淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1706200518041300
中文論文名稱 整合文字語意與影像低階特徵的影像檢索系統之設計
英文論文名稱 Integrating Semantics and Low Level Features for the Design of Image Retrieval Systems
校院名稱 淡江大學
系所名稱(中) 資訊工程學系碩士班
系所名稱(英) Department of Computer Science and Information Engineering
學年度 93
學期 2
出版年 94
研究生中文姓名 黃宇濤
研究生英文姓名 Yu-Tao Huang
電子信箱 692191546@s92.tku.edu.tw
學號 692191546
學位類別 碩士
語文別 中文
口試日期 2005-06-16
論文頁數 82頁
口試委員 指導教授-郭經華
委員-陳孟彰
委員-劉遠楨
委員-郭經華
中文關鍵字 圖像檢索  低階特徵  圖像加註  圖像分類 
英文關鍵字 Image Retrieval  Low Level Feature  Image Automatic Annotation  Classification 
學科別分類 學科別應用科學資訊工程
中文摘要 在網際網路發達的現今社會,圖像檢索系統已經非常的普遍,所以如何建立一個有效率以及準確性高的圖像檢索系統已經變成了最需要考慮的條件。當我們想要設計一個以內容為基礎的圖像檢索系統時,會遇到一個困難,就是該選擇圖像的何種低階特徵來當成比對的依據,往往都很難兩全其美,只能適用某一部份物件類型,對於其他的物件種類卻不能適用。

我們的系統就是想要解決這方面的問題,利用同一種類圖像的大量訓練資料彼此間的相似度,藉由調整物件低階特徵的比例,可以使得該物件種類的辨識率達到最高,而不同種類的物件有其最適合的低階特徵組合。經過實驗的結果之後,我們建立了圖像語意以及低階特徵的關連性。

在系統實作的過程中,我們利用圖像資料庫來取得實驗用之圖像,並從中選擇想要建立模組的圖像類型。利用大量的訓練資料,先依照其低階特徵分成若干個群組,再透過特徵擷取子系統分別擷取顏色、形狀、材質等低階特徵,利用兩兩比對的方式可以得到此三種低階特徵的相似度,可以求得對於此物件圖像而言,最佳的一個低階特徵組合,也就是建立此物件種類的比對模組。經過這些模組的建立之後,當使用者輸入一圖像來做檢索時,就可以與這些已建立好的模組作比對,將符合的模組名稱以及模組裡面的圖像回傳給使用者。透過這樣的機制,不僅可以增加圖像檢索的準確率,也可以自動的對圖像加註或是做圖像的分類。
英文摘要 With the development of the internet, the image retrieval systems are very widespread. So the most important thing is to design an image retrieval system with high efficiency and high precision. If we want to design a content-based image retrieval system, there could be a problem that which low level feature is better for comparison. It is suitable for some kinds of object, but the others are not.

The problem could be solved with our system. We adjust the proportion of the low level features by utilizing the similarity of numerous training data of the object. It makes the recognition the object reach highest and there would be a combination of the low level features which is the most suitable with different kinds of object. After the result of the experiment, we establish the associations between image semantics and low level features.

To test the actually system, we utilize the image database to get the image and choose several kinds of object that the module we want to establish. By utilizing a large number of training data, first we classify them into several groups with their low level features, including color, shape and texture. Then we extract the low level features in the feature extraction subsystem. By comparing to each other, we can get these three similarities of the low level features. And then we can find the most suitable combination of the low level features of the object out. That is to say, we establish the comparing modules of the object. After establishing these comparing modules, a user give a query by inputting an image, it will be compared by all the modules we establish. Finally, the name and the images of module will be returned to the user. Through this mechanism, not only the precision of the image retrieval system will be increased but also we can realize image automatic annotation or classification.
論文目次 第1章 緒論......................................... 4
1.1 研究動機與目的................................. 4
1.2 研究內容........................................ 8
1.3 論文內容大綱...................................10

第2章 背景知識與相關研究.....................11
2.1 圖像模糊化...................................... 11
2.1.1 平滑法..................................... 11
2.1.2 中值法..................................... 12
2.1.3 高斯法..................................... 14
2.2 圖像分割........................................ 15
2.2.1 區域成長法................................. 16
2.2.2 K平均演算法................................18
2.2.3 期望值最大化............................... 19
2.3 以內容為基礎的圖像檢索系統....................22
2.3.1 IBM的QBIC..................................22
2.3.2 Intelligent Shape Selection.................24
2.3.3 Semantics-sensitive Integrated Matching for Picture Libraries ..........................28

第3章 系統架構與圖像檢索系統............... 30
3.1 系統架構..................................... 30
3.2 圖像資料庫與圖像前處理.................... .33
3.2.1 圖像資料庫................................ 33
3.2.2 圖像前處理................................ 34
3.3 特徵擷取子系統.............................. 39
3.3.1 顏色擷取.................................. 40
3.3.2 形狀擷取.................................. 43
3.3.3 材質擷取.................................. 51
3.4 索引子系統與特徵資料庫..................... 54
3.4.1 索引子系統................................ 54
3.4.2 特徵資料庫................................ 55
3.5 圖像檢索子系統.............................. 57

第4章 系統實作與討論.......................... 59
4.1 實作環境介紹................................ 59
4.2 實作說明..................................... 60
4.3 系統評估與討論.............................. 67

第5章 結論與未來研究方向.....................74
5.1 結論..........................................74
5.2 未來研究方向.................................75

參考文獻............................................. 78
參考文獻 [1] J. Yan, L. Wenyin,H. Zhang, Y. Zhang, “Thesaurus-aided
Approach for Image Browsing and Retrieval”,
International Conference on Multimedia and Expo(ICME2001), Japan, August2001
[2] 藍永孝, “建置語意式索引於圖像檢索系統”, 淡江大學資訊工程研究所, 碩士論文, 台北, 民國93年6月.
[3] W. Niblack, R. Barber, and et al. “The QBIC project: Query
images by content using color, texture and shape”, Proc.
SPIE Storage and Retrieval for Image and Video Databases,
Feb, 1994
[4] John R. Smith and Shih-Fu Chang. Tools and techniques for color image retrieval. In IS & T/SPIE proceedings, volume 2670, 1994. Storage & Retrieval for Image and Video Databases IV.
[5] G. J. Lu and A. Sajjanhar. Region-based shape representation and similarity measure suitable for content-based image retrieval. Multimedia System 7:165-174, 1999
[6] B. S. Manjunath and W. Y. Ma. Texture features for browsing and retrieval of image data. IEEE PAMI, 18(8):837–842, 1996.
[7] Yong Rui, Thomas S. Huang, and Shih-Fu Chang. Image retrieval: Current techniques, promising directions and open issues. Journal of Visual Communication and Image Representation, 10(1):1–23,March 1999.
[8] A. Pentland, R. W. Picard, and S. Sclaroff, “ Photobook:
Content-based manipulation of image databases,” Int. J.
Comput. Vision, 1996.
[9] H. J. Zhang, W. Liu, C. Hu, iFind – A System for Semantics
and Feature Based Image Retrieval over Internet, Proc. 8th
ACM Multimedia Conf., Los Angeles,USA, 2000, pp. 477-478.
[10] James Z. Wang, Jia Li and Gio Wiederhold, “SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture Libraries,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 9, pp. 947-963, 2001.
[11] 鐘國亮,“影像處理與電腦視覺”, 東華書局
[12] R.C. Gonzalez and R.E. Woods, “Digital Image
Processing”, Addison-Wesley, 1987.
[13] R.M. Haralick, L.G. Shapiro,“ Image Segmentation Techniques ",Computer Vision, Graphics, and Image Processing, Vol. 29 , No. 1, pp. 100-132, Jan. 1985.
[14] Adams, R. and Bischof, L. (1994). Seeded region growing.
IEEE Trans. Pattern Analysis and Machine Intelligence 16,
641-647.
[15] Su MS, Chou Ch (2001).” A modified version of the K-means algorithm with a distance based on cluster symmetry ”. IEEE T Pattern Anal23:674–680
[16] C. Carson, M. Thomas, S. Belongie, J.M. Hellerstein, and J. Malik, “Blobworld: A System for Region-Based Image Indexing and Retrieval,” Proc. Third Int’l Conf. Visual Information Systems, June 1999.
[17] 周子全, “強化EM-like分群演算法之有效策略” , 淡江大學資訊工程研究所, 博士論文, 台北, 民國93年6月.
[18] L. J. Latecki and R. Lakämper: Shape Similarity Measure Based on Correspondence of Visual Parts. IEEE Trans. Pattern Analysis and Machine Intelligence (PAMI) 22(10), pp. 1185-1190, October 2000.
[19] 鄭國裕、林磐聳, “ 現代設計叢書4—色彩計畫“,藝風堂
[20] 王泰山, “彩色物件分離技術之研究與應用”, 淡江大學資訊工程研究所, 碩士論文, 台北, 民國89年6月.
[21] X. Wan and C.-C. J. Kuo, “A new approach to image retrieval with hierarchical color clustering,” IEEE Trans. Circuits Syst. Video Technol., vol. 8, pp. 442–453, Oct. 1993.
[22] John Hershberger and Jack Snoeyink. Speeding up the
Douglas-Peucker line-simplification algorithm. In
P. Bresnahan et al., editors, Proc. 5th Intl. Symp. on
Spatial Data Handling, volume 1, pages 134–143,
Charleston, SC, Aug. 1992.
[23] J. Rossignac, A. Kaul, AGRELs and BIPs: Metamorphosis
as a Bezier Curve in the Space of Polyhedra, Computer
Graphics Forum (Proceedings of EUROGRAPHICS‘94), pages 179–184,1994.
[24] A. Baraldi and F. Parmiggiani, “An investigation of the textural characteristics associated with gray level co-occurrence matrix statistical parameters,” IEEE Trans. Geosci. Remote Sensing, vol. 33, pp. 293–304,Mar. 1995.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2005-06-22公開。
  • 同意授權瀏覽/列印電子全文服務,於2005-06-22起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信