淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1702200612271700
中文論文名稱 太陽能無人飛行載具機載電腦電力電源管理系統之實現
英文論文名稱 Implementation of Solar Power Management System for UAV On-Board Computer
校院名稱 淡江大學
系所名稱(中) 航空太空工程學系碩士班
系所名稱(英) Department of Aerospace Engineering
學年度 94
學期 1
出版年 95
研究生中文姓名 王政峰
研究生英文姓名 Geng-Feng Wang
電子信箱 692370843@s92.tku.edu.tw
學號 692370843
學位類別 碩士
語文別 英文
口試日期 2006-01-09
論文頁數 99頁
口試委員 指導教授-蕭照焜
委員-馬德明
委員-周明
委員-蕭照焜
中文關鍵字 電力管理  太陽能板  無人飛行載具  最大功率追蹤  鋰電池  充/放電管理 
英文關鍵字 power management system  photovoltaic panel  uninhabited aerial vehicle  maximum power point tracking  lithium battery module  charge/discharge management  power conversion 
學科別分類 學科別應用科學航空太空
中文摘要 本論文提出設計並實現太陽能無人飛行載具之電源管理系統,以提供機載電腦系統 (OBC) 之電力使用。此電源管理系統主要分為三級 : 第一級為最大功率追蹤(MPPT),其主要目地是用來收集太陽能,並且追蹤太陽能板隨著溫度與照度而改變的最大功率點,以得到最佳效率提供負載端之電源使用。第二級是電池管理 (BM),鋰高分子聚合物電池為充/放電管理之蓄電池,共分為二個電池模組,其一用來做電力轉換之電壓源,另一則不斷攫取從太陽能板經最大功率追蹤後之電力,並用來當備份電池。第三級為電力轉換 (PC),將電壓轉換為 +5V 與 ±12V 以提供系統及機載電腦之所需。
英文摘要 In this thesis, we designed and implemented a power management system for a solar powered UAV. The power management system will provide the power required for the on-board computers on UAV. The power management system mainly consists of three stages, the maximum power point tracking, the battery management, and the power conversion stages. The first stage (MPPT) attempts to obtain the maximum power available from the PV panels. The second stage, battery management, controls the charge and discharge processes of the Li-Ion polymer battery modules. The third stage is for power conversion which converts input voltage to +5V and ±12V for the OBCs and all other electronic circuitries.
論文目次 摘 要 i
Abstract ii
Acknowledgement iii
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 SYSTEM OVERVIEW 6
CHAPTER 3 MAXIMUM POWER POINT TRACKING 12
3.1 SOLAR CELL CHARACTERISTIC ANALYSIS 13
3.2 MPPT SYSTEM 19
3.3 DC/DC CONVERTER 21
3.4 MOSFET DRIVER 25
3.5 MPPT HARDWARE SCHEMATICS 30
3.6 CONTROL ALGORITHMS FOR MPPT 35
3.7 EFFICIENCY 40
CHAPTER 4 BATTERY MANAGEMENT 42
4.1 LITHIUM BATTERY MODULES 43
4.2 AUTO-RANGING POWER CONVERTER 48
4.3 CHARGE CONTROLLER 51
4.4 CHARGING ALGORITHM 57
CHAPTER 5 POWER CONVERSION 61
5.1 SYNCHRONOUS BUCK CONVERTER 61
5.2 SMALL SIGNAL ANALYSIS 65
5.2.1 Analysis for the Switch Closed and Open 67
5.2.2 State Equation for the Buck Converter 70
5.2.3 Pulse Width Modulation Transfer Function 75
5.3 CRITERION OF COMPENSATOR DESIGN 76
5.3.1 Loop Gain of System 78
5.3.2 Error Amplifier with Compensator 80
5.4 DESIGN OF THE POWER CONVERSION STAGE 85
5.4.1 PWM Control Circuits 85
5.4.2 +5V Circuit Design 86
5.4.3 +12V Circuit Design 90
5.4.4 -12V Power Conversion 94
CHAPTER 6 95
CONCLUSION 95
BIBLIOGRAPHY 97
List of Tables
Table 2.1 Electric Specification of Solar Module: Left Side Wing ...............................7
Table 2.2 Electric Specification of Solar Module: Right Side Wing .............................8
Table 2.3 Electric Specification of Solar Module: Fuselage..........................................8
Table 2.4 Specification of Li-Ion Polymer Battery......................................................10
Table 3.1 Specification of the Buck Converter in MPPT System................................24
Table 3.2 The Rule of Switching Transistor ................................................................26
Table 3.3 The Relation of Switch Transistors in MOSFET Driver .............................27
Table 4.1 Properties of Secondary Battery ..................................................................44
Table 4.2 Specification of Li-Ion Polymer Battery......................................................45
Table 4.3 State of Battery Monitoring .........................................................................58
Table 4.4 Four Types of LED Flash.............................................................................58
Table 5.1 Bill of Material: +5V....................................................................................86
Table 5.2 Bill of Material: +12V..................................................................................90
List of Figures
Figure 1.1 Gossamer Penguin ................................................................................... - 2 -
Figure 1.2 Helios....................................................................................................... - 3 -
Figure 1.3 SoLong .................................................................................................... - 3 -
Figure 1.4 Block Diagram of the Power Management System ................................ - 4 -
Figure 2.1 Configuration of the Power Subsystem for Solar UAV................................7
Figure 2.2 Solar Module Pictures ..................................................................................9
Figure 2.3 A Battery Pack ............................................................................................11
Figure 2.4 Two Battery Modules .................................................................................11
Figure 3.1 Block Diagram of the MPPT System .........................................................13
Figure 3.2 Equivalent Circuit of Solar Cell .................................................................13
Figure 3.3 The Diagram of
dI
dV
versus V When the Insolation is Varied from 0.2
to 1 kW/m2 and 25 C ° ......................................................................15
Figure 3.4 The Diagram of
dP
dV
versus V : When Insolation is..............................16
Figure 3.5 The Diagram of
dI
dV
versus V : When Temperature is Varied from
0 C ° to 100 C ° and 1 kW/m2............................................................16
Figure 3.6 The Diagram of
dP
dV
versus V : When Temperature is Varied from
0 C ° to 100 C ° and 1 kW/m2..........................................................17
Figure 3.7 Characteristic Curve of Solar Cell..............................................................18
Figure 3.8 V-I Characteristic of Solar Cell ..................................................................19
Figure 3.9 MPP Tracking Process................................................................................21
Figure 3.10 Thevenin’s Equivalent Circuit of Solar Cell ............................................21
Figure 3.11 Buck-Type DC/DC Converter ..................................................................22
Figure 3.12 Buck Converter Waveform: Continuous Conduction Mode ....................23
Figure 3.13 Driver Circuit for MOSFET: (a) Control with Pull-Up Resistor (b)
viii
Control with External Driver Circuit ...................................................26
Figure 3.14 The Phenomenon of MOSFET Driver (a) When Qout (Base) is High (b)
When Qout (Base) is Low....................................................................27
Figure 3.15 Rise of Gate Voltage Using Pull-Up Resistor...........................................28
Figure 3.16 Limiting the Gate-Source Voltage ............................................................29
Figure 3.17 The Driver Circuit for the Switching Transistor.......................................30
Figure 3.18 Complete Circuit Diagram of the First Stage (MPPT).............................31
Figure 3.19 Pin Diagram of PIC18F452 ......................................................................32
Figure 3.20 Hall Sensor Characteristic Curve .............................................................33
Figure 3.21 TL494 Block Diagram..............................................................................34
Figure 3.22 Pin Connections of TL494........................................................................35
Figure 3.23 MPPT Control System with the ICT Method...........................................37
Figure 3.24 Flowchart of the ICT Method...................................................................39
Figure 3.25 Flowchart of the MPPT Control ...............................................................40
Figure 4.1 Schematic of the Battery Management.......................................................43
Figure 4.2 Structure of the Lithium Battery Modules..................................................46
Figure 4.3 Charge/Discharge Voltage Profile of Lithium Battery...............................47
Figure 4.4 Effect of Temperature on Li-Ion Voltage...................................................47
Figure 4.5 Waveform of Constant-Current Constant-Voltage Charging......................48
Figure 4.6 Charge Regulator........................................................................................50
Figure 4.7 Auto-Ranging Power Converter .................................................................51
Figure 4.8 Schematic of VCF Block............................................................................53
Figure 4.9 Battery Senses Voltage: Pack1 ...................................................................54
Figure 4.10 PIC 18F4515 and Capacitor Monitor Circuit ...........................................55
Figure 4.11 The Control Circuit of Charge Current.....................................................56
Figure 4.12 Flowchart of Charging Algorithm ............................................................60
Figure 5.1 Synchronous Buck Power Stage Schematic ...............................................62
Figure 5.2 Power Supply Control Loop Components..................................................62
Figure 5.3 Simplified Diagram for Synchronous Buck Converter ..............................63
Figure 5.4 Inductor Current Boundary in Continuous Mode.......................................65
Figure 5.5 Buck Converter Equivalent Circuit (a) Switch Closed...............................68
Figure 5.6 Circuit for Developing the State Equation for the Buck Converter (a)
Switch Closed (b) Switch Open...........................................................71
Figure 5.7 Principle of Pulse Width Modulation .........................................................75
Figure 5.8 The Control Diagram of the Synchronous Buck Converter .......................78
Figure 5.9 Bode Plot of Desired Loop Gain Function.................................................79
ix
Figure 5.10 PI Compensator ........................................................................................80
Figure 5.11 Bode Plot of the Buck Converter: Power Stage, Desired Loop Gain and PI
Compensator ........................................................................................81
Figure 5.12 PID Compensator .....................................................................................82
Figure 5.13 Bode Plot of the Buck Converter: Power Stage, Desired Loop Gain and
PID Compensator.................................................................................83
Figure 5.14 Function Diagram of TL5001...................................................................85
Figure 5.15 +5V Uncompensated Open Loop Response.............................................88
Figure 5.16 +5V Compensated Open Loop Response.................................................89
Figure 5.17 +5V Uncompensated and Compensated Open Loop Response ...............89
Figure 5.18 +5V Synchronous Buck Converter...........................................................90
Figure 5.19 +12V Uncompensated Open-Loop Response ..........................................92
Figure 5.20 +12V Compensated Open-Loop Response ..............................................93
Figure 5.21 +12V Compensated and Uncompensated Open-Loop Response.............93
Figure 5.22 +12V Synchronous Buck Converter.........................................................94
Figure 5.23 ICL 7600...................................................................................................94
參考文獻 [1] Duarte JL, Wijntjens JAA, Rozenboom J. Designing light sources for solar-powered systems. In Proc. 5th European conf. Power Electronics and Application, vol. 8, 1993. p. 78–82.

[2] Hermann U, Langer HG. Low-cost DC to AC converter for
photovoltaic power conversion in residential applications. Proc. IEEE PESC’93, June 1993. p. 588–94.

[3] Tsai-Fu W, Chien-Hsuan C, Yu-Kai C. A fuzzy-logic-controlled single-stage converter for PV-powered lighting system applications. IEEE Transactions on Industrial Electronics 2000; 47(2):287–96.

[4] Bose BK, Szczesny PM, Steigerward RL. Microcomputer control of a residential photovoltaic-power conditioningsystem. IEEE Trans Ind Applicat 1985; IA-20:1182–91.

[5] Bhuiyan MMH, Asgar MA. Sizing of a stand-alone photovoltaic power system at Dhaka. Renewable Energy 2003; 28:929–38.

[6]http://www.dfrc.nasa.gov/Gallery/Photo/Albatross/HTML/ECN-1341.html

[7] http://www.dfrc.nasa.gov/Gallery/Photo/Helios/Small/index.html

[8] http://www.acpropulsion.com

[9] 宮志華,“太陽能無人飛行載具機載電腦電力電源管理系統設計”,淡江大學航空太空工程學系碩士班,民國93年。

[10] Agrawal JP. Power electronic systems, theory and design. USA: Prentice Hall; 2001.

[11] Nobuyuki Kasa, Takahiko Iida, and Liang Chen, “Flyback inverter controlled by sensorless current MPPT for photovoltaic power system” IEEE Transations on industrial electronics, vol. 52, no. 4, August 2005

[12] Z. Salameh and D. Taylor, “Step-up maximum power point tracker for photovoltaic arrays,” Sol. Energy Proc., vol. 44, no. 1, pp. 57–61, 1990.

[13] D. B. Snyman and J. H. R. Enslin, “Analysis and experimental
evaluation of a new MPPT converter topology for PV installations,” in Conf. Rec. IEEE Power Electronics Specialists Conf., 1992, pp. 542–547.

[14] J. H. R. Enslin and D. B. Snyman, “Simplified feed-forward control
of the maximum power point in PV installations,” in Conf. Rec.
IEEE Industrial Electronics Conf., 1992, pp. 542–547.
[15] U. Herrmann, H. G. Langer, and H. Broeck, “Low cost DC to AC
converter for photovoltaic power conversion in residential
applications,”in Conf. Rec. IEEE Power Electronics Specialists
Conf., 1993, pp.
[16] V. Arcidiacono, S. Corsi, and L. Lambri, “Maximum power point
tracker for photovoltaic power plants,” in Conf. Rec. IEEE
Photovoltaic Specialists Conf., 1982, pp. 507–512.
[17] C. Y. Won, D. H. Kim, S. C. Kim, W. S. Kim, and H. S. Kim, “A
new maximum power point tracker of photovoltaic arrays using
fuzzy controller,” in Conf. Rec. IEEE Power Electronics Specialists
Conf.,1994, pp. 396–403.
[18] V.Salas et al. “Analysis of Control Strategies for Solar Regulators”
in Proceedings of the IEEE International Symposium on Industrial
Electronics,ISIE 2002,pages 936-941,L’Aquila,Italy,2002.
[19] B. K. Bose, P. M. Szczesny, and R. L. Steigerwald, “Microcomputer
control of a residential photovoltaic power conditioning system,” IEEE
[20] “Maximum power point tracking with capacitor identifier for
photovoltaic power system,” Proc. IEE—Electr. Power Appl., vol.
147, no.6, pp. 497–502, 2000.
[21] Tetsuya Osaka ,Madhav Datta “Energy Storage Systems for
Electronics”,2000
[22] “ Specification for Lithium ion polymer rechargeable battery-Model
H6849D5 ”,High Energy Battery Company,Ltd
[23] User’s Guide: Designing Low-cost Buck Regulators Using
The TL5001A
[24] Data sheet TPS2812: SLVS132C
[25] Applications report “Designing with the TL5001 PWM Controller”
A034A
[26] Datasheet: ICL7600
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2006-02-27公開。
  • 同意授權瀏覽/列印電子全文服務,於2006-02-27起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信