§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1705200713535800
DOI 10.6846/TKU.2007.00482
論文名稱(中文) 新穎聚合法製備功能性高分子材料之探討研究
論文名稱(英文) New Polymerization Methods for Functional Polymeric Materials
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學學系博士班
系所名稱(英文) Department of Chemistry
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 95
學期 2
出版年 96
研究生(中文) 陳博正
研究生(英文) Po-Cheng Chen
學號 891170010
學位類別 博士
語言別 英文
第二語言別
口試日期 2007-05-19
論文頁數 157頁
口試委員 指導教授 - 陳幹男
委員 - 馬振基
委員 - 林江珍
委員 - 葉正濤
委員 - 芮祥鵬
委員 - 黃繼遠
委員 - 鄭廖平
委員 - 張正良
委員 - 陳幹男
關鍵字(中) 自身聚合
次乙亞胺
共聚物
紫外光硬化
關鍵字(英) Self-polymerization
β-Amino-ester
Aziridine
Copolymer
PDMS
UV-curable
Water repellency
第三語言關鍵字
學科別分類
中文摘要
本論文所探討之主題,主要分為兩個部份;第一部份為常溫快速聚合反應之應用研究,第二部份為含聚二甲基矽氧烷之自由基硬化型聚胺基甲酸酯之製備與應用。
本論文第一部份是以含多元次乙亞胺或單元次乙亞胺官能基之化合物與含雙鍵之有機酸,如丙烯酸(又稱壓克力酸,Acrylic acid)等單體進行配方調整,並利用pH值之控制進行反應,可快速自行聚合成一種新型共聚物。本論文利用反應單體配方,結合了三階段且連續性的反應,進行快速聚合反應:1. 首先含雙鍵之有機酸與多元次乙亞胺或單元次乙亞胺在常溫下,進行酸鹼中和(Acid-base neutralization reaction)的放熱(Exothermic)反應;2. 前段放熱反應加速(Accelerated)進行次乙亞胺與羧酸根之間的開環反應;而其開環反應後形成含二級胺官能基之β-胺基酯 (β-amino-ester)化合物;3. 此二級胺基再與含雙鍵之有機酸之雙鍵進行分子間或分子內麥可加成(Inter or intra molecular Michael Addition reaction)反應。此配方以液態單體存在,再經由pH值之調整,控管此自發且連續性反應的反應速率,自行聚合成為具有高度分支及架橋密度之固態或直線型之高分子材料。藉由含多元次乙亞胺化合物等單體配方之選擇,則可選擇性製備出具備高度分支及網狀交聯結構之高分子材料;此網狀交聯結構之高分子材料,不溶於任何溶劑,可應用於快速接著劑或複合材料之基材。此快速聚合所形成的高度分支及網狀交聯聚合物之高分子鏈段中含有大量之酯基,故可在酸性或鹼性條件下進行酯基的水解(Hydrolysis)反應;水解後之主產物為水溶性的β-胺基酸(β-amino acid),成為水溶性物質,使原來不溶的網狀交聯結構之高分子材料,成為可溶性物質。本論文的快速自行聚合合成方法,選用單元次乙亞胺化合物單體配方與丙烯酸,在常溫聚合製備直線型聚β-胺基酯[Poly(β-amino ester)],可應用於基因轉植(Gene Transfer)或藥物釋放(Controlled Drug Release)等生技用途。本論文的快速聚合成法,提供一種製備直線型聚β-胺基酯[Poly(β-amino ester)]的方便捷徑。
本論文第二部份是以末端官能基為羥烷基(Alkylhydroxyl groups)之聚二甲基矽氧烷,取代傳統所使用之聚乙二醇(Polyethylene glycol, PEG)、聚丙二醇(Polypropylene glycol, PPG)等,引入到自由基硬化型聚胺基甲酸酯(UV-curable polyurethane, UV-PU)的製程中;所得到之含聚二甲基矽氧烷結構之自由基硬化型聚胺基甲酸酯,藉由聚二甲基矽氧烷結構之疏水性質(Water repellency),可以應用於織物表面之批覆改質,使原先具吸水性之織物表面,呈現高度撥水的性質。
英文摘要
There are two main discussions in this report. One of them is rapid self-polymerization to obtain the β-Amino-ester alternative copolymers and the other is the application of UV-curable PDMS-structured polyurethanes.
In the first part of this report, the multi-aziridinyl containing compound, trimethylolpropane tris(1-aziridinyl) propionate (TMPTA-AZ), was prepared via the Michael Addition reaction of aziridine (AZ) and trimethylolpropane triacrylate (TMPTA). A rapid self-polymerization of acrylic acid (AA) and TMPTA-AZ occurred at ambient temperature without any catalyst. The rapid self-polymerization reaction mechanism was identified by a designed model reaction of methyl 3-(aziridin-1-yl) propanoate (MAP), trimethylacetic acid (TMAA) and ethyl acrylate (EA). According to the modeling reaction, it was illustrated that the proposed process involved three subsequent reactions: (1) a highly exothermic acid-base neutralization reaction took place between TMPTA-AZ and AA; (2) the neutralization heat triggered AZ ring-opening reaction and that carboxyl group (of AA) served as the nucleophile and resulted in an amino-ester bond formation; (3) a final hyper branched and cross-linked copolymers were obtained from that amino group reacted with acrylic double bond via the inter or intra-molecular Michael Addition reaction. These new hyper branched and cross-linked copolymers with various performance properties were obtained from a mixture of AA and TMPTA-AZ in different ratios and post heating.
During the new rapid self-polymerization process, the linear poly(β-amino-ester) was obtained when MAP instead of TMPTA-AZ as the starting material. The rapid self-polymerization reaction mechanism of MAP and AA was also identified via the model reaction. The average molecular weight and polydispersity index (PDI) of resulting poly(β-amino-esters) that obtained from rapid self-polymerization of AA and MAP under various conditions were determined by an aqueous gel permeation chromatography (GPC). This rapid self-assembly process was a new route for synthesizing the poly(β-amino-esters).
In the second part of this report, alkylhydroxyl-terminated PDMS was introduced into the conventional process instead of polyethylene glycol (PEG), polypropylene glycol (PPG) and etc., to prepare the NCO-terminated polyurethane and further modified by 2-hydroxyethyl methacrylate (2-HEMA) to obtain the UV-curable PDMS-structured polyurethane. The UV-curing reaction was simply took place via the UV irradiation and without any organic solvent emissions. It was a convenient and environmental friendly process. The UV-curable PDMS-structured polyurethane was applied in textile surface water repellency treatment which was due to the low surface energy and low water affinity of PDMS structures.
第三語言摘要
論文目次
Contents

Chinese Abstract……………………………………………….....	
		
English Abstract…………………………………………………..	
		
Chapter 1	Rapid Self-Polymerization & Applications of Aziridine-containg Compound with Acrylic Acid………………………………………................	1
		
1-1	Abstract……………………………………………..	2
		
1-2	Introductions………………………………………...	4
		
1-3	Experimental………………………………………..	7
		
	1-3.1	Materials……………………………………….	7
			
	1-3.2	Instruments………………………………….....	8
			
	1-3.3	Preparation of methyl 3-(aziridin-1-yl) propanoate (MAP)……………………………..	9
			
	1-3.4	Preparation of trimethylolpropane tris(1- aziridinyl) propionate (TMPTA-AZ)…………..	10
			
	1-3.5	The modeling reaction of MAP, TMAA and EA……………………………………………...	11

		
	1-3.6	Self-polymerization of MAP with AA…………	16
			
	1-3.7	Polymerization of TMPTA-AZ with AA………	18
			
	1-3.8	Properties of hyper branched and cross-linked copolymer films………………………………..	20
		
1-4	Results and Discussion……………………………...	22
		
	1-4.1	Characterization of MAP………………………	24
			
	1-4.2	Characterization of TMPTA-AZ……………….	28
			
	1-4.3	Characterization of modeling reaction………...	32
			
	1-4.4	Self-polymerization of MAP with AA…………	39
			
	1-4.5	Polymerization of TMPTA-AZ with AA………	42
			
	1-4.6	Properties of hyper branched and cross-linked copolymer films………………………………..	44
			
1-5	Conclusions…………………………………………	53
		
	References……………………………………………...	55
		
Chapter 2	UV-curing & Applications of PDMS-containg PU Resins………………….............................................	59
		
2-1
Abstract……………………………………………..	59
		
2-2	Introductions………………………………………...	60
		
2-3	Experimental………………………………………..	64
		
	2-3.1	Materials……………………………………….	64
			
	2-3.2	Instruments…………………………………….	65
			
	2-3.3	Preparation of PDMS-structured NCO- terminated PU prepolymers……………………	65
			
	2-3.4	Preparation of PDMS-structured UV-curable PU resins……………………………………….	68
			
	2-3.5	UV-cured PDMS-structured PU films…………	70
			
	2-3.6	Physical and thermal properties………………..	70
			
2-4	Results and Discussion……………………………...	73
		
	2-4.1	Physical properties of UV-cured PDMS- structured PU films…………………………….	76
			
	2-4.2	Thermogravimetric analysis…………………...	79
			
	2-4.3	Dynamic mechanical analysis…………………	84
			
	2-4.4	The textile surface water repellency treatment...	85

		
2-5	Conclusions…………………………………………	87
		
	References……………………………………………...	88
		
Other Contributions………………………………………………	92
		
	Preface……………………………………………………….	92
		
	Introductions………………………………………………...	93
		
	A New Aziridinyl-Containing Curing Agent, IPDI-AZ……..	97
		
	The Azetidinyl-Terminated Self-Curable PU Dispersion…...	102
		
	The New Curing Agents for Self-Curable System of Aqueous-Based PU Dispersion……………………………...	110
		
	Hybridization of Aqueous PU/Epoxy Resin via a Dual Self- Curing Process………………………………………………	118
		
	Oxiranyl-Terminated Aqueous-Based PU…………………...	122
		
	Using the Triglycidyl-Containing Compounds as the Curing Agents……………………………………………………….	129
		
	Flame-Retardation Properties of UV-cured PU/Silica Nano- Composites with UV-Reactive Phosphate…………………...	134



	
	A Phosphonic Acid Containing UV-Curable Coating System for Potential Anti-Corrosion Application……………………	138
		
	Conclusions………………………………………………….	143
		
	References…………………………………………………...	144
		
Acknowledgement………………………………………………..	146
		
Resume of Author………………………………………………...	148
		
Papers……………………………………………………………..	149
		
Patents…………………………………………………………….	152
		
Conference Papers………………………………………………..	153












Contents of Schemes, Tables and Figures

Chapter 1	Ambient Temperature Rapid Self-Polymerization Components of β-Amino-Ester Alternative Copolymers
	
	Scheme I	Preparation of MAP……………………………	10
			
	Scheme II	Preparation of TMPTA-AZ…………………….	11
			
	Scheme III	The Modeling Reaction of MAP, TMAA and EA……………………………………………...	15
			
	Scheme IV	The Rapid Self-Polymerization of MAP and AA……………………………………………..	17
			
	Scheme V	The Rapid Self-Polymerization of TMPTA-AZ and AA…………………………………………	19
			
	Table I	The molecular weight of aqueous polymerization of AA with MAP at 50 oC and 0.15% concentration…………………………...	41
			
	Table II	The molecular weight of solution (DMF) polymerization of AA with MAP at 50 oC and 0.15% concentration…………………………...	41




		
	Table III	The molecular weight of solution (DMF) polymerization of AA with MAP at 50 oC and 0.20% concentration…………………………...	42
			
	Table IV	The physical properties of polymer with various [CO2H]/[AZ] ratios at ambient temperature…………………………………….	49
			
	Table V	The physical properties of polymer of [CO2H] / [AZ]=0.8/1.0 with various post-curing conditions………………………………………	50
			
	Figure 1	The 1H-NMR Spectra; (a) AZ; (b) MA and (c) MAP……………………………………………	26
			
	Figure 2	The 13C-NMR Spectra; (a) AZ; (b) MA and (c) MAP……………………………………………	27
			
	Figure 3	The FT-IR Spectra; (a) AZ; (b) MA and (c) MAP……………………………………………	28
			
	Figure 4	The 1H-NMR Spectra; (a) AZ; (b) TMPTA and (c) TMPTA-AZ………………………………...	30
			
	Figure 5	The 13C-NMR Spectra; (a) AZ; (b) TMPTA and (c) TMPTA-AZ………………………………...	31


		
	Figure 6	The FT-IR Spectra; (a) AZ; (b) TMPTA and (c) TMPTA-AZ……………………………………	32
			
	Figure 7	The 1H-NMR of Modeling Reaction; (a) MAP; (b) MAP/TMAA Salt; (c) MAP-TMAA Adduct and (d) MAP-TMAA-EA Adduct……………...	35
			
	Figure 8	The 13C-NMR of Modeling Reaction; (a) MAP; (b) MAP/TMAA Salt; (c) MAP-TMAA Adduct and (d) MAP-TMAA-EA Adduct……………...	36
			
	Figure 9	The FT-IR of Modeling Reaction; (a) MAP; (b) MAP-TMAA Adduct and (c) MAP-TMAA-EA Adduct…………………………………………	37
			
	Figure 10	MASS spectra of MAP………………………...	38
			
	Figure 11	MASS spectra of MAP-TMAA adduct………..	38
			
	Figure 12	MASS spectra of MAP-TMAA-EA adduct……	39
			
	Figure 13	FT-IR Spectrum of the Polymer with Post- Curing at 100 oC for 24 hours………………….	44
			

Figure 14	DTA Thermogram of Polymers Obtained from a Polymerization at Ambient Temperature with Different Ratios of [CO2H]/[AZ]. [CO2H]/[AZ] = 0.6/1.0(×); 0.8/1.0(□); 1.0/1.0(●); 1.2/1.0(○)...............	52
			
	Figure 15	DTA Thermogram of Polymers with [CO2H] / [AZ]=0.8/1.0 at Different Post Heating Conditions. RT (●); 50oC/ 24hrs (○); 100oC/ 24hrs (×)………………………………………………	53
			
Chapter 2	Synthesis and Characterization of UV-Curable PDMS- Structured Polyurethanes
			
	Scheme I	The Chemical Structure of KF-6001 and X-22-176DX…………………………………...	67
			
	Scheme II	Preparation of the NCO-Terminated PDMS- Structured PU Prepolymers……………………	68
			
	Scheme III	Preparation of the UV-Curable PDMS- Structured PU Resins…………………………..	69
			
	Scheme IV	The Chemical structures of PDMS-structured UV-curable polyurethanes……………………..	82
			
	Table I	The Physical Properties of UV-Cured PDMS- Structured PU Films…………………………………..	78
			
	Figure 1	The FT-IR of (a) NCO-Terminated PDMS- Structured PU prepolymer and (b) UV-Curable PDMS-Structured PU Resin…………………...	75

		
	Figure 2	The TGA of various types of PDMS-containing UV-cured polyurethane films………………….	83
			
	Figure 3	The DTGA of various types of PDMS- containing UV-cured polyurethane films………	84
			
	Figure 4	The DMA measurement of various types of PDMS-containing UV-cured polyurethanes…...	85
			
	Figure 5	The original Nylon with water affinity surface..	86
			
	Figure 6	The modified Nylon with water repellency surface………………………………………….	87
			
Other Contributions		
			
	Scheme I	Preparation of carboxyl and amino group containing aqueous-based PU dispersions……..	99
			
	Scheme II	Preparation of IPDI-AZ latent curing agent…...	100
			
	Scheme III	Preparation of 3-azetidinyl propanol…………..	105
			
	Scheme IV	Preparation of azetidine-terminated aqueous- based self- curing PU dispersion (AzPU)……...	106
			
	Scheme V	Cross self-curing between carboxyl containing AzPU and MePU………………………………	107

		
	Scheme VI	Modeling Reaction of MA-AZT with TMAA…	113
			
	Scheme VII	Preparation of the HDDA-AZT………………..	114
			
	Scheme VIII	Preparation of the TMPTA-AZT………………	114
			
	Scheme IX	Preparation of oxirane-terminated aqueous- based PU dispersion……………………………	125
			
	Scheme X	Dual-curing reaction of EPU with TMPTA-AZ…………………………………....	126
			
	Scheme XI	Preparation of POG Curing Agent……………..	131
			
	Scheme XII	The Modeling Reaction of n-Butyl Amine and Glycidol………………………………………..	131
			
	Scheme XIII	The Chemical Structure of the UV-Reactive Phosphorus Containing Compound, EGMP…...	136
			
	Scheme XIV	Preparation of PU-acrylate Oligomer………….	136
			
	Scheme XV	Preparation of HEMA-POH…………………...	140
			
	Scheme XVI	Preparation of Phosphonic Acid-Containing UV-Curable Epoxy Resin……………………...	141
			

Table I	Physical Properties of PU Films with Various Dosages of IPDI-AZ…………………………...	101
			
	Table II	Physical Properties of AzPU/MePU Hybrids….	108
			
	Table III	Physical Properties of PU Resin with HDDA-AZT……………………………………	115
			
	Table IV	Physical Properties of PU Resins with TMPTA-AZT…………………………………..	116
			
	Table V	Physical properties of PU/Epoxy hybrid with various dosage of TMPTA-AZ………………...	120
			
	Table VI	Mechanical properties of PU/epoxy hybrid with various dosage of TMPTA-AZ………………...	121
			
	Table VII	Physical and mechanical properties of EPU with various dosages of TMPTA-AZ………….	127
			
	Table VIII	Physical properties of PU with TMPTGE curing agent……………………………………	132
			
	Table IX	Physical properties of PU with POG curing agent……………………………………………	133
			
	Table X	Compositions, Physical and Thermal Properties of UV-cured Flame-retarded Silica/PU Nano-composites………………………………	137
			

		
	Figure 1	Stress-Strain Curves of PU with Various IDPI-AZ Dosage. PU(◆); PU with IPDI-AZ 1.0phr (●); 3.0phr(□); 5.0phr(◇) and 10phr(△)……………	102
			
	Figure 2	Stress-Strain curves of AzPU; MePU and AzPU hybrids with MePU in various ratios. MePU(□); 5Me/1Az (■); 3Me/1Az (▲); 1Me/1Az(×); AzPU (○)...	109
			
	Figure 3	Differential thermogravimetric analysis. MePU (○); 1MePU/1AzPU (●) and AzPU (×)……………...	109
			
	Figure 4	Stress-Strain curves of PU resins with HDDA-AZT. Original PU (◇); with 1.0 phr (■); with 2.0 phr (▲); with 3.0 phr (×); with 4.0phr (○); with 5.0 phr (●) HDDA-AZT……………………...	117
			
	Figure 5	Thermogravimetric analysis of self-cured PU resin with TMPTA-AZT under nitrogen. Original PU (●); with 1.0 phr (□); with 3.0 phr (■); with 5.0 phr (○) TMPTA-AZT……………………..	117
			
	Figure 6	Differential thermogravimetric analysis of EPU with various dosages of TMPTA-AZ under nitrogen Original EPU (×); with 1.0 phr (□); 3.0 phr (●) TMPTA-AZ………………………………….	128
			
			

		
	Figure 7	Dynamic mechanical analysis of EPU with various dosages of TMPTA-AZ. Original EPU (●); with 1.0 phr (□); with 3.0 phr (+) TMPTA-AZ…..	128
			
	Figure 8	The efficiencies of corrosion protection under 5% (w/w) NaCl aqueous (124 hr)……………...	142
參考文獻
Chapter1

1.	B. L. Rivas, G. del C. Pizarro, L. H. Tagle, D. Radie, Makromol. Chem. 1995, 231, 199
2.	T. Saegusa, S. Kobayashi, Y. Kimura, Pure & Appl. Chem. 1976, 48, 307
3.	T. Saegusa, Y. Kimura, S. Sawada, S. Kobayashi, Macromolecules 1974, 7, 956
4.	Gabriel, S.; Weiner, J. Ber. 1988, 21, 2669.
5.	Reeves, W. A.; Drake, G. L.; Hoffpauir, Jr. C. L. J Am Chem Soc 1951, 73, 3522. 
6.	Chen, G.-N.; K.-N. Chen J Appl Polym Sci 1997, 63, 1609. 
7.	Chen, G.-N.; Liu, P.-H.; Chen, M.-S.; Chen, K.-N. J. Polym. Research 1997, 4, 165.
8.	Chen, G.-N.; Chen, K.-N. J Appl Polym Sci 1998, 67, 1661. 
9.	Shao, C.-H.; Wang, T. -Z.; Chen, G.-N.; Chen, K.-N. J Polym Res 2000, 7, 41. 
10.	Lai, J.-Z.; Ling, H.-J.; Yeh, J.-T.; Chen, K.-N. J Appl Polym Sci 2004, 91, 1997. 
11.	Lai, J.-Z.; Ling, H.-J.; Yeh, J.-T.; Chen, K.-N. J Appl Polym Sci 2004, 94, 845.
12.	Ling, H.-J.; Chen, K.-N.; Lai, J.-Z.; Lin, Y.-S. European Patent 1,106,613 (2002).
13.	Ling, H.-J.; Chen, K.-N.; Lai, J.-Z.; Lin, Y.-S. U. S. Patent 6,077,960 (2000).
14.	Ling, H.-J.; Chen, K.-N.; Lai, J.-Z.; Lin, Y.-S. Japan Patent 3,254,201 (2001).
15.	Chen,G.-N.; Ling, H. -J.; Chen, K.-N. Adv Eng Materials 1999, 2, 114.
16.	Chen, T.-W.; Yeh, J.-T.; Chen, K.-N.; Lin, Y.-S. U. S. Patent 6,291,554 (2001).
17.	Chen, T.-W.; Yeh, J.-T.; Chen, K.-N.; Lin, Y.-S. G. B. Patent 2,353,999 (2003).
18.	Chen, T.-W.; Yeh, J.-T.; Chen, K.-N.; Lin, Y.-S., Japan Patent 3,538,810 (2004).
19.	Chen, G.-N.; Chen, K.-N., J Appl Polym Sci 1999, 71, 903.
20.	Lai, J-Z; Ling, H-J; Yeh, J-T; Chen, K-N. J Appl Polym Sci 2003, 90, 3578. 
21.	Huang, C-T.; Chen, K-N., J. Appl Polym Sci 2006, 100, 1919
22.	Huang, C-T.; Chen, K-N. J. Appl. Polym. Sci. in press 2006.
23.	Wang, S.-C.; Chen, P.-C.; Chen, K.–N. the result is submitting for publication.
24.	Lai, J.-Z.; Yeh, J.-T.; Chen, K.-N., J Appl Polym Sci 2005, 97, 550. 
25.	Wang, T.-Z.; Chen, K.-N. J Appl Polym Sci 1999, 74, 2499. 
26.	Shao, C.-H.; Huang, R.-J.; Chen, G.-N.; Yeh, J.-T.; Chen, K.-N. Polym Degrad and Stab 1999, 65, 359. 
27.	Huang, W.-K.; Yeh, J. -T.; Chen, K.-J.; Chen, K.-N. J Appl Polym Sci 2001, 79, 662.
28.	Huang, W.-K.; Chen, K.-J.; Yeh, J.-T.; Chen, K.-N. J Appl Polym Sci 2002, 85, 1980. 
29.	B. Berry, D. M. Lynn, R. Langer, Chemistry & Biology 2005, 11, 487.
30.	A. Akinc, D. G. Anderson, D. M. Lynn, R. Langer, Bioconjugate Chem., 2003, 14, 979
31.	P. -C. Chen, S. -C. Wang, C. –Y. Hung, K. -N. Chen, A patent application is pending.


Chapter2

1.	Dieterich, D., In Polyurethane Handbook (Ed: G. Oertel), Hanser, New York, 1985, Chapt 2.
2.	Paul, S.; Surface Coatings – Science and Technology; Wiley: Chichester, 1985, Chapter 8, p 601.
3.	Chen, G.-N.; Chen, K.-N.; J Appl Polym Sci, 1997, 63, 1609.
4.	Chen, G.-N.; Liu, P.-H.; Chen, M.-S.; Chen, K.-N.; J Polym Res, 1997, 4, 165.
5.	Chen, G.-N.; Chen, K.-N.; J Appl Polym Sci, 1998, 67, 1661.
6.	C. G. Roffey, Potopolymerization of Surface Coating, John Wiley & Sons, 1982.
7.	Wirpsza, Z. Polyurethanes Chemistry, Technologyand Applications; Kemp, T. J., Ed.; Ellis Horwood:New York, 1993; Chapter 4.
8.	Speckhard, T. A.; Gibson, P. E.; Cooper, S. L. Macromolecules 1971, 4, 452.
9.	Mitzner, E.; Goering, H.; Becker, R.; Kennedy, J. P. J Mater Sci Pure Appl Chem 1997, A34, 165.
10.	Okkema, A. Z.; Fabrizius, D. J.; Grasel, T. G.; Cooper, S. L.; Zdrahala, R. J Biomater 1989, 10, 23.
11.	Chun, Y. C.; Kim, K. S.; Shin, J. S.; Kim, K. H. Polym Int 1992, 27, 177.
12.	Phillips, R. A.; Stevenson, J. S.; Nagarajan, M. R.; Cooper, S. L. J Macromol Sci Phys 1988, B27, 245.
13.	Frisch, K. C.; Sendijarevic, A.; Sendijarevic, V.; Yokelson, H. B.; Nubel, P. O. Cell Polym 1996, 15, 395.
14.	Zawadski, S. F.; Akcelrud, L. Polym Int 1997, 42, 422.
15.	Speckhard, T. A.; Cooper, S. L. Rubber Chem Technol 1986, 59, 405.
16.	Kotomkin, V. Y.; Baburina, V. A.; Lebedov, E. P.; Bylev, V. A.; Yasmikova, T. E.; Reikhsfeld, V. O. Khimya i Parki Primonenie, Kremnii i Fosforogan, Soedin A 1980, 23; Chem Abstr 95: 43841d.
17.	Kotomkin, V. Y.; Baburina, V. A.; Lebedev, V. P.; Kercha, Y. Y. Sint Poliuretanov 1981, 86.
18.	Tsybul’ko, N. N.; Martinovich, F. S.; Satsura, V. M.; Mandrikova, A. I. USSR Patent SU 958,432, Sept 15, 1982.
19.	Ho, T.; Wynne, K. J. Prepr ACS Polym Mat Sci Eng Div 1992, 67, 445.
20.	Kuznetsova, V. P.; Zapunnaya, K. V. USSR422, 264; Chem Abstr 1990, 90:7759w.
21.	Otsuki, T.; Kakimoto, M.; Imai, Y. J Polym Sci Part A: Polym Chem 1991, 29, 611.
22.	Shibayama, M.; Inoue, M.; Yamamoto, T.; Nomura, S. Polymer 1990, 31, 349.
23.	Kotonyuk, V. Y.; Lebedev, E. P.; Baburina, V. A.; Shulyakova, O. N. Kriemniorg Sojed Mater Ikh Osnov, TR Soviesn Khim Prake Primien, Kriemniorg Sojed 5th 1982, 144; Chem Abstr 99: 25314t.
24.	Chen, H.; Fan, Q.; Chen, D. Z.; Yu, X. H. J Appl Polym Sci 2001, 79, 295.
25.	Fan, Q. L.; Fang, J. L.; Chen, Q. M.; Yu, X. H. J Appl Polym Sci 1999, 74, 2552.
26.	Sakurai, S.; Nokuwa, S.; Morimoto, M.; Shibayama, M.; Nomura, S. Polymer 1993, 35, 532.
27.	Bremner, T.; Hill, D. J. T.; Killeen, M. I.; O’Donnell, J. H.; Pomery, P. J.; St John, D.; Whittaker, A. K. J Appl Polym Sci 1997, 65, 939.
28.	Philips, R. A.; Stevenson, C. J.; Nagarajan, M. R.; Cooper, S. J Polym Sci Part A: Polym Phys 1989, 27, 245.

Chapter3

1.	D. Dieterich, In Polyurethane Handbook (Ed: G. Oertel), Hanser, New York, 1985, Chapt 2.
2.	Lai, J. -Z.; Yeh, J. -T.; Chen, K. -N. J. Appl. Polym. Sci., 2005, 97, 550.
3.	Lai, J. -Z.; Ling, H. -J.; Yeh, J. -T.; Chen, K. -N. J. Appl. Polym. Sci., 2004, 94, 845.
4.	Lai, J. -Z.; Ling, H. -J.; Yeh, J. -T.; Chen, K. -N. J. Appl. Polym. Sci., 2004, 91, 1997.
5.	Shao, C. -H.; Wang, T. -Z.; Chen, G. -N.; Chen, K. -J.; Yeh, J. -T.; Chen, K. -N., J. Polym. Res., 2000, 7, 41.
6.	Wang, T. -Z.; Chen, K. -N. J. Appl. Polym. Sci., 1999, 74, 2499.
7.	Vabrik, R.; Czalik, I.; Tury, C.; Rusznak, I.; Ille, A.; Vig, A., J. Appl. Polym. Sci., 1998, 68, 111.
8.	Kim, J. W.; Suh, K. D. J. Appl. Polym. Sci., 1998, 69, 1079
9.	Chen, G. -N.; Chen, K. -N. J. Appl. Polym. Sci., 1998, 67, 1661.
10.	Chen, G. -N.; Liu, P. -H.; Chen, M. -S.; Chen, K. –N. J. Polym. Res., 1997, 4, 165.
11.	Chen, G. -N.; Chen, K. –N. J. Appl. Polym. Sci., 1997, 63, 1609.
12.	Huang, W. -K.; Yeh, J. -T.; Chen, K. -J.; Chen, K. -N. J. Appl. Polym. Sci., 2000, 79, 662.
13.	Chen, G. -N.; Chen, K. -N. J. Appl. Polym. Sci., 1999, 71, 903.
14.	Ling, H. -J.; Chen, G. -N.; Chen; K. -N. Adv. Eng. Mater., 1999, 2, 114.
15.	Chen, T. -W.; Yeh, J. -T.; Chen K. -N.; Lin, Y. -S. U.S. Pat. 6,291,554 (2001).
16.	Ling, H. -J.; Chen, K. -N.; Lai, J. -Z.; Lin, Y. -S. European Pat. 6,077,960 (2000).
17.	Gabriel, S.; Weiner, J., Ber., 1988, 21, 2669.
18.	Schacht, E. H.; Goethals, E. J. Makromol. Chem., 1973, 167, 155
19.	Saegusa, T.; Kimura, Y.; Sawada, S.; Kobayashi, S. Macromolecules, 1974, 7, 956.
20.	Saegusa, T.; Kobayashi,; Kimura, Y.; Ikeda, H. J. Macromol. Sci., Chem., 1975, A9, 641.
論文全文使用權限
校內
紙本論文於授權書繳交後2年公開
同意電子論文全文授權校園內公開
校內電子論文延後至2017-05-19公開
校內書目立即公開
校外
同意授權
校外電子論文延後至2017-05-19公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信