淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-1701202014124900
中文論文名稱 混摻碳酸乙烯酯和聚乙二醇複合材料之結構與性質研究
英文論文名稱 Studies on the structures and properties of composites of ethylene carbonate and poly (ethylene glycol)
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 108
學期 1
出版年 109
研究生中文姓名 徐瑩錚
研究生英文姓名 YING CHENG HSU
學號 606400140
學位類別 碩士
語文別 中文
口試日期 2020-01-09
論文頁數 103頁
口試委員 指導教授-賴偉淇
委員-童世煌
委員-楊大毅
中文關鍵字 聚乙二醇  有機膠  1,3:2,4-二苯亞甲基山梨醇  流變性質 
英文關鍵字 Polyethylene glycol  organic gel  1,3: 2,4-diphenylmethylene sorbitol  rheological properties 
學科別分類
中文摘要 本研究以低分子量聚乙二醇(Poly(ethylene glycol),PEG)與碳酸乙烯酯(Ethylene Carbonate,EC)不同重量比例進行摻合形成一複合材料,再摻入不同含量1,3;2,4-二苯亞甲基山梨醇(1,3;2,4-Dibenzylidene sorbitol,DBS)作為膠化劑混摻加熱熔融後,其結構與性質變化,之後再過氯酸鋰(Lithium perchlorate,LiClO4)使摻合後可得新型態高分子複合電解液,藉由材料膠態性質期盼進而改善電解液封裝不易性質,而對複合電解液進行分析。由流變儀(Rheometer)分析結果得知材料凝膠熔解溫度(Td)會隨EC含量增加而下降,且其也會隨DBS含量增加而上升。由偏光顯微鏡(Polarized Optical Microscopy,POM)觀察可得知,材料凝膠熔解溫度(Td)會隨EC含量增加而下降,且其也會隨DBS含量增加而上升,此數據與流變儀的凝膠熔解溫度的分析結果相符合;成膠溫度(Tf)會隨EC含量增加而上升,且其也會隨DBS含量增加而上升。再來利用穿透式電子顯微鏡(TEM)觀察得知,纖維結構的寬度約在25-50nm間。由電化學阻抗圖譜(Electrochemical impedance spectroscopy,EIS)觀察可得知,導電度分析結果得到在LiClO4添加量為15/1時為最佳比例,反應範圍穩定性相對純PEG電解液穩定,導電度會隨EC含量增加而上升,且其也會隨DBS含量增加而上升,在DBS添入後亦增加化學穩定性,使電解液反應範圍較寬廣。而在形成膠態電解液後,其封裝安全性、機械性質與穩定性對其在電池組裝相關應用有更加良好之應用性。
英文摘要 In this study, low molecular weight Poly (ethylene glycol), (PEG) and Ethylene Carbonate (EC) were used to form a complex of on, and then on into different content 1,3;2,4-Dibenzylidene Sorbitol (DBS). As a gel mixture of on and heat melt, its structure and sexual change, and then Lithium Perchlorate (LiClO4) so that the one can be combined with a new type of polymer complex electrical solution, By looking forward to the material glue, we can improve the difficult quality of the electrical solution, and analyze the complex electrolyte. From the analysis of the flow change instrument (Rheometer), it is found that the melt temperature (Td) of the material gel decreases with the increase of EC content, and it also increases with the increase of DBS content. It can be found from the polarized microscopic mirror (Polarized Optical Microscopy,POM) that the melt temperature (Td) of the material gel decreases with the increase of EC content, and it also increases with the increase of DBS content, which is consistent with the analysis of the temperature of the gel melting degree of the flow change instrument. The glue temperature (Tf) increases with the increase of EC content, and it also increases with the increase of DBS content. Then use the penetrating electrons to observe the mirror (TEM) to find that the fiber of the structure is about 25-50nm. From the recipe of the electrical impedance map (Electrochemical Impedance Spectroscopy, EIS), it can be found that the results of the performance analysis are the best proportion when the LiClO4 is added at 15/1, and the resistance is stable and the purity of the pure PEG solution, The degree of guidance increases with the increase of EC content, and it will also rise with the increase of DBS content, and after the addition of DBS, it will increase the stability of the chemistry, so that the reaction range of the electrolyte is more broadly broad. After the formation of the glue electrolyte, its sealing safety, mechanical quality and stability of the relationship between the use of the battery is more good to use.
論文目次 目錄
中文摘要 I
英文摘要 III
目錄 V
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1.1. 前言 1
1.2. 研究目的 3
第二章 理論基礎 4
2.1 流變學概念 4
2.2 黏彈模型 5
2.2.1 剪切黏度 7
2.2.2 動態流變性質 9
2.2.3 有機膠 10
2.2.4 交流阻抗分析儀 (Electrochemical Impedance Spectroscopy,
EIS) 13
第三章 文獻回顧 16
3.1. 鋰離子電池與電解液 16
3.2. 小分子有機膠 17
3.3. DBS膠化劑 20
3.4. DBS有機膠 24
3.5. 碳酸乙烯酯(EC) 29
3.6. 有機高分子電解質 30
3.6.1. 膠態電解質 32
3.7. EIS導電度分析 40
3.8. 電池組裝 40
3.9. 固態電解質界面層(solid/electrolyte interface, SEI) 41
第四章 實驗 46
4.1. 實驗藥品 46
4.2. 膠態複合材料製備 49
4.3. 膠態電解質製備 50
4.4. 電解質電性測試元件製備 52
4.5. 特性分析 52
4.6. 實驗樣品製備 54
4.6.1. 流變儀(Rheometer) 54
4.6.1.1. 振幅掃描(amplitude sweep) 55
4.6.1.2. 頻率掃描(frequency sweep) 55
4.6.1.3. 凝膠熔解溫度Td(dissolution temperature) 55
4.6.2. 偏光顯微鏡POM 56
4.6.3. 傅式紅外線光譜儀FTIR 56
4.6.4. 穿透式電子顯微鏡TEM 56
4.6.5. 交流阻抗分析儀分析 (Electrochemical Impedance Spectroscopy,
EIS) 57
4.6.6.1. 線性掃描伏安分析(Linear sweep voltammetry) 57
4.6.6.2. 循環伏安樣品製備 58
4.6.6.3. 循環伏安掃描分析(Cyclic voltammetry) 59
第五章 結果與討論 60
5.1. 相態性質分析 60
5.1.1. PEG400/DBS/EC膠態複合材料的分子間作用力 63
5.1.2. PEG400/DBS/EC膠態複合材料的苯環交互作用 67
5.2. PEG400/DBS/EC膠態複合材料的結構與型態學影響 69
5.2.1. 球晶結構 70
5.2.2. 纖維結構 74
5.3. PEG400/DBS/EC膠態複合材料的流變性質影響 75
5.3.1. 振幅掃描 75
5.3.2. 頻率掃描 79
5.3.3. 熔解溫度 Td (gel dissolution temperature) 81
5.4. 膠態電解質 85
5.4.1. 添加不同含量LiClO4的PEG400/DBS/EC 85
5.4.1.1. 導電度(Conductivity) 85
5.4.1.2. 線性掃描伏安分析(Linear sweep voltammetry) 88
5.4.1.3. 循環伏安掃描分析(Cyclic voltammetry) 91
第六章 結論 93
第七章 參考文獻 95

圖目錄
圖一 彈性模式 5
圖二 黏性模式 6
圖三 Maxwell模式 6
圖四 Voigt-Kelvin模式 7
圖五 交流阻抗圖譜(Nyquist diagram)[11][12] 15
圖六 鋰離子電池工作示意圖[15] 17
圖七 (a)固態纖維(b)流體纖維[16] 18
圖八 (a)純DBS球晶[18](b) 5%DBS-PEG 400球晶[17] 19
圖九 DBS結構式 21
圖十 分子內氫鍵圖 21
圖十一 分子間氫鍵圖[24] 22
圖十二 DBS碳位標示圖[27] 23
圖十三 DBS在不同末端基PEG中成膠時間與溫度[24] 24
圖十四 不同濃度2wt%(▲) ,3wt%(△),5wt%(○)DBS/PEG Td流變圖[24] 25
圖十五 相同濃度DBS與不同末端基 3%DBS/PEG (△),PEGme,(□) 26
圖十六 純DBS場發掃描式電子顯微鏡圖[28] 27
圖十七 2wt% DBS/PPG (a)25℃(b)83℃(c)105℃(d)130℃[28] 27
圖十八 DBS堆疊式意圖[29] 28
圖十九 EC結構式 30
圖二十 電池熱力學穩定狀態下電極與電解液相對的電子能量圖[42] 31
圖二十一 膠態電解液成膠示意圖[43] 33
圖二十二 高分子單體聚合形成膠態電解質[13] 33
圖二十三 不同末端基的寡聚物結構圖[55] 37
圖二十四 FS與MDBS形成交聯網絡示意圖[59] 39
圖二十五 電池組合圖 41
圖二十六 鈷酸鋰(LiCoO2)之晶體結構[64] 44
圖二十七 磷酸鐵鋰(LiFePO4)之晶體結構[69] 45
圖二十八 固態電解質界面層(solid/electrolyte interface, SEI)形成狀況示意圖[67] 45
圖二十九膠態複合材料實驗流程圖 49
圖三十膠態電解質實驗流程圖 51
圖三十一 交流阻抗樣品示意圖 52
圖三十二 電池組合圖 58
圖三十三 3wt%DBS,PEG/EC比例為100/0、90/10、70/30時成膠時的狀態 61
圖三十四 3wt%DBS,PEG400/EC比例為30/70、10/90時相分離的現象 61
圖三十五 PEG/EC比例為50/50,0.2wt%、0.5wt%、0.7wt% DBS時的狀態 62
圖三十六 PEG/EC比例為50/50,1wt%、1.5wt%、2wt%、2.5wt%、3wt%DBS時的狀態 62
圖三十七 PEG/EC比例為50/50,4wt%、5wt%、6wt% DBS時的狀態 63
圖三十八 neat DBS、pure PEG400 FTIR圖 66
圖三十九 6wt% DBS 不同比例之PEG/EC FTIR圖 66
圖四十 苯環錯位示意圖[29] 67
圖四十一 苯環平行位移圖[29] 68
圖四十二 6wt% DBS (a)純PEG,(b)PEG/EC:90/10 POM升降溫圖 72
圖四十三 6wt% DBS (c)PEG/EC:70/30,(d)PEG/EC:50/50 POM升降溫圖 73
圖四十四4wt% DBS(a)純PEG, (b)PEG/EC:90/10, (c)PEG/EC:70/30, (d)PEG/EC:50/50 (scale : 0.2um) 74
圖四十五 6wt% DBS (e)純PEG,(f)PEG/EC:90/10, (g)PEG/EC:70/30,(h)PEG/EC:50/50(scale : 0.2um) 75
圖四十六 4wt% DBS加不同含量PEG/EC之振幅掃描 77
圖四十七 5wt% DBS加不同含量PEG/EC之振幅掃描 78
圖四十八 6wt% DBS加不同含量PEG/EC之振幅掃描 78
圖四十九 4wt% DBS加不同含量PEG/EC之頻率掃描 80
圖五十 5wt% DBS加不同含量PEG/EC之頻率掃描 80
圖五十一 6wt% DBS加不同含量PEG/EC之頻率掃描 81
圖五十二 純PEG加不同DBS含量之凝膠熔解溫度 83
圖五十三 PEG/EC:90/10加不同DBS含量之凝膠熔解溫度 83
圖五十四 PEG/EC 70/30 加不同DBS含量之凝膠熔解溫度 84
圖五十五 PEG/EC 50/50 加不同DBS含量之凝膠熔解溫度 84
圖五十六 PEG/ LiClO4:15/1,4wt%、5wt%和6wt%DBS不同比例之PEG/EC(100/0、90/10、70/30、50/50)之導電度 87
圖五十七 4wt%DBS/(PEG/EC:50/50)不同比例之LiClO4之導電度 88
圖五十八 4wt% DBS添加不同重量比例PEG/EC之線性掃描圖 89
圖五十九 5wt% DBS添加不同重量比例PEG/EC之線性掃描圖 90
圖六十 6wt% DBS添加不同重量比例PEG/EC之線性掃描圖 90
圖六十一 6wt% DBS添加PEG/EC(100/0)之循環伏安圖 92
圖六十二 6wt% DBS添加PEG/EC(50/50)之循環伏安圖 92

表目錄
表1 膠態複合材料實驗比例表 50
表2 膠態電解質實驗比例表 51
表3 DBS和PEG特性吸收峰 65
參考文獻 [1]陳劉旺、丁金超,高分子加工,高粒圖書有限公司,2003.
[2]J. F.Steffe, (1996). Rheological methods in food process engineering. Freeman press.
[3]W.R. Schowalter,(1978). Mechanics of non-Newtonian fluids (pp. 144-147).Oxford: Pergamon press.
[4]H. Cao, K. Yu , K. Qian ,X. Sha ,Y. Chen, 'Shear-Thickening Behavior ofModified Silica Nanoparticles in Polyethylene Glycol', J. Nanopart. Res,14(2012), 1–9.
[5]S.R.Raghavan, S.A.Khan,Shear-thickening response of fumed silicasuspensions under steady and oscillatory shear. J. Colloid InterfaceSci,185(1), (1997)57-67.
[6]C. W. Macosko, Rheology: Principles, Measurements and Application,VCH, (1994).
[7]J. C. Leroux , A. Vintiloiu, 'Organogels and Their Use in DrugDelivery — aReview', Journal of Controlled Release, 15(2008), 179–192.
[8]R. J.Hunter, L. R.White, (1992). Foundations of Colloid Science, Vol. 1Oxford University Press. New York.
[9]R. Stan ,S. RoŞca, C. Ott, S. RoŞca, E. Perez,I. R. Lattes and A. Lattes,'D-Sorbitol Based Organogelators with Nitrogen Groups', RevueRoumainede Chimie, 51(2006), 609–613.
[10]呂世源、魏得育,科學發展2006年6月,402期, p.60 – 65.
[11]H.H. Yang, C. D. Han , J. K. Kim, Polymer, 1994, 35,1503-1511.
[12]H.Yoshida, H. Sasaki, P. K. Bala, E. Ito, Polymer, 1995, 36, 4805-4810.
[13]K. Xu, Chem.Electrolytes and interphases in Li-ion batteries and beyond. Rev.114, 11503(2014).
[14]范仁瑋, '利用聚乙二醇高分子製備新型相轉移材料與電解質', 淡江大學化學工程與材料工程學系碩士論文(2018).
[15]科路得,關於鋰離子電池你不知道的事,2016年6月6日
[16]R. G. Weiss,P. Terech, 'Low Molecular Mass Gelators of Organic Liquidsand the Properties of Their Gels', Chemical Review, 97(1997), 3133–3159.
[17]賴柏翔, '以AOT 逆微胞系統製備有機凝膠及二氧化鈦奈米粒子之結構與性質研究', 淡江大學化學工程與材料工程研究所碩士論文(2010).
[18]陳建助, '利用加入膠化劑製備聚乙二醇膠態電解質及應用於染料敏化電池', 淡江大學化學工程與材料工程學系碩士論文(2011).
[19]S. Shinkai, O. Gronwald, 'Sugar-Integrated Gelators of Organic Solvents',Chemistry 7(2001), 4328–4334.
[20]R. J. Spontak ,D. J. Mercurio,'Morphological Characteristics of1,3:2,4-DibenzylideneSorbitol/Poly(Propylene Glycol) Organogels' , Journal of Physical Chemistry B , 105(2001), 2091–2098.
[21]H. Tsutsumi ,S.Yamasaki, 'The Thermal Behavior of 1,3:2,4-Di-O-Benzylidene-D-Sorbitol/ Ethylene Glycol Gel', Bulletin ofthe Chemical Society of Japan , 69(1996), 561–564.
[22]Y. Nakatani, M.Watase, H. Itagaki, 'On the Origin of the Formation andStability of Physical Gels of Di-O-Benzylidene-D-Sorbitol',JournalofPhysical Chemistry B , 103 (1999), 2366–2373.
[23]M. Shuster , J. Lipp, A. E. Terry, Y. Cohen, 'Fibril Formation of1,3:2,4-Di(3,4-Dimethylbenzylidene) Sorbitol in a Polypropylene Melt',Langmuir , 22(2006), 6398–6402.
[24]C. K. Hall, E. A. Wilder, S. A. Khan,R. J. Spontak , 'Effects of Composition and Matrix Polarity on Network Development in Organogels of Poly(Ethylene Glycol) and DibenzylideneSorbitol',Langmuir , 19(2003), 6004–6013.
[25]H. Tsutsumi ,S.Yamasaki , 'Microscopic Studies of1,3:2,4-Di-O-Benzylidene-D-Sorbitol in Ethylene Glycol', Bulletin of theChemical Society of Japan 67(1994), 906–911.
[26]H. Tsutsumi ,S. Yamasaki , 'The Dependence of the Polarity of Solvents on1,3:2,4-Di-O-Benzylidene-D-Sorbitol Gel', Bulletin of the ChemicalSociety of Japan 68(1995), 123–127.
[27]Y. Ohashi, S.Yamasaki , H. Tsutsumi, K. Tsujii, 'The Aggregate High-Structure of 1,3:2,4-Di-O-Benzylidene-D-Sorbitol in Organic Gels', Bulletin of the Chemical Society of Japan, 68(1995), 146–151.
[28]C.H.Wu,W. C. Lai, 'Studies on the Self-Assembly of Neat DBS andDBS/PPG Organogels', 'Effect of Hydrophobicity of Monomers on theStructures and Properties of 1,3:2,4-Dibenzylidene-D-Sorbitol Organogelsand Polymers Prepared by Templating the Gels', Journal of AppliedPolymer Science, 115 (2009), 1113–1119.
[29]李易晉, '二苯亞甲基山梨醇與醇系統有機膠之結構與性質研究', 淡江大學化學工程與材料工程學系碩士論文(2013).
[30]Zhang, H. L.; Sun, C. H.; Li, F.; Liu, C.; Tan, J. H.; Cheng, M. J.Phys. Chem. C 2007, 111, 4740.
[31]Xing, L. D.; Wang, C. Y.; Xu, M. Q.; Li, W. S.; Cai, Z. P. J.Power Sources 2009, 189, 689.
[32]L. Xing, W. Li, C. Wang, F.Gu, M. Xu, C. Tan, Jin Yi 'Theoretical Investigations on Oxidative Stability of Solvents and Oxidative DecompositionMechanism of Ethylene Carbonate for Lithium Ion Battery Use'J. Phys. Chem. B 2009, 113, 16596–16602.
[33]Matsuta, S.; Kato, Y.; Ota, T.; Kurokawa, H.; Yoshimura, S.;Fujitani, S. J. Electrochem. Soc. 2001, 148, A7.
[34]Ufheil, J.; Wursig, A.; Schneider, O. D.; Novak, P. Electrochem.Commun. 2005, 7, 1380.
[35]Arakawa, M.; Yamaki, J. J. Power Sources 1995, 54, 250.
[36]Moshkovich, M.; Cojocaru, M.; Gottlieb, H. E.; Aurbach, D. J.Electroanal. Chem. 2001, 497, 84.
[37]Zhang, X. R.; Pugh, J. K.; Ross, P. N. J. Electrochem. Soc. 2001,148, E183.
[38]Xu, K.; Angell, C. A. J. Electrochem. Soc. 1998, 145, L70.
[39]Xu, K.; Ding, S.; Jow, T. R. J. Electrochem. Soc. 1999, 146, 4172.
[40]Xing, L. D.; Wang, C. Y.; Li, W. S.; Xu, M. Q.; Meng, X. L.;Zhao, S. F. J. Phy. Chem. B 2009, 113, 5181.
[41]Tobishima, S. I.; Yamaji, A. Electrochim. Ethylene carbonate—propylene carbonate mixedelectrolytes for lithium batteries Acta 1984, 29, 267.
[42]工業材料雜誌 375 期,高能量固態電池與材料 2018.
[43]Li. L. Wang, B. Kang, P. Wang. Y. Qiu. Review of recent progress in solid- state dye-sensitized solar cells Solar Energy Materials & Solar Cells, 90(2006), 549-573.
[44]J M Tarascon, A S Gozdz, C Schmutz, F Shokoohi, P C Warren Performance of Bellcore's plastic rechargeable Li-ion batteries.Solid State Ionics 86 ± 88 49 (1996).
[45]W. Kubo, T. Kitamura, K. Hanabusa, Y. Wadaa, S. Yanagida, ChemicalCommunications, (2002) , 374–375 .
[46]A. F. Nogueira, C. Longo, M. A. De Paoli, Coordination ChemistryReviews, 248(2004), 1455–1468.
[47]Y. Wang, Solar Energy Materials & Solar Cells, 93(2009), 1167–1175.
[48]M Kucharski, T Lukaszewicz, P MrozekOpto-Electron. Rev. 12 (2) 175 (2004).
[49]S SSekhon, M Deepa, S AAgnihotry Solid State Ionics 1367137 1189 (2000).
[50]M Deepa, N Sharma, S AAgnihotry, S Singh, T Lal, R Chandra Solid State Ionics 152 253 (2002).
[51]S SSekhon Bull. Mater. Sci. 26 321 (2003).
[52]B Singha, R Kumar, S SSekhon Solid State Ionics 176 1577 (2005).
[53]Kenji Hanabusa, Kaori Hiratsuka, Mutsumi Kimura, Easy Preparation and Useful Character of Organogel Electrolytes Based on Low Molecular Weight Gelator. Chem. Mater. 1999, 11, 649-655.
[54]MengYa-Bin, Yang Ya-Jiang. Study on the Conductivity of Molecular Gel Electrolytes. Acta Chemical Sinica2004, 16, 1509-1513.
[55]M. S. Kang, Y. J. Kim, J. Wonb, Y. S. Kang, Chemical Communications,10(2005),1039.
[56]J. Xia, F. Li, C. Huang, Solar Energy Materials & Solar Cells, 90(2006),944–952.
[57]J. Wu, S. Hao, Z. Lan, J. Lin, Advanced Functional Materials, 10(2006), 1002.
[58]P.J. Li, J.H. Wu, M.L. Huang, ElectrochimicaActa, 53(2007), 903–908.
[59]V. R. Basrur, J. Guo, C. Wang and S. R. Raghavan. Synergistic Gelation of Silica Nanoparticles and a Sorbitol-Based Molecular Gelator to Yield Highly-Conductive Free-Standing Gel Electrolytes. ACS Appl.Mater. Interfaces ,5(2013), 262-267.
[60]黃柏勛, '混摻二氧化矽和二苯甲基山梨醇/聚乙二醇有機膠複合材料的結構欲性質研究', 淡江大學化學工程與材料工程學系碩士論文(2015).
[61]Geder, J.; Hoster, H. E.; Jossen, A.; Garche, J.; Denis, Y. W. Y. J. Power Sources 2014, 257, 286.
[62]Lee, S.-B.; Pyun, S.-I. Carbon 2002, 40, 2333.
[63]Y. Wang, G. Cao, Adv. Mater. 20 (2008) 2251.
[64]M. S. Whittingham, Chem. Rev. 104 (2004) 4271.
[65]B. Peng, J. Chen, Coord. Chem. Rev. 253 (2009) 2805.
[66]O. K. Park, Y. Cho, S. Lee, H. C. Yoo, H. K. Song, J. Cho, Energy Environ. Sci. 4 (2011) 1621.
[67]R. Yazami, Electrochim. Acta 45 (1999) 1702.
[68]J. B. Goodenough, Y. Kim, J. Power Sources 196 (2011) 6688.
[69]J.M. Tarascon, M. Armand, Nature 414 (2001) 359.
[70]K. S. Park, S. B. Schougaard, J. B. Goodenough, Adv. Mater. 19 (2007) 848.
[71]B. Kang, G. Ceder, Nature 458 (2009) 190.
[72]N. S. Ergang, J. C. Lytle, K. T. Lee, S. M. Oh, W. H. Smyrl, A. Stein, Adv. Mater. 18 (2006) 1750.
[73]F. Jiao, P. T. Bruce, Adv. Mater. 19 (2007) 657.
[74]T. W. Kim, D. H. Park, S. T. Lim, S. J. Hwang, B. K. Min, J. H. Choy, Small 4 (2008) 507.
[75]P. Kubiak, J. Geserick, J. Husing, M. Wohlfahrt-Mehrens, J. Power Sources 175 (2008) 510.
[76]P. Reale, S. Panero, B. Scrosati, J. Garche, M. Wohlfahrt-Meherens, M. Wachtler, J. Electrochem. Soc. 151 (2004) 12.
[77]A. M. Wilson, J. R. Dahn, J. Electrochem. Soc. 142 (1995) 326.
[78]S. H. Ng. J. Z. Wang, D. Wexler, K. Konstantinov, Z. P Guo, H. K. Liu, Angew, Chem. Int. Ed. 45 (2006) 6896.
[79]J. Hassoun, S. Panero, P. Simon, P. L. Taberna, B. Scrosati, Adv. Mater. 19 (2007) 1632.
[80]Y. Oumellal, A. Rougier, G. A. Nazri, J. M. Tarascon, L. Aymard, Nat. Mater. 7 (2008) 916.
[81]Sang-Cheol Han, Ki-Won Kim, Hyo-Jun Ahn. C harge–discharge mechanism of mechanically alloyed NiS used as a cathode in rechargeable lithium batteries. Journal of Alloys and Compounds 361 (2003) 247–251.
[82]M. O. Sinnokrot , A. L. Ringer, R. P. Lively, andC . D. Sherrill, 'The Effect of Multiple Substituents on Sandwich and T-Shaped π-π Interactions', Chemistry - A European Journal, 12 (2006), 3821–3828.
[83]M. O. Sinnokrot , E. F. Valeev , and C. D. Sherrill , 'Estimates of the Ab Initio Limit for π-π Interactions: The Benzene Dimer', Journal of American Chemical Society, 36 (2002), 10887–10893.
[84]C. Janiak, Journal of the Chemical Society, 'A Critical Account on π-π Stacking in Metal Complexes with Aromatic Nitrogen-Containing Ligands', Dalton Transactions, 21(2000), 3885–3896.
[85]K. Domoto , H. Yao, T. Isohashi, and K. Kimura , 'In Situ Detection of Birefringent Mesoscopic H and J Aggregates of Thiacarbocyanine Dye in Solution', Langmuir, 21 (2005), 1067–1073.
[86]B. Maigret , C. Chipot, R. Jaffe, D. A. Pearlman, and P. A. Kollman, 'Benzene Dimer: A Good Model for Π-Π Interactions in Proteins? A Comparison between the Benzene and the Toluene Dimers in the Gas Phase and in an Aqueous Solution', Journal of American Chemical Society, 118 (1996), 11217–11224.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2025-03-02公開。
  • 同意授權瀏覽/列印電子全文服務,於2025-03-02起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信