§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1702201612210100
DOI 10.6846/TKU.2016.00436
論文名稱(中文) 基於IEEE 802.21換手協定異質網路串流動態播放控制與遺失防備機制之研究
論文名稱(英文) Study of IEEE 802.21-based Video Streaming with Dynamic Playback Control over Heterogeneous Networks and Loss-Anticipation Scheme for Wireless Video Transmission
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系博士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 104
學期 1
出版年 105
研究生(中文) 羅祥福
研究生(英文) Hsiang-Fu Lo
學號 895440088
學位類別 博士
語言別 繁體中文
第二語言別
口試日期 2016-01-13
論文頁數 106頁
口試委員 指導教授 - 李維聰(wtlee@mail.tku.edu.tw)
委員 - 石維寬
委員 - 侯廷偉
委員 - 林志敏
委員 - 劉江龍
關鍵字(中) IEEE 802.21換手協定
無縫換手
視訊串流
動態播放控制
遺失防備
關鍵字(英) IEEE 802.21
Seamless Handover
Video Streaming
Dynamic Playback Control
Loss-Anticipation
第三語言關鍵字
學科別分類
中文摘要
隨著網路人口激增的同時,串流服務使用量也持續遽增,串流品質將是一項重要的研究議題。本論文主要探討網路換手問題以及封包遺失問題對串流播放流暢性的影響,並提出相對應的改善方法。
針對網路換手問題,為能夠在底層網路介面進行換手的同時,上層串流播放進行相對應處理,本論文提出「基於IEEE 802.21無縫播放機制」,藉由服務特有層中間層軟體,連接上層串流應用與底層無縫換手,利用直線式與曲線式串流播放控制演算法,延長串流播放時間,以實現無縫串流播放,並比較直線式與曲線式串流播放控制在延長播放時間與緩衝區畫面存量的效能差異。
此外,針對封包遺失問題,本論文提出「改良式串流封包遺失防備機制」,結合影像編碼特性,降低向前錯誤更正技術的冗餘封包數量,提升頻寬使用效益,並進一步結合交錯傳輸技術,能夠依據冗餘封包數量適應性調整交錯矩陣大小,以改善連續性封包遺失問題,確保串流封包完整性。
英文摘要
As the Mobile Internet growth increases rapidly, the streaming services users also continue to raise quickly. Streaming service quality will be an important research topic. This thesis discussed the smooth streaming factors, including heterogeneous network handover problem and packet loss effects and then proposed the corresponding improvement methods.
A dynamic playback control scheme for video streaming based on IEEE 802.21 was proposed to reduce the influence of handover between heterogeneous networks. The proposed scheme uses a middleware, so called Service Specific Layer (SSL), to connect IEEE 802.21 media independent handover function (MIHF) with the upper application layer and the lower seamless network handover layer. The SSL provides two playback control methods: linear frame rate mode and curve frame rate mode. Performance comparison results of these playback control methods show that different playback frame rate modes can achieve different video quality and can extend the playing time for handover video playback.
In addition, a novel streaming loss-anticipation scheme was proposed to improve the streaming packets integrity for network packet loss problem. The proposed scheme, named as Novel Adaptive Forward Error Correction (NAFEC), can dynamically decrease the number of FEC redundant packets and efficiently increase the network bandwidth usage. Moreover, the NAFEC scheme also can combine the dynamic FEC and interleaving transmission to handle consecutive packet loss. The simulation results show that our NAFEC scheme can outperform the previous methods in terms of packet loss and the number of FEC redundant packets.
第三語言摘要
論文目次
目錄
第一章 緒論1
1.1 研究背景1
1.2 研究動機與目的3
1.3 論文章節架構6
第二章 文獻探討7
2.1 IEEE 802.21異質網路換手協定7
2.2 群播影像傳輸與緩衝區管理技術11
2.3 H.264/AVC與其適應性編碼技術14
2.4 改善封包遺失之技術17
第三章 基於IEEE 802.21無縫串流播放控制機制28
3.1 前言28
3.2 無縫串流中間層軟體之設計28
3.2.1 服務特有層(Service Specific Layer)整體架構28
3.2.2 服務特有層內部功能設計30
3.3 直線式串流播放控制34
3.3.1 漸進式調降模式34
3.3.2 直線式調降模式37
3.3.3 漸進式恢復模式38
3.3.4 實驗環境與設定42
3.3.5 實驗結果與分析43
3.4 曲線式串流播放控制48
3.4.1 曲線式調降模式49
3.4.2 曲線式恢復模式51
3.4.3 曲線式控制參數討論52
3.4.4 實驗環境與設定55
3.4.5 實驗結果與分析55
3.5 小結62
第四章 改良式串流封包遺失防備機制65
4.1 前言65
4.2 新的層級式FEC與交錯傳輸機制66
4.2.1 NAFEC整體架構66
4.2.2 NAFEC機制第一階段保護67
4.2.3 NAFEC機制第二階段保護73
4.3 實驗環境與結果分析77
4.3.1 實驗環境與設定77
4.3.2 實驗結果與分析82
4.4 小結93
第五章 結論與未來研究96
5.1 結論96
5.2 未來研究98
參考文獻100

 
圖目錄
圖2.1 網路換手過程7
圖2.2 MIH Funtion服務架構[9]9
圖2.3 換手的緩衝區狀態[9]12
圖2.4根據緩衝區限制調整傳輸速率[23]14
圖2.5 H.264 SVC適應性編碼層級架構圖[26]16
圖2.6 正向錯誤修正技術20
圖2.7 經由Wireless AP執行EAFEC運作架構圖[37]22
圖2.8 EAFEC機制之FEC冗餘封包數目計算流程[38]23
圖2.9 矩陣大小3*3交錯傳輸矩陣25
圖2.10 交錯式順序發生連續封包遺失的情況26
圖3.1 特有服務層(SSL)整體架構圖[40]30
圖3.2 換手時影像存量與緩衝區上下限的關係33
圖3.3 漸進式調降模式與FPS變化量37
圖3.4 直線式調降模式與FPS變化量38
圖3.5 漸進式恢復模式畫面更新率39
圖3.6 漸進式恢復模式畫面更新率的變化量41
圖3.7 直線式串流播放控制實驗架構圖42
圖3.8 當Tend = 45,比較直線式串流播放控制的延長播放時間43
圖3.9 當Tend = 45,比較直線式串流播放控制的畫面存量44
圖3.10 當FL = 10,漸進式與直線式調降模式延長播放比較45
圖3.11 不同FL情況下,比較漸進式調降模式延長播放時間46
圖3.12不同FL情況下,比較漸進式調降模式畫面存量46
圖3.13 不同FL情況下,比較漸進式恢復模式畫面存量47
圖3.14 曲線式調降模式51
圖3.15 曲線式恢復模式52
圖3.16 曲線式調降模式,參數C對FPS的影響53
圖3.17 曲線式調降模式,參數D對FPS的影響53
圖3.18 四種C、D參數調整比較圖54
圖3.19 曲線式調降模式與漸進式調降模式延長播放時間比較57
圖3.20 曲線式調降模式與漸進式調降模式畫面存量比較58
圖3.21 曲線式調降模式與漸進式調降模式效能比率59
圖3.22 曲線式恢復模式與漸進式恢復模式的畫面更新率比較61
圖3.23 曲線式恢復模式與漸進式恢復模式的畫面存量比較61
圖4.1 NAFEC整體架構圖67
圖4.2 大小為4×4交錯式順序矩陣75
圖4.3 NAFEC實驗環境架構圖78
圖4.4 第一階段保護,不同層級封包遺失率的比較結果83
圖4.5第一階段保護,與EAFEC比較封包遺失數量84
圖4.6第二階段保護,比較不同層級的封包遺失率85
圖4.7 第二階段保護,與EAFEC比較封包遺失數量86
圖4.8 第二階段保護,與EAFEC比較冗餘封包數量87
圖4.9 基本層加強保護,比較不同層級的封包遺失率89
圖4.10 比較基本層加強保護使用前、後的封包遺失率90
圖4.11 各種FEC機制的封包遺失比較91
圖4.12 各種FEC機制的冗餘封包數量比較92

 
表目錄
表2.1 無縫串流播放控制相關的MIES Link事件 [9]10
表3.1曲線式調降模式與漸進式調降模式比較結果56
表3.2 漸進式調降模式與曲線式調降模式延長播放時間能力比較64
表3.3 漸進式恢復模式與曲線式恢復模式畫面存量恢復能力比較64
表4.1 SVC影像串流資料重要性程度的分類68
表4.2 網路系統環境參數79
表4.3 H.264 SVC實驗影片參數80
參考文獻
[1]YouTube,“Statistics”[Online]. Available: https://www.youtube.com/yt/press/statistics.html. [Accessed: 23-Jan-2016].
[2]Internet Live States, “Internet users in the world” [Online]. Available: http://www.internetlivestats.com/internet-users/. [Accessed: 23-Jan-2016].
[3]IEEE Std 802.21TM-2008, “IEEE Standard for Local and metropolitan area networks-Part 21: Media Independent Handover Services,” January 2009.
[4]D. Liu, L. Wang, Y. Chen, M. Elkashlan, K.-K. Wong, R. Schober, and L. Hanzo, “User Association in 5G Networks: A Survey and an Outlook,” IEEE Communications Surveys Tutorials, vol. PP, no. 99, pp. 1-27, 2016.
[5]T. Yunzheng, L. Long, L. Shang, and Z. Zhi, “A survey: Several technologies of non-orthogonal transmission for 5G,” Communications, China, vol. 12, no. 10, pp. 1-15, Oct. 2015.
[6]A. Gupta and R. K. Jha, “A Survey of 5G Network: Architecture and Emerging Technologies,” IEEE Access, vol. 3, pp. 1206-1232, 2015.
[7]S. Chen, S. Sun, Y. Wang, G. Xiao, and R. Tamrakar, “A comprehensive survey of TDD-based mobile communication systems from TD-SCDMA 3G to TD-LTE(A) 4G and 5G directions,” Communications, China, vol. 12, no. 2, pp. 40-60, Feb. 2015.
[8]Moon Kim, Tae-wook Moon, Sung-joon Cho, “A study on IEEE 802.21 MIH frameworks in heterogeneous wireless networks”, International Conference on Advanced Communication Technology, 15-18 Feb. 2009, pp. 242-246.
[9]Antonio De La Oliva, Albert Banchs, Ignacio Soto, Telemaco Melia, Albert Vidal, “An overview of IEEE 802.21: media-independent handover services”, IEEE Wireless Communications, Aug. 2008, pp. 96-103.
[10]S. Floyd, M. Handley, J. Pahdye and J. Widmer , "RFC 5348: TCP Friendly Rate Control (TFRC): Protocol Specification" ,  IETF , 2008.
[11]M. A. Talaat, G. M. Attiya, and M. A. Koutb, “Enhanced TCP-friendly rate control for supporting video traffic over internet,” Canadian Journal of Electrical and Computer Engineering, vol. 36, no. 3, pp. 135-140, Summer 2013.
[12]S. Lee, H. Roh, H. Lee, and K. Chung, “Enhanced TFRC for high quality video streaming over high bandwidth delay product networks,” Journal of Communications and Networks, vol. 16, no. 3, pp. 344-354, Jun. 2014.
[13]C. Xu, Z. Li, J. Li, H. Zhang, and G.-M. Muntean, “Cross-Layer Fairness-Driven Concurrent Multipath Video Delivery Over Heterogeneous Wireless Networks,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 25, no. 7, pp. 1175-1189, Jul. 2015.
[14]J.-Y. Pyun, “Context-Aware Streaming Video System for Vertical Handover over Wireless Overlay Network,” IEEE Transactions on Consumer Electronics, vol. 54, no. 1, pp. 71-79, Feb. 2008.
[15]S. Ko and K. Chung, “A handover-aware seamless video streaming scheme in heterogeneous wireless networks,” Ann. Telecommun., vol. 69, no. 3, pp. 239-250, Mar. 2013.
[16]J. Kwon, J. Lee, H. Park, and C. Yoo, “Seamless streaming with intelligent rate determinate algorithm in content centric networks,” in 2014 IEEE International Conference on Consumer Electronics (ICCE), 2014, pp. 137-138.
[17]Bellavista, P.; Corradi, A.; Giannelli, C., "Mobile proxies for proactive buffering in wireless Internet multimedia streaming," in Distributed Computing Systems Workshops, 2005. 25th IEEE International Conference on , pp.297-304, 6-10 June 2005.
[18]Ciubotaru, B.; Muntean, G., "Smooth Adaptive Soft Handover Algorithm for Multimedia Streaming over Wireless Networks," in Wireless Communications and Networking Conference, 2009. WCNC 2009. IEEE , pp.1-6, 5-8 April 2009. 
[19]Hsiao-Chiang Chuang, Ching Yao Huang and Tihao Chiang, "On the buffer dynamics of scalable video streaming over wireless network," Vehicular Technology Conference, 2004. VTC2004-Fall. 2004 IEEE 60th, vol. 4, pp. 2582-2586 Vol. 4. 
[20]Moon Kim, Tae-wook Moon and Sung-joon Cho, "A study on IEEE 802.21 MIH frameworks in heterogeneous wireless networks," Advanced Communication Technology, 2009. ICACT 2009. 11th International Conference on, vol. 01, pp. 242-246. 
[21]J.D. Salehi, Zhi-Li Zhang, J. Kurose and D. Towsley, "Supporting stored video: reducing rate variability and end-to-end resource requirements through optimal smoothing," Networking, IEEE/ACM Transactions on, vol. 6, no. 4, pp. 397-410. 
[22]Sheau-Ru Tong; Sheng-Hsiung Yang, "Buffer Control to Support a Seamless Stream Handoff in a WLAN that Employs Simulcast Streaming," in Wireless Communications, IEEE Transactions on , vol.7, no.1, pp.260-268, Jan. 2008. 
[23]Wei Zhao; Seth, T.; Kim, M.; Willebeek-LaMair, M., "Optimal bandwidth/delay tradeoff for feasible-region-based scalable multimedia scheduling," in INFOCOM '98. Seventeenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE , vol.3, no., pp.1131-1138 vol.3, 29 Mar-2 Apr 1998. 
[24]Wei Zhao; Willebeek-LeMair, M.; Tiwari, P., "Efficient adaptive media scaling and streaming of layered multimedia in heterogeneous environment," in Multimedia Computing and Systems, 1999. IEEE International Conference on , vol.2, no., pp.377-381 vol.2, Jul 1999.
[25]S. Wenger, “H.264/AVC over IP,” IEEE Transactions on Circuits and Systems, vol. 13, no.7, pp.645-656, July 2003.
[26]T. Wiegand, G. J. Sullivan, G. Bjntegaard, and A. Luthra, “Overview of the H.264/AVC video coding standard,” IEEE Transactions on Circuits and System for Video Technology, vol. 13, pp. 560-576, July 2003.
[27]Iain E. G. Richardson, H.264 and MPEG-4 Video Compression- Video Coding for Next-generation Multimedia, John Wiley & Sons Ltd., 2003.
[28]Jen-Chun Chiang, Hsiang-Fu Lo, and Wei-Tsong Lee, “Scalable Video Coding of H.264/AVC Video Streaming with QoS-Based Active Dropping in 802.16e Networks,” in 22nd International Conference on Advanced Information Networking and Applications - Workshops, 2008. AINAW 2008, March, pp. 1450-1455.
[29]Perkins, C., Hodson, O., Hardman, V., “A Survey of Packet Loss Recovery Techniques for Streaming Audio, ” IEEE Network Magazine, Vol. 12, NO. 5, pp. 40-48, Sep.–Oct. 1998.
[30]C. Perkins, O. Hodson, and V. Hardman, “A survey of packet loss recovery techniques for streaming audio,” IEEE Network, vol. 12, no. 5, pp. 40-48, Sep. 1998.
[31]D. Wu, Y. T. Hou, and Y.-Q. Zhang, “Transporting real-time video over the Internet: challenges and approaches,” Proceedings of the IEEE, vol. 88, no. 12, pp. 1855-1877, Dec. 2000.
[32]D. Wu, Y. T. Hou, W. Zhu, Y.-Q. Zhang, and J. M. Peha, “Streaming video over the Internet: approaches and directions,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 11, no. 3, pp. 282-300, Mar. 2001.
[33]Y. Huo, C. Hellge, T. Wiegand, and L. Hanzo, “A Tutorial and Review on Inter-Layer FEC Coded Layered Video Streaming,” IEEE Communications Surveys Tutorials, vol. 17, no. 2, pp. 1166–1207, Secondquarter 2015.
[34]J-C. Bolot and A. Garicia, “Control Mechanisms for Packet Audio in the Internet,” Proceedings of IEEE INFOCOM, pp. 232-239, March 1996.
[35]Padhye, C.; Christensen, K.J.; Moreno, W., "A new adaptive FEC loss control algorithm for voice over IP applications," in Performance, Computing, and Communications Conference, 2000. IPCCC '00. Conference Proceeding of the IEEE International , pp.307-313, Feb 2000.
[36]C.-H. Lin, C.-K. Shieh, and W.-S. Hwang, “An Access Point-Based FEC Mechanism for Video Transmission Over Wireless LANs,” IEEE Transactions on Multimedia, vol. 15, no. 1, pp. 195-206, Jan. 2013.
[37]Cheng-Han Lin; Chih-Heng Ke; Ce-Kuen Shieh; Chilamkurti, N.K., "An Enhanced Adaptive FEC Mechanism for Video Delivery over Wireless Networks," in Networking and Services, 2006. ICNS '06. International conference on , vol., no., pp.106-106, 16-18 July 2006.
[38]Chih-Heng Ke, Naveen Chilamkurti, Gaurav Dudeja, Ce-Kuen Shieh, “A New Adaptive FEC Algorithm for Wireless LAN Networks”,  The IASTED International Conference on Networks and Communication Systems, 29-31 March 2006.
[39]Perkins, C.; Crowcroft, J., "Effects of interleaving on RTP header compression," in INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE , vol.1, no., pp.111-117 vol.1, 2000.
[40]Yu-Chin Wang, Hsiang-Fu Lo, Ya-Chun Li, Wei-Tsong Lee, “Seamless Handover with Buffer Prediction for Wireless Networks Based on IEEE 802.21”, ICOIN 2008, 23-25 Jan. 2008.
[41]Hsiang-Fu Lo, S. Guizani, Tin-Yu Wu, Wei-Tsong Lee, Hung-Wei Lin, “IEEE 802.21-based seamless multicast streaming with dynamic playback control,” Computer Communications, vol. 35, no. 2, pp. 179-187, Jan. 2012.
[42]Ok Sik Yang, Seong Gon Choi, Jun Kyun Choi, Jung Soo Park, Hyoung Jun Kim, “A handover framework for seamless service support between wired and wireless networks”, IEEE ICACT 2006, 20-22 Feb. 2006, pp. 1791-1796.
[43]Tauil, M.; Dutta, A.; Cheng, Y.-H.; Das, S.; Baker, D.; Yajnik, M.; Famolari, D.; Ohba, Y.; Fajardo, V.; Taniuchi, K.; Schulzrinne, Henning, "Realization of IEEE 802.21 services and preauthentication framework," in Testbeds and Research Infrastructures for the Development of Networks & Communities and Workshops, 2009. TridentCom 2009. 5th International Conference on , pp.1-10, 6-8 April 2009.
[44]Po-Chang Huang, Kuo-Chih Chu, Hsiang-Fu Lo, Wei-Tsong Lee, and Tin-Yu Wu, “A Novel Adaptive FEC and Interleaving Architecture for H.264/SVC Wireless Video Transmission,” in Fifth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, 2009. IIH-MSP  ’09, Sept., pp. 989-992.
[45]C. Xu, Z. Li, J. Li, H. Zhang, and G.-M. Muntean, “Cross-Layer Fairness-Driven Concurrent Multipath Video Delivery Over Heterogeneous Wireless Networks,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 25, no. 7, pp. 1175–1189, Jul. 2015.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信