淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1705201119431300
中文論文名稱 日本TOCOM及美國COMEX黃金與白銀期貨的動態關係、風險值與門檻效果之實證研究
英文論文名稱 The Empirical Study on the Dynamic Relationship, Value at Risk and Threshold Effect of Silver and Gold Futures in Japan TOCOM and U.S. COMEX Markets
校院名稱 淡江大學
系所名稱(中) 財務金融學系博士班
系所名稱(英) Department of Banking and Finance
學年度 99
學期 2
出版年 100
研究生中文姓名 林惠娜
研究生英文姓名 Hui-Na Lin
學號 896530077
學位類別 博士
語文別 英文
口試日期 2011-04-16
論文頁數 69頁
口試委員 指導教授-李沃牆
指導教授-林維垣
委員-盧文吉
委員-邱建良
委員-陳達新
委員-洪明欽
委員-林景春
委員-李沃牆
中文關鍵字 GARCH  Copula函數  外溢效果  Kendall tau  風險值  門檻效果 
英文關鍵字 GARCH  Copula function  Spillover effect  Kendall tau  Value at risk  Threshold effect 
學科別分類 學科別社會科學商學
中文摘要 本論文探討COMEX(美國)及TOCOM(日本)黃金與白銀期貨市場之動態關係,風險值與門檻效果檢定。首先,使用AR (1)-GJR-GARCH(1,1)及三個最常使用的Copula函數被用來檢驗兩個市場之黃金與白銀在上漲前與上漲後的動態關係。另外,使用Coupla基礎的VaR-ARMAX-GJR-GARCH模型被用來檢驗策略商品變數之共移及方向關系並且估計黃金白銀投資組合之風險值。最後使用縱橫平滑轉換迴歸模型(PSTR)檢驗原油與美元/日圓匯率對黃金(白銀)期貨在COMEX市場上的非線性動態關係。控制變數波動指數(VIX)及新興市場指數(MSCI-E)與黃金(白銀)期貨之關係也一併被討論。結果顯示兩個市場的黃金與白銀期貨在上漲前與上漲後存在落後一階顯著的波動外溢與傳遞效果。對於牛市與熊市消息的反應存在不對稱效果。在三個Copula函數中Clayton Copula在上漲前與上漲後最能補捉所有的報酬序列。Clayton Copula Kendall’s tau顯示低度(高度)相關在兩個商品期貨市場中被低(高)平均報酬所驗證在黃金期貨上漲前(後)。另外,原油與COMEX及TOCOM兩個市場的黃金與白銀價格為顯著正相關不管在上漲前或上漲後。至於美金與日元匯率並無一致性的結果,也就是說沒有證據顯示黃金與白銀的期貨存在具有影響性的變數。除此之外,與時俱變的SJC Copula函數允許不同的尾部相關,不管是上漲前或上漲後有最佳的結果。進一步而言,關於風險管理,Copula基礎模型在評估投資組合的風險上較其他模型更正確。最後,實證顯示轉換變數在模型ㄧ與模型三(門檻變數為原油)為非對稱邏輯模型,模型二與模型四(門檻變數為美元/日元匯率)為對稱及指數模型。控制變數的符號隨著門檻變數與區域(regions)不同符號也隨之改變。原油與黃金(白銀)的符號在大部份的區域為正與大部份的文獻相同。美元對日元匯率與黃金(白銀)在大部份的區域為正,此結果與文獻不同且與投資者的認知不一樣。關於VIX與MSCI-E大約有一半的區域為正,暗示投資者在購買黃金與白銀時應該以原油與美元/日元匯率做為重要的指標。
英文摘要 This dissertation discusses the dynamic relationship, value at risk, and threshold effect of gold and silver futures in the markets of COMEX (US) and TOCOM (Japan). First, AR(1)-GJR-GARCH(1,1) and three widely used Copula functions are employed to examine the dynamic relationship of gold and silver futures in above two markets before and during uptrend. In addition, the Copula-based VaR-ARMAX-GJR-GARCH model is used to examine the strategic commodities comovements and directional relationships with these variables, as well as estimating the VaR of a gold and silver portfolio. Finally, the Panel Smooth Transition Regression model (PSTR) is constructed to investigate the nonlinear dynamic relationship between crude oil, USD/YEN exchange rate and gold (silver) futures in COMEX market. Control variables VIX and MSCI-E to the gold (silver) futures are also discussed. Results show existing spillover effect by one lag both on return and volatility of gold (silver) futures between two markets before (during) uptrend. The responses of bullish and bearish news are asymmetrical in both gold and silver futures of two markets before (during) the uptrend. Clayton Copula model fits all the return series best both before and during uptrend. The Kendall’s tau of the Clayton Copula show low (high) correlation between two commodity futures in two markets. This result is verified by low (high) average return of two commodities across markets before (during) uptrend. The relationships of crude oil and the gold (silver) price in two markets exist significant and positive signs before (during) uptrend. As to USD/YEN exchange rate, there is still no consistent result. There is no evidence that an influence of the variable to gold and silver futures exists. The time-varying SJC Copula, which allows for different dependence in the tails, produced the best result regardless of being before or during uptrend. Furthermore, concerning risk management, Copula-based models are more accurately than other models to assess portfolio risk. The transition function is an asymmetric logistic type in mode 1 and 3 (threshold variable is crude oil), while a symmetric exponential type in model 2 and 4 (threshold variable is the USD). The signs of the control variables are changeable due to the threshold variables and regions. The crude oil is positive in most regions which agree to most literatures. However, USD is positive in most regions which are contrary to previous empirical results and to investors’ common perception.. Lastly, both VIX and MSCI-E are positives in around half of the regions. It suggests that investors should consider crude oil or the USD as crucial indicators for buying gold or silver futures.
論文目次 Table of Content Page
LIST OF TABLES VI
LIST OF FIGURES VIII
CHAPTER 1 INTRODUCTION 1
1.1 MOTIVATION 1
1.2 OBJECTIVES 5
1.3 THE FLOW CHART 7
CHAPTER 2 LITERATURE REVIEW 8
CHAPTER 3 METHODOLOGY 14
3.1 DATA RESOURCE 14
3.2 COPULA FUNCTIONS AND AR(1)-GJR-GARCH(1,1) 15
3.3 COPULA-ARMAX-GJR-GARCH BASED VAR MODEL 20
3.4 PANEL SMOOTH THRESHOLD REGRESSION MODEL 24
CHAPTER 4 EMPIRICAL RESULTS AND ANALYSIS 28
4.1 VARIABLES DESCRIPTION STATISTICS 28
4.2 THE DYNAMIC RELATIONSHIP 31
4.3 THE VALUE AT RISK 35
4.4 THE THRESHOLD EFFECT 43
4.4.1 Model 1 Gold Future (Threshold variable: Crude Oil) 43
4.4.2 Model 2: Gold Future (Threshold Variable: USD/YEN) 46
4.4.3 Model 3: Silver Future (Threshold variable: Crude Oil) 50
4.4.4 Model 4: Silver Future (Threshold variable: USD/YEN) 54
CHAPTER 5 CONCLUDING AND REMARKS 58
5.1 THE DYNAMIC RELATIONSHIP 58
5.2 THE VALUE AT RISK 58
5.3 THE THRESHOLD EFFECT 59
REFERENCES 62



LIST OF TABLES
TABLE 3.1.1 DATA RESOURCES USED IN THIS DISSERTATION 15
TABLE 4.1.1 SUMMARY STATISTICS OF VARIABLES 31
TABLE 4.2.1 RESULTS FROM THE AR (1) –GJR-GARCH (1, 1) - MODEL-BEFORE UPTREND 32
TABLE 4.2.2 THE KENDALL’S TAU OF COPULA FUNCTIONS-BEFORE UPTREND 33
TABLE 4.2.3 RESULTS FROM THE AR (1)–GJR-GARCH (1, 1) MODEL- DURING UPTREND 34
TABLE 4.2.4 THE KENDALL’S TAU OF COPULA FUNCTIONS- DURING UPTREND 35
TABLE 4.3.2 THE KENDALL’S TAU OF COPULA FUNCTIONS-BEFORE UPTREND 38
TABLE 4.3.3 VAR OF PORTFOLIO (BEFORE UPTREND) 38
TABLE 4.3.4 RESULTS FROM THE ARMAX (1)–GJR-GARCH(1,1)- MODEL-DURING THE UPTREND 40
TABLE 4.3.6 VAR OF PORTFOLIO (DURING THE UPTREND) 42
TABLE 4.4.1.1 TEST OF LINEARITY 44
TABLE 4.4.1.2 SEQUENCE OF HOMOGENEITY TESTS FOR SELECTING M 44
TABLE 4.4.1.3 TESTING THE NUMBER OF REGIONS: TESTS OF NO REMAINING NON-LINEARITY 44
TABLE 4.4.1.4 PARAMETER ESTIMATION RESULTS FOR PSTR MODEL 46
TABLE 4.4.2.1 LINEARITY TESTS 47
TABLE 4.4.2.2 SEQUENCE OF HOMOGENEITY TESTS FOR SELECTING M 47 TABLE 4.4.2.3 TESTING THE NUMBER OF REGIONS: TESTS OF NO REMAINING NON-LINEARITY 48
TABLE 4.4.2.4 PARAMETER ESTIMATION RESULTS FOR PANEL SMOOTH TRANSITION REGRESSION (PSTR) MODEL 49
TABLE 4.4.3.1 LINEARITY TESTS 51
TABLE 4.4.3.2 SEQUENCE OF HOMOGENEITY TESTS FOR SELECTING M 51
TABLE 4.4.3.4 PARAMETER ESTIMATION RESULTS FOR PSTR MODEL 53
TABLE 4.4.4.1 LINEARITY TESTS 55
TABLE 4.4.4.2 LINEARITY TESTS 55
TABLE 4.4.4.3 TESTING THE NUMBER OF REGIONS: TESTS OF NO REMAINING NON-LINEARITY 55
TABLE 4.4.4.4 PARAMETER ESTIMATION RESULTS FOR PSTR MODEL 57



LIST OF FIGURES
FIGUE 1.1 COMPARISION OF MSCI-E AND ECONOMIST METAL INDEX……………..,… . 4
FIGUE 1.3.1 FLOW CHART 7
FIGURE 4.1.1 THE PRICE TREND OF COMEX AND TOCOM GOLD FUTURES 29
FIGURE 4.1.2 THE RETURNS TREND OF GOLD AND SILVER FUTURES IN TWO MARKETS 29
FIGURE 4.1.3 THE TIME SERIES PLOT OF VARIABLES 30
FIGURE 4.1.4 THE HISTOGRAM WITH NORMAL CURVE OF COMEX AND TOCOM GOLD FUTURES RETURN 30
FIGURE 4.1.5 THE HISTOGRAM WITH NORMAL CURVE OF COMEX AND TOCOM SILVER FUTURES RETURN 30
FIGURE 4.2.1 SCATTER PLOT OF COMEXGOLD AND TOCOMGOLD (LEFT), COMEXSILVER AND TOCOMSILVER 33
FIGURE 4.2.2 SCATTER PLOT OF COMEXGOLD AND TOCOMGOLD (LEFT),COMEXSILVER AND TOCOMSILVER 35
FIGURE 4.3.1 THE CRUDE OIL AND USD/YEN TREND 36
FIGURE 4.3.2 THE TIME VARYING JOE-CLAYTON TAU 39
FIGURE 4.3.3: PVAR AT 99%.97.5%,95% CONFIDENCE LEVEL-VAR-COV MODEL 39
FIGURE 4.3.4 THE TIME VARYING JOE-CLAYTON TAU 42
FIGURE4.3.5 : PVAR AT 99%.97.5%,95% CONFIDENCE LEVEL-VAR-COV MODEL 42
FIGURE 4.4.1.1 TRANSITION FUNCTION WITH M = 1 46
FIGURE 4.4.2.1 TRANSITION FUNCTION WITH M = 2 50
FIGURE 4.4.3.1: TRANSITION FUNCTION WITH M = 1 54
FIGURE 4.4.4.1: TRANSITION FUNCTION WITH M = 2 57

參考文獻 Adrangi, B., Chatrath, A. and Raffiee, K. (2003) Economic activity, inflation, and hedging: the case of gold and silver investments, Journal of Wealth Management, 6, 60-77
.
Aggarwal, R. and Soenen, C. A. (1988) The nature and efficiency of the gold market, Journal of portfolio management, 14(3), 18-21.

Akaike, H. (1974) A new look at the statistical model identification, IEEE Transactions on Automatic Control, 19(6), 716-723.

Algathtani, I. M. (1992) Currency substitution gold price and demand for money in a develop in economy: the case of Kuwait, Middle East Business and Economic Review, 4(2), 1.-5

Aloui, C. (2007) Price and volatility spillovers between exchange rates and stock indexes for the pre- and post-euro period, Quantitative Finance 7(6), 669-85.

Balassa, B. (1989) The effects of interest rates on savings in developing countries, The World Bank, Policy Research Working Paper Series: 56, 1989.

Balli, F. (2009) Spillover effects on government bond yields in Euro zone: does full financial integration exist in European government bond markets? Journal of Economics and Finance, 33(4), 331-63

Baur, D. G and McDermott, T. K. (2010) Is Gold a Safe Haven? International Evidence, Journal of Banking and Finance, 34(8), 1886-1898.

Béreauy, S., Villavicencioz, A. L., and Mignon, V. (2008) Nonlinear adjustment of the real exchange rate towards its equilibrium value: a panel smooth transition error correction modeling, Working paper.

Bhar, R. and Hamori, S. (2004) Information flow between price change and trading volume in gold futures contracts, International Journal of Business and Economics, 3, 45-56.

Buguk, C., Hudson, D. and Hudson, T. (2003), Price volatility spillover in agricultural markets: an examination of U.S. catfish markets, Journal of Agricultural and Resource Economics, 28(1), 86-99.

Capie, F., Mills, T. C., and Wood F. (2005) Gold as a hedge against the dollar, Journal of International Financial Markets, 15(4), 343-52.

Cashin, P., McDormott, C., and Scott, A. (1999) The myth of comoving commodity prices”, Discussion Paper #G99/9, reserve Bank of New Zealand.

Chandavarkar A. G. (1961) The nature and effects of gold hoarding in under-developed economies, Oxford Economic Papers, 13(2), 137-148.

Chatrath, B. A. and Shank, T. (2001) Nonlinear dependence in gold and silver futures: is it chaos? The American Economist, 45(2), 25-32.

Chiou S C and Tsay, R S (2008) A Copula-based approach to option pricing and risk assessment, Journal of Data Science, 6, 273-301.

Ciner, C. (2001) On the long run relationship between gold and silver prices, A Note Global Finance Journal, 12(2), 99-303

Christiansen, C. (2007) Volatility-spillover effects in European bond markets, European Financial Management, 13(5) , 923-48

Chow G. C. (1960) Tests of equality between sets of coefficients in two linear regressions, Econometrica, 28(3), 591-605.

Colletaz, G., and Hurlin, C. (2006) Threshold effects of the public capital productivity: an international panel smooth transition approach, Working Paper, LEO, Université d'Orléans.

Datar, V., So, R.W. and Tse, Y. (2008) Liquidity commonality and spillover in the U.S. and Japanese markets: an intraday analysis using exchange-traded fund, Review of Quantitative Finance and Accounting, 31(4) , 379-93.

Deb, P., Trivedi, P. K. and Varangis, P. (1996) The excess co-movement of commodity price reconsidered, Journal of Applied Econometrics, 11, 275-91.

de Mello L. and Moccero, D. (2009) Monetary policy and inflation expectations in Latin America: long-run effects and volatility spillovers, Journal of Money, Credit, and Banking, 41(8) , 1671-90

Destais, G., Fouquau, J. and Hurlin, C. (2009) Energy demand models: a threshold panel specification of the Kuznets curve? Applied Economic Letters, 19. 1241-1244.

Do, G Q; McAleer, M. and Sriboonchitta, S. (2009) Effects of international gold Market on stock exchange volatility: evidence from Asean emerging stock markets”, Economic Bulletin, 269(2), 599-610.

Draper, R., Faff R. and Hiller, C. (2002) Do precious metals shine? Financial Management Association European Meeting, Copenhagen.

Egan, P. and Peters, C. (2001) The performance of defensive investments, Journal of Alternative Investments, 4, 49-56.

Engle, R. (2002) Dynamic conditional correlation: a simple class of multivariate GARCH models, Journal of Business and Economics Statistics, 20, 339-350.

Escribano, A. and Granger, C. W. J. (1998) Investigating the relationship between gold and silver prices, Journal of Forecasting, 17(2), 81-107.

Faff, R., and Chan, H. (1998) A multifactor of gold industry stock returns: evidence from the Australian equity market, Applied Financial economics, 8, 21-28.

Fouquau, J., Hurlin, C. and Rabaud, I. (2008) The Feldstein-Horioka puzzle: a panel smooth transition regression approach, Economic Modeling, 25, 284-299.

Fung, H. G., Leung, W. K. and Xu, X. E. (2003) Information flows between the U.S. and China commodity futures trading, Review of Quantitative Finance and Accounting, 21, 267-85.

Gonzàlez, A., Terasvirta, T. and Van Dijk D. (2005) Panel smooth transition regression model. Working Paper Series in Economics and Finance Quantitative Finance Research Center, University of Technology, Sidney., Working paper.

Hammoudeh, S., Ramazan, S. and Bradley, T. E. (2009) Relationships among strategic commodities and with financial variables: a new look, Contemporary Economic Policy, 27(2), 251-264.

Hansen, B. (1999) Threshold Effects in non-dynamic panels: estimation, testing, and inference, Journal of Econometrics, 93, 345-368.

Hsu, C. C., Tseng, C. P. and Wang, Y. H. (2008) Dynamic hedging with futures: a Copula-based GARCH model", Journal of Futures Markets, 28, 1095-1116.

Hu, L. (2006) Dependence patterns across financial markets: a mixed Copula approach, Applied Finance Econonics, 16(10), 717-729

Hussein, H. M. A. (2008) A modified ARMAX-GARCH model: a comparison between Bayesian and non-bayesian estimators-test the small-sample properties, Far East Journal of Theory and Statistics, 26(2): 129-146.

Joe, H. (1997) Multivariate models and dependence concepts, London: Chapman

Johnson, R. and L. Soenen, (1997), Gold as an investment asset – perspectives from different countries, Journal of Investing, 6, 94 -99.

Jude, E. C. (2010) Financial development and growth: a smooth regression approach,” Journal of Economic Development, 35(1), 15-33.

Junker M, Szimayer A, and Wagner N. (2006) Nonlinear term structure dependence: Copula functions, empirics, and risk implications, Journal of Banking and Finances, 30, 1171-1199.

Kiohos, A., Sariannidis, N.(2010) Determinants of the Asymmetric gold market. Investment Management and Financial Innovations. 7(4) 26-33

Kim, S. and Rui, O. M. (1999) Price, volume, and volatility spillovers among New York, Tokyo, and London stock markets. International Journal of Business, 4, 41-61.

Kuo, W., Hsu H. and Chiang, M. (2008) Foreign investment, regulation, volatility spillovers between the futures and spot markets: evidence from Taiwan, Applied Financial Economics, 18 (4-6), 421-30.

Kupiec, P. (1995) Techniques for verifying the accuracy of risk measurement models, Journal of Derivatives, 2, 73-84.

Kutan, A.M. and Aksoy, T. (2004), Public information arrival and gold market returns in emerging markets: evidence for the Istanbul gold exchange, Scientific Journal of Administrative Development, 2, 13-26.

Landa, D. and Irwin, S. (1987), Real estate, futures and gold as portfolio assets, Journal Portfolio Management, 14, 29-34.

Lee W. C. and Lin, H. N.(2011) Portfolio value at risk with Copula-ARMAX-GJR-GARCH: evidence from the gold and silver futures” African Journal of Business Management. Vol. 5(5), 1650-1662,

Lin, H. N., Chiang, S. M. and Chen, K. H. (2007) The dynamic relationships between gold futures markets: evidence from COMEX and TOCOM, The Applied Financial Economic Letters, 4(1), 19-24.

Liu, S. M. and Chou, C. H. (2003) Parities and spread trading in gold and silver markets, A Fractional Cointegration Analysis, 13, 899-911

Lucey, B. M. and Tully, E. (2006), The evolving relationship between gold and silver 1978-2002: evidence from a dynamic cointegration analysis: a note, Applied
Financial Economics Letters, 2, 47-53.

Lyroudi, K., Athansios, K. and Apostolos, D. (2005) Impact of futures on comovements between European cross-listed equities, Journal of Financial Management and Analysis, 18, 1-13.

Ma, C., and Soenen,L. A. (1988), Arbitrage opportunities in metal futures markets, Journal of Futures Markets, 8 (2) , 199-209.

Manner, H. and Reznikova, O. (2009) Time-varying Copulas: a survey, Universite catholique de Louvain, Institut de statistique, working paper.

McQueen, G. and Thorley, S. (1997) Do investors learn? evidence from a gold market anomaly, 32(3), 501-25.

Mirmirani, S. and Li, H. C. (2003) Gold price, neural networks and genetic algorithm, Computational Economics, 23(19), 200-204.

Mohamed, C. (2009) Health care expenditure and GDP: an international panel smooth transition approach, MPRA Paper No. 17493, posted 27. 14-25.

Money, A., J. Affleck-Graves and Carter, K. (1982) Are gold shares better than gold for diversification, Journal of Portfolio Management, 9, 2-55.

Nelsen, R. B. (1999) Introduction to Copulas, New York: Springer Verlag.

Palaskas, T. B., and P. N. Varangis, (1991), “Is there excess co-movement of primary commodity prices?: a cointegration test,” Working paper series No. 758.
International: Economics Department, Washington: World Bank.

Palaro, H. P., and Hotta, L. K. (2006). Using conditional Copula to estimate value at risk”, Journal of Data Sciences, 4, 93-115.

Patton, A. J. (2006) Modeling asymmetric exchange rate dependence, International Economic Review, 47, 527-556.

Pindyck, R. S. and Rotemberg, J. J. (1990) The excess co-movement of commodity prices, Economic Journal, 100, 1173-1189.

Rao, B. S. and Nagabhushanam, K (1960), India’s demand for import of non-monetary gold, non-monetary silver and merchandise, 1901-1913, Indian Economics Journal, 48(3), 34-38.

Reyes, M. G. (2001) Asymmetric volatility spillover in the Tokyo stock exchange, Journal of Economics and Finance, 25(2), 206-13

Rodriguez, J. C. (2007) Measuring financial contagion: a Copula approach, Journal of Empirical Finance, 14(3), 401-23.

Schwarz, G. (1978) Estimating the dimension of a model,” Annals of Statistics, 6, 461-464.

Shishko, I. (1977) Why gold? Journal of Portfolio Management, 3, 34-40.

Sherman, E. J. (1982) Gold: A conservative, prudent diversifier Journal of portfolio Management,. 8(3), 21-27

Sklar, A. (1959) Fonctions de repartition a n-dimensions etLeurs marges, de l’Institut de Statistique de L’Universite’ de Paris, 8(229) , 29-31.

Smith, G. (2002) Tests of the random walk hypothesis for London gold prices, Applied Economic Letters, 16(4-6), 331-35.

Taylor, N. (1998) Precious metals and inflation, Applied Financial Economics, 8, 201-10.

Trivedi, P. K. (1995) Tests of some hypotheses about the time series behavior of commodity prices, An Advances in Econometrics and Quantitative Economics; eds. G. S. Maddala et al. Oxford, U.K.: Basil Blackwell, 382-412.

Tse, Y. (1999) Price discovery and volatility spillovers in the DJIA index and futures markets, The Journal of Futures Market, 19, 911-30.

Tully, E., and Lucey, B. (2007) A power GARCH examination of the gold market,” Research in International Business and Finance, 21, 316-325.

Wahab, M., Cohn, R. and Lashgari, M. (1994) The gold-silver spread: integration, cointegration, predictability and ex-ante arbitrage, Journal of Futures Markets 14(6), 707-756.

Wang K.M. and Lee, Y .M. (2010) Could gold serve as an exchange rate hedge in Japan? Inzinerine Ekonomika-Engineering Economic, 21(2), 160-170.

Warren, B. (2004) How important was sliver? Some evidence on exchange rate, Journal of business, 77(1), 137-174

Worthington, A. C. and Pahlavani, M. (2007) Gold investment as an inflationary hedge: cointgration evidence with allowance for endogenous structural breaks, Applied Financial Economics Letters, 3, 259-262

Zhang, Y. J., Wei, Y. (2010) M. The Crude oil market and the gold market: Evidence for contegration, causality and price discovery. Resources Polity, 35(3) 168-177.


論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-05-25公開。
  • 同意授權瀏覽/列印電子全文服務,於2013-05-25起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信