態結構組成8
圖2-4 二氧化鈦光催化反應示意圖16
圖2-5 量子尺寸效應對於能隙大小的影響18
圖3-1 TiO2溶膠的製備流程圖27
圖3-2 P/Si-TiO2溶膠的製備流程圖28
圖3-3 二氧化鈦薄膜製備實驗流程圖30
圖3-4 X光對晶體所產生之繞射31
圖3-5 掃描式電子顯微鏡剖面機構示意圖33
圖3-6 亞甲基藍化學結構式36
圖4-1(a) 未摻雜之TiO2薄膜於不同煆燒溫度下的XRD圖譜40
圖4-1(b) Si-TiO2 (R=0)薄膜於不同煆燒溫度下樣品的XRD圖譜41
圖4-2(a) 未摻雜之TiO2薄膜的紫外光-可見光穿透光圖譜44
圖4-2(b) Si-TiO2 (R=0)薄膜的紫外光-可見光穿透光圖譜44
圖4-3 不同煆燒處理溫度下TiO2與Si-TiO2 (R=0)薄膜在365nm UV光照射12小時後其亞甲基藍去除能力46
圖4-4(a) P/Si-TiO2 (R=0.33)薄膜的XRD圖譜49
圖4-4(b) P/Si-TiO2 (R=0.5)薄膜的XRD圖譜50
圖4-4(c) P/Si-TiO2 (R=0.67)薄膜的XRD圖譜51
圖4-5 不同煆燒溫度TiO2與P/Si-TiO2薄膜結晶相態與晶粒尺寸的改變53
圖4-6 TiO2及P/Si-TiO2薄膜在(a)600℃ (b)800℃ (c)900℃ (d)1000℃煆燒處理後光降解亞甲基藍濃度的改變曲線圖57
圖4-7 不同煆燒溫度下TiO2及P/Si-TiO2薄膜經過365-nmUV光照射12小時後對於水溶液中亞甲基藍的去除能力59
圖4-8 以AFM 觀察P/Si-TiO2 (R=0.5)薄膜在不同煆燒溫度處理下之表面型態圖(a)600℃ (b)800℃ (c)900℃ (d)1000℃ 64
圖4-9 以SEM觀察不同溫度處理之P/Si-TiO2 (R=0.5)薄膜表面(a)600℃ (b)800℃ (c)900℃ (d)1000℃ 67
圖4-10 以SEM觀察在煆燒溫度為800℃時(a)TiO2薄膜及P/Si-TiO2薄膜 (b)R=0 (c)R=0.33 (d)R=0.67 的表面形態70
圖4-11 煆燒溫度的改變對於P/Si-TiO2薄膜平均膜厚的影響71
圖4-12 TiO2薄膜及P/Si-TiO2薄膜(0≦R≦0.67)於800℃煆燒處理後紫外光-可見光穿透光圖譜76
圖4-13 P/Si-TiO2 (R=0.5)薄膜的紫外光-可見光穿透光圖譜77
圖4-14 煆燒溫度對於TiO2薄膜及P/Si-TiO2薄膜之能隙的影響78
圖4-15(a) TiO2薄膜及P/Si-TiO2薄膜經800℃煆燒溫度的SEM剖面圖(a)TiO2 (b)R=0 (c)R=0.33 (d)R=0.5 (e)R=0.67 82
圖5-1 TiO2、Si-TiO2 (R=0)及P/Si-TiO2 (0.33≦R≦0.67)薄膜在不同煆燒溫度處理後特性時間常數值85

表目錄
表2-1 金紅石與銳鈦礦相態之二氧化鈦的晶體尺寸與物理性質9
表3-1 實驗相關反應物莫耳比例30
表4-1 不同煆燒溫度對於晶粒成長的影響39
表4-2(a) TiO2薄膜在不同煆燒溫度處理下紫外光-可見光穿透率值43
表4-2(b) Si-TiO2 (R=0)薄膜在不同煆燒溫度處理下紫外光-可見光穿透率值43
表4-3 不同煆燒溫度對於未摻雜TiO2、Si-TiO2和P/Si-TiO2薄膜中TiO2晶粒成長的影響52
表4-4 在365nm UV光照射30小時後不同組成比例與煆燒溫度處理後特性時間常數值57
表4-5 在365nm UV光照射12小時後不同組成比例與不同煆燒處理溫度下其亞甲基藍去除能力59
表4-6 P/Si-TiO2 (R=0.5)薄膜在不同煆燒溫度下之表面平均粒子粗糙度64
表4-7 不同煆燒溫度處理下對於TiO2和P/Si-TiO2薄膜厚度的影響72
表4-8 TiO2薄膜及P/Si-TiO2薄膜(0≦R≦0.67)於800℃煆燒處理後紫外光-可見光穿透率值76
表4-9 P/Si-TiO2 (R=0.5)薄膜在不同煆燒溫度處理下紫外光-可見光穿透率值77
參考文獻 1. A. Fujishima, and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238, 37-38 (1972).

2. A. L. Linsebigler, G. Lu, and J. T. Yates Jr., “Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results,” Chem. Rev. 95, 735-758(1995).

3. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, “Environmental applications of semiconductor photocatalysis,” Chem. Rev. 95, 69-96 (1995).

4. Y. Ohko, K. Hashimoto, and A. Fujishima, “Kinetics of photocatalytic reactions inder extremely low-intensity UV illumination on titanium dioxide thin films,” J. Phys. Chem. A 101, 8057-8062 (1997).

5. A. Fujishima, T. N. Rao, and D. A. Tryk, “Titanium dioxide photocatalysis,” J. Photochem. Photobiol. C, 1, 1-21 (2000).

6. M. Gopal, W. J. Moberly Chan, and L. C. De Jonghe, “Room temperature synthesis of crystalline metal oxides.” J. Mater. Sci. 32, 6001-6008 (1997).

7. M. Anpo, “Preparation, characterization, and reactivities of highly functional titanium oxide-based photocatalysts able to operate under uv–visible light irradiation: approaches in realizing high efficiency in the use of visible light,” Bull. Chem. Soc. Jpn. 77, 1427-1442 (2004).

8. J. C. Yu, J. Yu, L. Zhang, and W. Ho, “Enhancing effects of water content and ultrasonic irradiation on the photocatalytic activity of nano-sized TiO2 powders,” J. Photochem. Photobiol. A 148, 263-271 (2002).

9. 呂宗昕,圖解奈米科技與光觸媒,商周出版 (2003)

10. I. P. Parkin, and R. G. Palgrave, “Self-cleaning coatings,” J. Mater. Chem. 15, 1689-1695 (2005).

11. D. R. Acosta, A. I. Martínez, A. A. Lòpez1, and C. R. Magaña, “Titanium dioxide thin films: the effect of the preparation method in their photocatalytic properties,” J. Mol. Catal. A: Chem. 228, 183-188 (2005).

12. N. Serpone, “Brief introductory remarks on heterogeous photocatalysis,” Solar Energy Materials and Solar Cells 38, 369-379 (1995).

13. B. Sun, and P. G. Smirniotis , “Interaction of anatase and rutile TiO2 particles in aqueous photooxidation,” Catal. Today 88, 49-59 (2003).

14. L.B. Khalil, W. E. Mourad, and M. W. Rophael, “Photocatalytic reduction of environmental pollutant Cr (VI) over some semiconductors under UV/visible light illumination,” Appl. Catal. B 17, 267-273 (1998).

15. G. B. Raupp, A. Alexiadis, Md. M. Hossain, and R. Changrani, “First-principles modeling, scaling laws and design of structured photocatalytic oxidation reactors for air purification,“ Catal. Today 69, 41-49 (2001).

16. H. Yamashita, Y. Ichihashi, M. Anpo, M. Hashimoto, C. Louis, and M. Che, “Photocatalytic decomposition of NO at 275 K on titanium oxides included within Y-zeolite cavities: The structure and role of the active sites,” J. Phys. Chem. 100, 16041-16044 (1996).

17. C. Wu, Y. Yue, X. Deng, W. Hua, and Z. Gao, “Investigation on the synergetic effect between anatase and rutile nanoparticles in gas-phase photocatalytic oxidations,” Catal. Today 93-95, 863-869 (2004).

18. N. G. Park, J. van de Lagemaat, and A. J. Frank, “Comparison of Dye-Sensitized Rutile- and Anatase- Based TiO2 Solar Cells,” J. Phys. Chem. B 104, 8989-8994 (2000).

19. K. Prasad, A. R. Bally, P. E. Schmid, F. Levy, J. Benoit, C. Barthou, and P. Benalloul, “Ce-doped TiO2 Insulators in Thin Film Electroluminescent Devices,” Jpn. J. Appl. Phys. 36, 5696-5702 (1997).

20. J.K. Burdett, T. Hughbanks, G. J. Miller, J.W. Richarson and J.V. Smith, “Structural-electronic relationships in inorganic solids: Powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K,” J. Am. Chem. Soc. 109, 3639-3646 (1987).

21. W. Xu, S. Dong, D. Wang, and G. Ren, “Investigation of microstructure evolution in Pt-doped TiO2 thin films deposited by rf magnetron sputtering,” Physica B 403, 2698-2701 (2008).

22. F. Jin, P. K. Chu, K. Wang, J. Zhao, A. Huang, and H. Tong, “Thermal stability of titania films prepared on titanium by micro-arc oxidation,” Mater. Sci. Eng. A 476, 78-82 (2008).

23. T. Grögler, E. Zeiler, A. Franz, O. Plewa, S.M. Rosiwal, and R.F. Singer, “Erosion resistance of CVD diamond-coated titanium alloy for aerospace applications.” Surf. Coat. Tech. 112, 129-132 (1999).

24. W. Zhang, Y. Chen , S. Yu , S. Chen, and Y. Yin, “Preparation and antibacterial behavior of Fe3+-doped nanostructured TiO2 thin films,” Thin Solid Films 516, 4690–4694 (2008).

25. C.-C. Chang, J.-Y. Chen, T.-L. Hsu, C.-K. Lin, and C.-C. Chan, “Photocatalytic properties of porous TiO2/Ag thin films,” Thin Solid Films 516, 1743–1747 (2008).

26. M. Epifani, A. Helwig, J. Arbiol, R. Díaz, L. Francioso, P. Siciliano, G. Mueller, J.R. Morante, “TiO2 thin films from titanium butoxide: synthesis, Pt addition, structural stability, microelectronic processing and gas-sensing properties,” Sens. Actu. B 130, 599–608. (2008).

27. M. Addamo, V. Augugliaro, A. Di Paola, E. García-López, V. Loddo, G. Marcì, and L. Palmisano, “Photocatalytic thin films of TiO2 formed by a sol–gel process using titanium tetraisopropoxide as the precursor,” Thin Solid Films 516, 3802–3807 (2008).

28. H. Žabová, J. Sobek, V. Cíkva, O. Šolcová, Š. Kment, and M. hájek, “Efficient preparation of nanocrystalline anatase TiO2 and V/TiO2 thin layers using microwave drying and/or microwave calcination technique,” J. solid. State chem. 182, 3387-3392 (2009).

29. S. A. Tomás, A. Luna-Resendis, L. C. Cortés-Cuautli, D. Jacinto, “Optical and morphological characterization of photocatalytic TiO2 thin films doped with silver,” The Solid Film 518, 1337-1340 (2009) .

30. K. A. Vorotilov, E. V. Orlova, and V. I. Petrovsky, “Sol-gel TiO2 films on silicon substrates,” Thin Solid Films 207, 180-184 (1992).

31. C. Su, B. Y. Hong and C.- M. Tseng, “Sol–gel preparation and photocatalysis of titanium dioxide,” Catal. Today 96, 119-126 (2004).

32. 陳文章、劉韋志,以溶膠凝膠法(Sol-Gel Process)製備有機/無機混成(Hybrid)材料,化工,第46卷,第5期,1999。

33. C. Suresh, V.biju, P. Mukundan and K. G. K. Warrier, “Anatase to rutile transformation in sol-gel titania by modification of precursor,” Polyhedron 17, 3131-3135 (1998).

34. J.-P. Hsu and A. Nacu, “On the Factors Influencing the Preparation of Nanosized Titania Sols,” Langmuir 19, 4448-4454 (2003).

35. F. Cot, A. Larbot, G. Nabias, L. Cot, “Preparation and characterization of colloidal solution derived crystallized titania powder,” J. Eur. Cream. Soc. 18, 2175-2181 (1998).

36. H. K. Park, D. K. Kim and C. H. Kim, “Effect of solvent on titania particle formation and morphology in thermal hydrolysis of TiCl4,” J. Am. Ceram. Soc 80, 743-749 (1997).

37. G.-B. Shan and G. P. Demopoulos, “The synthesis of aqueous-dispersible anatase TiO2 nanoplatelets,” Nanotechnology 21 Article number 025604 (2010).

38. J. Yu, X. Zhao, Q. Zhao, “Effect of surface structure on photocatalytic activity of TiO thin films prepared by sol-gel method,” Thin Solid Films 379, 7-14 (2000).

39. 羅於陵、蕭雅柏主編, 奈米科學與技術導論, 經濟部工業局, 2002

40. M. Anpo, T. Shima, S. kodama, and Y. Kubokawaf, “Photocatalytic hydrogenation of CH3CCH with H2O on small-particle TiO2: Size quantization effects and reaction intermediates,” J. Phy. Chem. 91, 4305-4310 (1987).

41. Y. Miyake, and H. Tada, “Photocatalytic degradation of methylene blue with metal-doped mesoporous titania under irradiation of white Light,” J. Chem. Eng. Jpn. 37, 630-635 (2004).

42. E. Borgarello, J. Kiwi, M. Gratzel, E. Pelizzetti, and M. Visca, “Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles,” J. Am. Chem. Soc. 104, 2296-3002 (1982).

43. M. Anpo, “Applications of titanium oxide photocatalysts and unique second-generation TiO2 photocatalysts able to operate under visible light irradiation for the reduction of environmental toxins on a global scale,” Studies in surface Science and Catalysis 130, 157-166 (2000).

44. S. klosek and D. Raftery, “Visible light driven V-doped TiO2 photocatalyst and its photooxidation of ethanol,” J. Phys. Chem. B 105, 2815-2819 (2001).

45. R. Asahi, T. Morikawa, T. Ohwaki, K. Ohki, Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides.” Science 293, 269-271 (2001).

46. K. Vinodgopal and P.V. Kamat, “Enhanced rates of photocatalytic degradation of an azo dye using SnO2/TiO2 coupled semiconductor thin films, ” Environ. Sci. Technol. 29, 841-845 (1995).

47. J. C. Yu, L. Zhang, Z. Zheng, and J. Zhao, “Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity,” Chem. Mater. 15, 2280-2286 (2003).

48. L. Kórösi and I. Dékány, “Preparation and investigation of structural and photocatalytic properties of phosphate modified titanium dioxide,” Colloids and Surfaces A: Physicochem. Eng. Aspects 280, 146–154 (2006).

49. H. Yu, “Phase development and photocatalytic ability of gel-derived P-doped TiO2,” J. Mater. Res. 22, 2565-2572 (2007).

50. H. Yu and S.-T. Yang, “Enhancing thermal stability and photocatalytic activity of anatase-TiO2 nanoparticales by co-doping P and Si element,” J. Alloys Comp. 492, 695-700 (2010).

51. L.-J. Meng, M.P. dos Santos, “Investigations of titanium oxide films deposited by d.c. reactive magnetron sputtering in different sputtering pressures,” Thin Solid Films 226, 22-29 (1993).

52. H. Tang, K. Prasad, R. Sanjinès, P. E. Schmid, F. Lévy, “Electrical and optical properties of TiO2 anatase thin films,” J. App. Phys. 75, 2042-2047 (1994).

53. D. Mardare, M. Tasca, M. Delibas, G. I. Rusu, ”On the structural properties and optical transmittance of TiO2 r.f. sputtered thin films,” Applied Surface Science 156, 200-206 (2000).
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2011-06-29公開。
  • 同意授權瀏覽/列印電子全文服務,於2011-06-29起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信