§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1703201401134200
DOI 10.6846/TKU.2014.00606
論文名稱(中文) 太陽能驅動不同薄膜蒸餾模組海水淡化系統之成本與操作度比較
論文名稱(英文) Comparison between cost and operability for different types of solar driven membrane distillation in desalination systems
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 102
學期 1
出版年 103
研究生(中文) 洪浩嘉
研究生(英文) Hao-Chia Hung
學號 601400632
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2014-01-17
論文頁數 101頁
口試委員 指導教授 - 何啟東(cdho@mail.tku.edu.tw)
共同指導教授 - 陳逸航(yihhang@mail.tku.edu.tw)
委員 - 王國彬(gbwang@mail.cgu.edu.tw)
委員 - 張煖(nhchang@mail.tku.edu.tw)
委員 - 何啟東(cdho@mail.tku.edu.tw)
關鍵字(中) 太陽能
薄膜蒸餾
海水淡化
成本分析
控制架構
關鍵字(英) Solar energy
Membrane distillation
Desalination
Cost analysis
Control structure
第三語言關鍵字
學科別分類
中文摘要
本研究針對三種不同薄膜蒸餾模組,結合太陽能加熱程序進行海水淡化作業,建立系統單位產水價格最適化設計。程序中之薄膜蒸餾模組有:氣隔式、直接接觸式及真空式三種。利用化工模擬軟體 Aspen Custom ModelerR (ACM),建立各單元模組之質量與能量平衡方程式,及各設備成本函數,並將模擬結果與文獻之實驗數據進行驗證。以最小化單位產水價格為最適化目標函數,使用ACM之“序列二次規劃可行路徑最適化方法”(Feasible Path Successive Quadratic Programming Optimization, FEASOPT ) 對各程序進行最適化求解,結果顯示在台灣地區四季之太陽能日照分佈情況下,三種薄膜蒸餾系統日間操作均可達到每小時2000公斤產水量之產能。接續完成三種程序之控制架構,建立白天與夜間之操作模式後,太陽能驅動薄膜蒸餾海水淡化系統之全年度最適化單位產水價格,以氣隔式系統 ($2.7/m3)最便宜,而直接接觸式及真空式之價格分別為 $5.4/m3與 $10.4/ m3。此最適化之氣隔式薄膜蒸餾系統建置成本 ($57,092)較直接接觸式 ($123,411)及真空式 ($350,565)之成本低。
英文摘要
The objective of this research is to combine renewable solar thermal energy and seawater membrane distillation desalination systems into green processes. The units of the systems include air gap (AGMD), direct contact (DCMD) and vacuum membrane distillation (VMD) modules. In order to assess the economic design point of the process, the Aspen Custom Modeler (ACM) was used to build the mathematical model to describe each unit of solar-driven membrane distillation desalination systems. Simulation results show that the total annual costs (TAC) of air gap (AGMD), direct contact (DCMD) and vacuum membrane distillation (VMD) modules for 2000 kg/hr water production are $57,092, $123,411 and $350,565, respectively. The control structures of solar-driven membrane distillation desalination systems were built which include quality control in order to maintain the water production rate and day/night operating mode. Finally, the dynamic simulations of these systems in all seasons are demonstrated to validate the operability analysis results. The optimal unit water production costs of air gap (AGMD), direct contact (DCMD) and vacuum membrane distillation (VMD) modules are $2.7/m3, $5.4/m3 and $10.4/ m3, respectively.
第三語言摘要
論文目次
目錄
中文摘要	I
英文摘要	II
目錄	III
圖目錄	VII
表目錄	X
第一章 緒論	1
1.1前言	1
1.2文獻回顧 	4
1.3研究動機 	6
1.4論文組織架構 	6
第二章 穩態理論模式建立 	8
2.1程序描述 	8
2.1.1氣隔式薄膜蒸餾海水淡化系統	8
2.1.2直接接觸式薄膜蒸餾海水淡化系統	10
2.1.3真空式薄膜蒸餾海水淡化系統	12
2.2單元模組	14
2.2.1氣隔式薄膜蒸餾模組	14
2.2.2直接接觸式薄膜蒸餾模組	22
2.2.3真空式薄膜蒸餾	27
2.2.4太陽能集熱器	32
2.2.5熱交換器	35
2.2.6熱儲存桶	36
2.3模式驗證	38
2.4模擬結果	41
第三章 最適化設計	43
3.1設計自由度分析	43
3.2目標函數及限制條件	49
3.3設備成本函數	50
3.3.1攤提因子(Amortization factor, a)	50
3.3.2成本指數(Cost Indexes)	51
3.3.3離心式幫浦	51
3.3.4真空幫浦	52
3.3.5殼管式熱交換器	53
3.3.6電加熱器	54
3.3.7太陽能集熱器	54
3.3.8薄膜	55
3.3.9公用操作成本	55
3.4最適化方法	56
3.5最適化流程	57
3.6最適化結果	58
3.6.1太陽能驅動氣隔式薄膜蒸餾海水淡化系統(AGMD)	58
3.6.2太陽能驅動直接接觸式薄膜蒸餾海水淡化系統(DCMD)	58
3.6.3太陽能驅動真空式薄膜蒸餾海水淡化系統(VMD)	59
第四章 動態控制架構建立	67
4.1熱路徑分析	67
4.2控制架構	69
4.2.1控制環路1(熱交換器入口溫度)	69
4.2.2控制環路2(太陽能集熱器出口溫度)	70
4.2.3儲熱桶槽內部溫度	70
4.2.4雙桶槽操作模式	71
4.2.5日夜切換操作模式	71
4.3控制器參數調諧	77
4.4動態控制結果	80
4.4.1春/秋季測試	81
4.4.2夏季測試	81
4.4.3冬季測試	81
第五章 成本比較	85
5.1年總成本比較	85
5.2單位產水價格比較	86
5.3不同薄膜成本之單位產水價格比較	89
第六章 結論	91
符號說明	92
參考文獻	98

圖目錄
圖1.1薄膜蒸餾模組 (a)DCMD (b)AGMD (c)SGMD (d)VMD	3
圖1.2結合太陽熱能與電能之薄膜蒸餾系統	4
圖2.1太陽能驅動氣隔式薄膜蒸餾(AGMD)海水淡化系統流程圖	8
圖2.2太陽能驅動直接接觸式薄膜蒸餾(DCMD)海水淡化系統流程圖	10
圖2.3太陽能驅動真空式薄膜蒸餾(VMD)海水淡化系統流程圖	13
圖2.4氣隔式薄膜蒸餾模組結構示意圖	15
圖2.5直接接觸式薄膜蒸餾模組結構示意圖	22
圖2.6真空式薄膜蒸餾模組結構示意圖	27
圖2.7太陽能集熱器結構示意圖	32
圖2.8熱交換器結構示意圖	35
圖2.9熱儲存桶結構示意圖	37
圖2.10薄膜蒸餾模組之模式驗證	40
圖3.1最適化設計流程圖	57
圖3.2太陽能驅動氣隔式薄膜蒸餾海水淡化系統穩態設備之物流資料(AGMD)	61
圖3.3太陽能驅動直接接觸式薄膜蒸餾海水淡化系統穩態設備之物流資料(DCMD)	62
圖3.4太陽能驅動真空式薄膜蒸餾海水淡化系統穩態設備之物流資料(VMD)	63
圖3.5太陽能驅動氣隔式薄膜蒸餾海水淡化系統最適化結果(AGMD)	64
圖3.6太陽能驅動直接接觸式薄膜蒸餾海水淡化系統最適化結果(DCMD)	65
圖3.7太陽能驅動真空式薄膜蒸餾海水淡化系統最適化結果(VMD)	66
圖4.1熱交換器不同控制架構之能量流動示意圖	68
圖4.2開環路能量傳遞方向圖(虛線為低溫補充物流)	72
圖4.3閉環路能量傳遞方向圖(虛線為低溫補充物流)	73
圖4.4 太陽能驅動真空式薄膜蒸餾海水淡化系統控制架構圖	74
圖4.5控制器參數調諧	79
圖4.6台灣四季動態操作結果(AGMD)	82
圖4.7台灣四季動態操作結果(DCMD)	83
圖4.8台灣四季動態操作結果(VMD)	84
圖5.1最適化單位產水價格系統設計方案之主要設備及操作成本比較	87
圖5.2太陽能驅動薄膜蒸餾海水淡化系統設備及年總成本比較	88
圖5.3不同薄膜成本之最適化系統方案成本比較	90
圖5.4不同薄膜成本之單位產水價格比較	90

表目錄
表1.1各國使用之海水淡化技術比例	1
表2.1 氣隔式薄膜蒸餾模組尺寸與物理參數設定表	21
表2.2直接接觸式薄膜設備尺寸與參數設定彙整表	26
表2.3真空式薄膜設備尺寸與參數設定彙整表	31
表2.4太陽能集熱器物理參數	34
表2.5薄膜物理性質	38
表2.6操作條件	39
表2.7太陽能驅動薄膜蒸餾海水淡化系統之基本模擬方案		42
表3.1太陽能驅動薄膜蒸餾海水淡化系統變數彙整表	45
表3.2太陽能驅動薄膜蒸餾海水淡化系統方程式彙整表	47
表3.3太陽能驅動薄膜蒸餾海水淡化系統之設備尺寸及操作條件	60
表4.1品質控制環路控制配對表	75
表4.2日夜操作切換模式控制配對表	76
表4.3Tyreus-Luyben 控制器參數經驗公式	78
表4.4各系統控制器參數彙整表	80
參考文獻
[1]	Pangarkar, B.L.; Sane, M.G.; Parjane, S.B.; Guddad, M.. “Reverse Osmosis andMembrane Distillation for Desalination of Groundwater: A Review”, ISRN Materials Science, 2011.
[2]	Fiorenza, G.; Sharma, V. K.; Braccio, G.. “Techno-economic evaluation of a solar powered water desalination plant”, Energy Conversion and Management, 44, 2217-2240, 2003.
[3]	Kalogirou, S.. “Thermal performance, economic and environmental life cycle analysis of thermosiphon solar water heaters”, Solar Energy, 83, 39–48, 2009.
[4]	Meindersma, G.W.; Guijt, C. M.; de Haan , A. B.. “Desalination and water recycling by air gap membrane distillation”, Desalination, 187, 291–301, 2006.
[5]	Qtaishat, M. R.; and Banat, F.. “Desalination by solar powered membrane distillation systems”, Desalination, 308, 186-197, 2013.
[6]	Bodell, B. R. “silicone rubber vapor diffusion in saline water distillation”, United States Patent Application Serial No.285, 23, 1963.
[7]	El-Bourawi, M.S.; Ding, Z.; Ma, R.; Khayet, M.. “A framework for better understanding membrane distillation separation process”, J Membr Sci, 285, 4-29, 2006.
[8]	Alves, V. D.; Coelhoso, I. M. “Orange juice concentration by osmotic evaporation and membrane distillation: a comparative study”, J. Food Eng., 74 (1), 125–133, 2006.
[9]	Godino, M. P.; Pena, L.; Rincon, C.; Mengual, J. I.. “Water production from brines by membrane distillation”, Desalination, 108, 91-97, 1997.
[10]	Lawson, K. W. and Lloyd, D. R.. “Membrane distillation. II. Direct contact MD”, J Membr Sci, 120, 123-133, 1996.
[11]	Banat,F. A.; Simandl, J.. “Desalination by membrane distillation: a parametric study”, Sep. Sci. Technol., 33(2), 201–226, 1998.
[12]	Garcia-Payo, M. C.; Izquierdo-Gil, M. A.; Fernandez-Pineda, C.. “Air gap membrane distillation of aqueous alcohol solutions”, J. Membr. Sci, 169 (1), 61-80, 2000.
[13]	Garcia-Payo, M. C.; Rivier, C. A.; Marison, I. W.; von Stockar, U.. “Separation of binary mixtures by thermostatic sweeping gas membrane distillation: II. Experimental results with aqueous formic acid solutions”, J. Membr. Sci, 198(2), 197–210, 2002.
[14]	Lawson, K. W.; and Lloyd D. R.. “Membrane distillation. Review”, J Membr Sci, 124, 1-25, 1997.
[15]	Lawson, K. W.; and Lloyd D. R.. “Membrane distillation. I. Module design and performance evaluation using vacuum membrane distillation”, J. Membr. Sci, 120, 111-121, 1996.
[16]	Hsu, S. T.; Cheng, K. T.; Chiou, J. S.. “Seawater desalination by direct contact membrane distillation”, Desalination, 143, 279–287, 2002
[17]	Khayet, M.; Godino, P.; Mengual, J. I.. “Nature of flow on sweeping gas membrane distillation”, J. Membr. Sci, 170, 243–255, 2000.
[18]	Lagana, F.; Barbieri, G.; Drioli, E.. “Direct contact membrane distillation: modelling and concentration experiments”, J. Membr. Sci, 166, 1-11, 2000.
[19]	Koschikowski, J.; Wieghaus, M.; Rommel, M.. “Solar thermal-driven desalination plants based on membrane distillation” Desalination, 156, 295-304, 2003.
[20]	Mericq, J.-P.; Laborie, S.; Cabassud, C.. “Evaluation of systems coupling vacuum membrane distillation and solar energy for seawater desalination”, 166, 596-606, 2011.
[21]	Chang, H.; Liau, J. S.; Ho, C. D.; Wang, W. H.. “Simulation of membrane distillation modules for desalination by developing user's model on Aspen Plus platform”, Desalination, 249, 380-387, 2009.
[22]	Chen, Y. H.; Li, Y. W.; Chang, H.. “Optimal design and control of solar driven air gap membrane distillation desalination systems”, Applied Energy, 100, 193-204, 2012.
[23]	Hogan, P. A.; Sudjito,; F, A. G.; Morrison, G. L. “Desalination by solar heated membrane distillation”, Desalination, 81, 81-90, 1991.
[24]	Banat, F.; Jwaied, N.. “Economic evaluation of desalination by small-scale autonomous solar-powered membrane distillation units”, Desalination, 220, 566-573, 2008.
[25]	Chang, H.; Wang,G. B.; Chen, Y. H.; Li, C. C.; Chang, C. L.. “Modeling and optimization of a solar driven membrane distillation desalination system”, Renewable Energy, 35, 2714-2722, 2010.
[26]	Chang, H.; Lyu, S. G.; Tsai, C. Mi.; Chen, Y. H.; Cheng, T. W.; Chou Y. H.. “Experimental and simulation study of a solar thermal driven membrane distillation desalination process”, Desalination, 286, 400-411, 2012.
[27]	Fuller, E. N.; Schettler, P. D.; Giddings, J. C.. “New method for prediction of binary gas-phase diffusion coefficients”, Industrial & Engineering Chemistry, 58, 18-27, 1966.
[28]	Reid, R. C.; Prsusnitz, J. M.; Poling, B. E.. “The properties of gases & liquids”, fourth edition. McGraw-Hill international edition, 1986.
[29]	Dewitt, D. P.; Incropera, F. P.; Bergman, T. L.; Lavine, A. S.. “Fundamentals of heat and mass transfer”, sixth edition. John Willey & Sons 2007.
[30]	Posey M. L.; Rochelle G. T.. “A thermodynamic model of methyldiethanolamine-CO2-H2S-Water”, Ind. Eng. Chem. Res., 36, 3944-3953, 1997.
[31]	Lawson, K. W.; Hall, M. S.; Lloyd, D. R.. “Compaction of microporous membranes used in membrane distillation. I. Effect on gas permeability”, Journal of Membrane Science, 101, 99-108, 1995.
[32]	Turton, R.; Bailie, R. C.; Whiting, W. B.; Shaeiwitz, J. A.. “Analysis, synthesis, and design of chemical process”, Prentice Hall Inc., 1998.
[33]	Chang T. P.. “Performance evaluation for solar collectors in Taiwan”, Energy, 34, 32–40, 2009.
[34]	Luyben, W. L.. “Design and control degrees of freedom”, Ind. Eng. Chem. Res., 35, 2204-2214, 1996.
[35]	AL-NIMR, M. A.; Kiawn, S.; Al-Alwah, A.. “Size optimization of convention solar collectors”, Energy, 23, 373-378, 1998.
[36]	Hollands, K. G. T.; Shewen, E. C.. “Optimization of flow passage geometry for air-heating , plate-type solar collectors”, Journal of solar energy engineering, 103, 323-330, 1981.
[37]	Avlonitis, S.; Hanbury, W. T.; Boundinar, M. B.. “Spiral Wound Modules Performance an analytical solution: part II”, Desalination, 89, 227-246, 1993.
[38]	Seider, W. D.; Seader, J. D.; Lewin, D. R.; Widagdo, S.. “Production and process design principles synthesis, analysis, and Evaluation”, third edition. John Wiley & Sons, Inc. 2010.
[39]	Peters, M. S.; Timmerhaus, K. D.; “Plant design and economics for chemical engineers”, 4th ed. New York, McGraw-Hill, 1991.
[40]	Crook P.; Caruso M. L.; Kingseed D. A.. “Corrosion resistance of  a new, wrought Ni-Cr-Mo alloy”, Materials Selction & Design, 36, 49-52, 1997.
[41]	Al-Obaidani, S.; “Potential of membrane distillation in seawater desalination: Thermal efficiency, sensitivity study and cost estimation”, J. Membr. Sci., 323, 85–98, 2008.
[42]	Gilron, J.; Song, L.; Sirkar K. K.. “Design for cascade of crossflow direct contact membrane distillation”, Ind. Eng. Chem. Res., 46, 2324-2334, 2007.
[43]	Bacha, H. B.; Damak, T.; Abdalah, A. A. B.; Maalej, A. Y.; Dhia, H. B.. “Desalination unit coupled with solar collectors and storage tank: modeling and simulation”, Desalination, 206, 341-352, 2007
論文全文使用權限
校內
紙本論文於授權書繳交後2年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後2年公開
校外
同意授權
校外電子論文於授權書繳交後2年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信