§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1701201413360700
DOI 10.6846/TKU.2014.00595
論文名稱(中文) 以非恆溫浸漬沉澱法製備多孔型高分子薄膜
論文名稱(英文) Preparation of porous polymer membranes via non-isothermal immersion precipitation method
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 102
學期 1
出版年 103
研究生(中文) 吳昱璇
研究生(英文) Yu-Hsuan Wu
學號 699400304
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2013-12-27
論文頁數 106頁
口試委員 指導教授 - 鄭廖平
委員 - 李亦淇
委員 - 張旭賢
關鍵字(中) 聚乙烯乙烯醇
冷溶劑誘導相分離法
非溶劑誘導相分離法
驟冷深度
聚偏二氟乙烯
循環使用槽
製膜液厚度
多孔膜
關鍵字(英) EVOH
cold-solvent induced phase separation(CIPS)
non-isothermal immersion precipitation method
quench depth
spinodal decomposition
poly(vinylidene fluoride)
reusable bath
casting thickness
porous membrane
第三語言關鍵字
學科別分類
中文摘要
本研究首先利用冷溶劑誘導相分離法,由聚乙烯乙烯醇/1,3-丙二醇兩成分系統製備多孔型聚乙烯乙烯醇薄膜,並藉由改變沉澱槽之溫度及刮刀之厚度,探討此二參數對薄膜結構與物性的影響。當沉澱槽溫度落在結晶線之下及液-液分相線之上時(45℃),薄膜呈現微粒狀結晶結構,而落在spinodal分相曲線內部時(25℃),則呈現雙連續網狀結構且有些許微粒結晶之特徵,當更深入spinodal區域時(5℃&-20℃),則呈現單純雙連續網絡結構。以不同厚度刮刀塗佈製膜液並浸漬於5℃沉澱槽時,其薄膜結構皆呈現典型之spinodal decomposition所產生之雙連續網絡結構。而各項分析結果皆指出,水通量、水滲透時間與機械強度的測量結果和薄膜的型態、孔隙度和孔徑大小有關,此外,藉由XRD和DSC等儀器分析,測得薄膜結晶度大約在38~42%左右,並由DSC的測量得知薄膜的熔點為~184℃。本研究接著選用聚偏二氟乙烯/磷酸三乙酯(TEP)/純水三成分系統,結合了非溶劑誘導相分離法及熱誘導式相分離法兩種製膜法之特點,在相圖上找到一個特殊的製膜液組成,使得製膜液內溶劑/非溶劑以及沉澱槽溶劑/非溶劑之比例相同,成為循環使用槽(reusable bath),並利用其製備聚偏二氟乙烯多孔型高分子薄膜。藉由改變沉澱槽之成份以及刮刀之厚度,製作出一系列不同孔隙結構之薄膜,探討其物性及其過濾之效率。以reusable沉澱槽所製備之薄膜無皮層的產生,而以純水、30wt% TEP及60wt% TEP之沉澱槽所製備之薄膜皆有皮層生成,隨著沉澱槽TEP濃度的提升,皮層呈現越來越薄之趨勢。而皮層的厚度影響薄膜之孔隙度與機械強度,皮層越薄,孔隙度隨之提升,使得機械強度減弱。當以不同厚度刮刀塗佈製膜液並浸漬於reusable沉澱槽時,我們可從FE-SEM影像圖發現,隨著刮刀厚度越薄,其薄膜結構越趨向於蕾絲結構之型態。此外,藉由DSC的測量得知薄膜的熔點為~159℃,並由XRD的分析得知薄膜結晶度大約在63~64%左右。由水通量與過濾實驗得知,以reusable沉澱槽所製備之薄膜具有相當高的通量和良好之阻隔率。
英文摘要
The purpose of this study is to investigate the effect of bath temperature and casting thickness on the preparation of membranes from EVOH/1,3-propanediol binary mixture system via the cold solvent induced phase separation (CIPS) process. When the temperature of the precipitation bath (45℃) was below the crystallization line and above the liquid - liquid phase separation line, the membrane exhibited a crystalline particulate structure; when the bath temperature (25℃) was just below the spinodal decomposition temperature, it presented a bi-continuous network structure and bore slight crystallization characteristics of particles; when the bath temperature (5℃&-20℃) sit deeply in the spinodal zone, it presented a pure bi-continuous network structure. With different casting thickness and immersed in 5℃bath, the formed membranes all presented bi-continuous network structure typically arising from spinodal decomposition. The water permeation flux, wettability and tensile strength of the membranes were measured and the results indicated that they were correlated with the porosity, pore size, and membrane morphology. In addition, X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analyses indicated that the membranes had crystallinity of 38~42 %. The DSC data also showed that all membranes had a similar crystal melting behavior with Tm close to 184℃.
We then chose the poly (vinylidene fluoride)/triethyl phosphate/water ternary system and used a method that combined features of non-solvent induced phase separation (NIPS) and thermal induction phase separation (TIPS) to prepare porous PVDF membranes. In the phase diagram we found on a special dope composition such that the solvent/non-solvent ratio in the dope was equal to that in the precipitation. Therefore, the composition of the bath could be held constant by itself, and the bath can be used repeatedly (termed reusable bath). By varying the composition of the precipitation bath and casting thickness, a series of membranes with different porous structures were formed. The effects of the membrane structure and filtration performance have been studied subsequently. Results showed that when water, 30wt% TEP and 60wt% TEP were used as the precipitation bath, the membrane presented a skin layer at the top surface. In contrast, when precipitation in the reusable bath, it did not show a skin layer near the top, and with increasing of the TEP concentration in the bath, thinner skin layer tended to form. The thickness of the skin layer was found to affect the porosity and mechanical strength of the membranes; the thinner the skin, the higher the porosity, and thus the lower the mechanical strength. When films with different thickness were immersed in the reusable bath, we found from the FE-SEM images that thinner casting thickness tended to yield membranes that bore lacy structure. In addition, DSC measurements showed that the melting points of the membranes were ~159℃, while XRD analyses indicated that the crystallinity of membranes was about 63 to 64%. The water flux and filtration experiments showed that the membranes prepared from the reusable bath exhibited both high permeability and selectivity.
第三語言摘要
論文目次
總目錄
誌謝.......................................................I
中文摘要....................................................Ⅱ
Abstract..................................................Ⅲ
總目錄.....................................................Ⅴ
圖目錄.....................................................Ⅶ
表目錄.....................................................Ⅹ

第一章 序論.................................................1
1-1 前言...................................................1
1-2 研究動機與目的...........................................3
1-3 參考文獻................................................4
第二章 聚乙烯乙烯醇薄膜之合成及其物性分析.........................5
2-1 前言...................................................5
2-2 實驗...................................................9
2-2.1 實驗材料..............................................9
2-2.2 實驗方法與步驟.........................................9
2-3 物性分析步驟.............................................9
2-4 結果與討論.............................................12
2-4.1 EVOH32-1,3-propanediol兩成分系統之相圖................12
2-4.2 探討沉澱槽溫度對EVOH薄膜之影響及其物性分析................14
2-4.2.1 薄膜結構與型態......................................14
2-4.2.2 薄膜厚度與孔隙度之量測................................25
2-4.2.3 孔隙影像分析........................................26
2-4.2.4 滲透性與水通量測試...................................28
2-4.2.5 拉力測試...........................................31
2-4.2.6 微差掃描式熱分析(DSC)之熱行為分析......................32
2-4.2.7 廣角X-ray繞射(WXRD)之結晶度計算......................34
2-4.3 製膜液厚度對EVOH薄膜物性之影響..........................36
2-4.3.1 薄膜結構與型態......................................36
2-4.3.2 薄膜厚度與孔隙度之量測................................42
2-4.3.3 孔隙影像分析........................................42
2-4.3.4 拉力測試...........................................43
2-4.3.5 微差掃描式熱分析(DSC)之熱行為分析......................43
2-4.3.6 廣角X-ray繞射(WXRD)之結晶度計算......................45
2-5 結論..................................................47
2-6 參考文獻...............................................48
第三章 聚偏二氟乙烯薄膜之合成及其物性分析........................54
3-1 前言..................................................54
3-2 實驗..................................................58
3-2.1 實驗材料.............................................58
3-2.2 實驗方法與步驟........................................58
3-2.2.1 薄膜的製備.........................................58
3-2.2.2 相圖之觀測.........................................59
3-3 物性分析步驟............................................61
3-4 結果與討論.............................................63
3-4.1 PVDF/TEP/WATER三成分系統之相圖.........................63
3-4.2 探討沉澱槽成分對PVDF薄膜之影響及其物性分析.................65
3-4.2.1 薄膜結構與型態......................................65
3-4.2.2 薄膜厚度與孔隙度之量測................................75
3-4.2.3 拉力測試...........................................76
3-4.2.4 水通量測試.........................................77
3-4.2.5 接觸角分析.........................................78
3-4.2.6 微差掃描式熱分析(DSC)之熱行為分析......................78
3-4.2.7 廣角X-ray繞射(WXRD)之結晶度計算......................80
3-4.2.8 薄膜過濾之應用......................................82
3-4.3 製膜液厚度對PVDF薄膜物性之影響..........................86
3-4.3.1 薄膜結構與型態......................................86
3-4.3.2 薄膜厚度與孔隙度之量測................................93
3-4.3.3 拉力測試...........................................94
3-4.3.4 水通量測試.........................................95
3-4.3.5 接觸角分析.........................................96
3-4.3.6 微差掃描式熱分析(DSC)之熱行為分析......................96
3-4.3.7 廣角X-ray繞射(WXRD)之結晶度計算......................98
3-4.3.8 薄膜過濾之應用......................................99
3-5 結論.................................................100
3-6 參考文獻..............................................102

圖目錄
Fig.2-1 Scheme of mass and thermal transfer occurring at the film/bath interfaceby CIPS.................................7
Fig.2-2 Phase diagram of the EVOH32/1,3-propanediol system	..........................................................13
Fig.2-3 Total cross sectional morphologies of the EVOH membranes precipitated from different temperature baths...18
Fig.2-4 Cross sectional morphology of the EVOH membranes precipitated from baths at different temperatures.........19
Fig.2-5 Top surface morphology of the EVOH membranes precipitated from baths at different temperatures.........21
Fig.2-6 Path of pourse membrane formation by CIPS.........22
Fig.2-7 Morphology of the cross section near the top surface of the EVOH membrane precipitated from 5℃bath............22
Fig.2-8 Bottom surface morphology of the EVOH membranes precipitated from baths at different temperatures.........23
Fig.2-9 Cross sectional morphology of an EVOH membrane prepared by the TIPS method. The polymer concentration in the dope was 20 wt% and the quenching temperature was 5℃	..........................................................24
Fig.2-10 Cross sectional morphology of an EVOH membrane prepared by the CIPS method. The polymer concentration in the dope was 20 wt% and the bath was 1,3-propanediol at 5℃	..........................................................24
Fig.2-11 Morphology of the membrane precipitated from bath at 25℃...................................................27
Fig.2-12 Water flux of membranes precipitated from different temperature baths at different pressure...................30
Fig.2-13 Tensile strengths of membranes precipitated from different temperature baths...............................32
Fig.2-14 DSC themograms of EVOH membranes precipitated from different temperature baths...............................33
Fig.2-15 XRD of EVOH membranes precipitated from different temperature baths.........................................34
Fig.2-16 Deconvolation of XRD patterns of EVOH membranes precipitated from different temperature baths.............35
Fig.2-17 Total cross section morphology of the EVOH membranes precipitated from 1,3-propanediol bath at 5℃...37
Fig.2-18 High magnification images of cross section morphology of the EVOH membranes precipitated from 1,3-propanediol bath at 5℃...................................38
Fig.2-19 Top surface morphology of the EVOH membranes precipitated from 1,3-propanediol bath at 5℃.............40
Fig.2-20 Bottom surface morphology of the EVOH membranes precipitated from 1,3-propanediol bath at 5℃.............41
Fig.2-21 DSC themograms of EVOH membranes precipitated from different casting thickness at 5℃baths...................44
Fig.2-22 XRD of EVOH membranes precipitated from different casting thickness at 5℃baths.............................45
Fig.2-23 Deconvolation of XRD patterns of EVOH membranes precipitated from different casting thickness at 5℃baths	..........................................................46
Fig.3-1 (a)Schematic representation of reusable bath composition for the ternary system.(b)The relative position of dope composition and gelation lines and L-L mixing line	..........................................................57
Fig.3-2 Phase separation behavior of PVDF/TEP/WATER system	..........................................................60
Fig.3-3 Phase diagram of the PVDF/TEP/WATER system........64
Fig.3-4 Total cross sectional morphologies of the PVDF membranes precipitated from different baths...............67
Fig.3-5 Cross sectional morphology of the PVDF membranes precipitated from different baths.........................68
Fig.3-6 Morphology of the cross section near the top surface of the PVDF membrane precipitated from different baths....69
Fig.3-7 High magnification of the cross section near the top surface of the PVDF membrane precipitated from water baths	..........................................................70
Fig.3-8 Top surface morphology of the PVDF membranes precipitated from different baths.........................71
Fig.3-9 Bottom surface morphology of the PVDF membranes precipitated from different baths.........................73
Fig.3-10 Water flux of PVDF membranes precipitated from different baths...........................................77
Fig.3-11 DSC themograms of PVDF membranes precipitated from different baths...........................................79
Fig.3-12 XRD diffractograms of PVDF membranes precipitated from different baths......................................81
Fig.3-13 Blue dextran filtration of PVDF membranes precipitated from reusable baths..........................83
Fig.3-14 Blue dextran concentration v.s. wavelength curve	..........................................................84
Fig.3-15 Concentration of blue dextran....................85
Fig.3-16 Total cross sectional morphologies of the PVDF membranes precipitated from reusable baths................88
Fig.3-17 Cross sectional morphology of the PVDF membranes precipitated from reusable baths..........................89
Fig.3-18 Morphology of the cross section near the top surface of the PVDF membrane precipitated from reusable baths.....................................................90
Fig.3-19 Top surface morphology of the PVDF membranes precipitated from reusable baths..........................91
Fig 3-20 Bottom surface morphology of the PVDF membranes precipitated from reusable baths..........................92
Fig.3-21 Water flux of PVDF membranes precipitated from different casting thickness at reusable baths.............95
Fig.3-22 DSC themograms of PVDF membranes precipitated from from different casting thickness at reusable baths........97
Fig.3-23 XRD diffractograms of PVDF membranes precipitated from different casting thickness at reusable baths........98

表目錄
Table 1-1 薄膜的最新技術以及它們的應用 2
Table 1-2 商業合成薄膜之結構、材料以及其分離機制 2
Table 2-1 Porosity of membranes precipitated from different temperature baths 25
Table 2-2 Image J analysis of membranes precipitated from different temperature baths 26
Table 2-3 Wettability and water flux of membranes precipitated from different temperature baths 29
Table 2-4 30
Table 2-5 Tensile strengths of membranes precipitated from different temperature baths 31
Table 2-6 Themal properties and crystallinity of EVOH membranes 33
Table 2-7 Curve fitting of membranes precipitated from different temperature baths 35
Table 2-8 Porosities of the membranes precipitated from different casting thickness at 5℃baths 42
Table 2-9 Image J analysis of membranes precipitated from different casting thickness at 5℃baths 42
Table 2-10 Tensile strengths of membranes precipitated from different casting thickness at 5℃baths 43
Table 2-11 Themal properties and crystallinity of EVOH membranes 44
Table 2-12 Curve fitting of membranes precipitated from different casting thickness at 5℃baths	46
Table 3-1 Dope composition of the PVDF/TEP/WATER system phase diagram 59
Table 3-2 Porosity of membranes precipitated from different baths 75
Table 3-3 Tensile strengths of membranes precipitated from different baths	76
Table 3-4 Contact angle of membranes precipitated from different baths	78
Table 3-5 Themal properties and crystallinity of PVDF membranes 79
Table 3-6 Crystal type of PVDF	80
Table 3-7 Crystallinity of PVDF membranes determined by XRD	81
Table 3-8 Rejection and filtration of PVDF membranes precipitated from 60wt% TEP and reusable baths 84
Table 3-9 Porosity of membranes precipitated from from different casting thickness at reusable baths 93
Table 3-10 Tensile strengths of membranes precipitated from from different casting thickness at reusable baths 94
Table 3-11 Contact angle of membranes precipitated from from different casting thickness at reusable baths 96
Table 3-12 Themal properties and crystallinity of PVDF membranes 97
Table 3-13 Crystallinity of PVDF membranes determined by XRD	98
Table 3-14 Rejection and filtration of PVDF membranes precipitated from different casting thickness at reusable baths 99
參考文獻
第一章
1.H. Strathmann, Introduction to Membrane Science and Technology, Wiley(2011).
2.H. Strathmann, L. Giorno, E. Drioli, An Introduction to Membrane Science and Technology, Consiglio Vazionale delle Ricerche (2006).
3.吳金昌,私立淡江大學化學工程系碩士論文 (1997).
4.H. K. Lonsdale, J. Membrane Sci, 10, 81 (1982).

第二章
1.E. Franco-Urquiza; O. Santana; J. Gamez-Perez; A. B. Martinez; M. Ll. Maspoch, Influence of processing on the ethylene-vinyl alcohol (EVOH) properties: Application of the successive self-nucleation and annealing (SSA) technique, eXPRESS Polymer Letters 4 (2010) 153–160.
2.Hideto Matsuyama; Stephane Berghmans; Douglas R Lloyd, Formation of hydrophilic microporous membranes via thermally induced phase separation,
J Membr. Sci. 142 (1998) 213–224.
3.Hideto Matsuyama; Kiyotaka Kobayashi; Taisuke Maki; Masaaki Tearamoto; Hitoshi Tsuruta, Effect of the ethylene content of poly(ethylene-co-vinyl alcohol) on the formation of microporous membranes via thermally induced phase separation, J. Appl. Polym. Sci. 82 (2001) 2583–2589.
4.Tai-Horng Young; Chun-Hsu Yao; Jui-Sheng Sun; Chao-Ping Lai; Leo-Wang Chen, The effect of morphology variety of EVAL membranes on the behavior of myoblasts in vitro, Biomaterials 19 (1998) 717–724.
5.Yamashita, S.; Nagata, S.; Takakura, K., エチレン-ビ ニルアルコール共重合体からなる人工腎臓用透析膜の製膜条件と膜性能 の検討, 高分子論 集(Kobunshi Renbunshu) 36 (1979) 249-256.
6.Nakano A., Ethylene vinyl alcohol co-polymer as a high-performance membrane: an EVOH membrane with excellent biocompatibility, High-performance Membrane Dialyzers, Contrib Nephrol. Basel, Karger, 173 (2011) 164–171.
7.Tai-Horng Young; Liao-Ping Cheng; Wei-Ming You; Li-Yen Chen, Prediction of EVAL membrane morphologies using the phase diagram of water–DMSO–EVAL at different temperatures, Polymer 40 (1999) 2189–2195.
8.M.X. Shang; H. Matsuyama; M. Teramoto; D.R. Lloyd; N. Kubota, Preparation and membrane performance of poly(ethylene-co-vinyl alcohol) hollow fiber membrane via thermally induced phase separation, Polymer 44 (2003) 7441–7447.
9.M.X. Shang; H. Matsuyama; M. Teramoto; J. Okuno; D.R. Lloyd; N. Kubota, Effect of diluent on poly(ethylene-co-vinyl alcohol) hollow fiber membrane formation via thermally induced phase separation, J. Appl. Polym. Sci. 95 (2005) 219.
10.吕睿, 热致相分离法制备EVOH微孔膜的基础研究, 复旦大学博士論文(2006).
11.M. Mulder, Basic Principles of Membrane Technology, 2nd edn., Kluwer Academic Publishers, London(1996).
12.Je Young Kim; Young Duk Kim; Toshiyuki Kanamori; Hwan Kwang Lee; Ki-Jun Baik; Sung Chul Kim, Vitrification phenomena in polysulfone/NMP/water system, J. Appl. Polym. Sci. 71 (1999) 431–438.
13.Anthony J. Castro, Methods for making microporous products [P], US Pat: 4247498 (1981) 01- 27.
14.Douglas R. Lloyd; Sung Soo Kim; Kevin E. Kinzer, Microporous membrane formation via thermally-induced phase separation. II. Liquid—liquid phase separation, J Membr. Sci. 64 (1991) 1-11.
15.Sung Soo Kim; Douglas R. Lloyd, Microporous membrane formation via thermally-induced phase separation. III. Effect of thermodynamic interactions on the structure of isotactic polypropylene membranes, J Membr. Sci. 64 (1991) 13-29.

16.Gordon B.A. Lim; Sung Soo Kim; Qinhong Ye; Yu Feng Wang; Douglas R. Lloyd, Microporous membrane formation via thermally-induced phase separation. IV. Effect of isotactic polypropylene crystallization kinetics on membrane structure, 64 (1991) 31-40.
17.Sung Soo Kim; Gordon B.A. Lim; Ali A. Alwattari; Yu Feng Wang; Douglas R. Lloyd, Microporous membrane formation via thermally-induced phase separation. V. Effect of diluent mobility and crystallization on the structure of isotactic polypropylene membranes, 64 (1991) 41-53.
18.Ali A. Alwattari; Douglas R. Lloyd, Microporous membrane formation via thermally-induced phase separation. VI. Effect of diluent morphology and relative crystallization kinetics on polypropylene membrane structure, 64 (1991) 55-67.
19.Jing Zhou; Heng Zhang; Haitao Wang; Qiangguo Du, Effect of cooling baths on EVOH microporous membrane structures in thermally induced phase separation, J Membr. Sci. 343 (2009) 104–109.
20.H. Matsuyama; Y. Takida; T. Maki; M. Teramoto, Preparation of porous membrane by combined use of thermally induced phase separation and immersion precipitation, Polymer 43 (2002) 5243–5248.
21.D.B. Pall, US Patent, 4,340,479 (1982).
22.Hsu-Hsien Chang; Konstantinos Beltsios; Yih-Hang Chen; Dar-Jong Lin; Liao-Ping Cheng, Effects of Cooling Temperature and Aging Treatment on the Morphology of Nano- and Micro-porous EVOH Membranes by Thermal Induced Phase Separation Method, (未發表).
23.Matsuyama H; Iwatani T; Kitamura Y; Tearamoto M; Sugoh N., Formation of porous poly(ethylene-co-vinyl alcohol) membrane via thermally induced phase separation, J Appl. Polym. Sci. 79 (2001) 2449-2455.
24.Matsuyama H; Iwatani T; Kitamura Y; Tearamoto M; Sugoh N, Solute rejection by poly(ethylene-co-vinyl alcohol) membrane prepared by thermally induced phase separation, J Appl. Polym. Sci. 79 (2001) 2456-2463.
25.Takeji Hashimoto, Dynamics in spinodal decomposition of polymer mixtures, Phase Transitions: A Multinational Journal 12 (1988) 47-119.
26.I.M. Lifshitz; V. V. Slyozov, The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids 19 (1961) 35-50.
27.Nojima, S.; Shioshita, K.; Nose, T., Phase Separation Process in Polymer Systems. II. Microscopic Studies on a Polystyrene and Diisodecyl Phthalate Mixture, Polymer journal 14 (1982) 289-294.
28.Kwak, K. D.; Okada, M., Growth rate of microdomains during phase separtion by a two-step temperature jump, Macromolecules 26 (1993) 4047-4049.
29.Nam, Y. S.; Park, T. G., Biodegradable polymeric microcellular foams by modified thermally induced phase separiton method, Biomaterials 20 (1999) 1783-1790.
30.P. Heijden, A DSC-study on the demixing of binary polymer solutions, Ph. D. Thesis., Ch.2 (2001).
31.E. D. Siggia, Late stages of spinodal decomposition in binary mixtures, Phys. Rev. A, 20 (1979) 595-605.
32.L.P. Cheng; A.W. Dwan; C.C. Gryte, Membrane formation by isothermal
precipitation in polyamide-formic acid-water systems I. Description of membrane morphology, J. Polym. Sci., Part B: Polym. Phys. 33 (1995) 211-222.
33.D.J. Lin; C.L. Chang; C.K. Lee; L.P. Cheng, Fine structure and crystallinity of porous Nylon 66 membranes prepared by phase inversion in the water/formic acid/Nylon 66 system, Eur. Polym. J. 42 (2006) 356-367.
34.D.J. Lin; K. Beltsios ; T.H. Young ; Y.S. Jeng ; L.P. Cheng, Strong effect
of precursor preparation on the morphology of semicrystalline phase inversion poly(vinylidene fluoride) membranes, J Membr. Sci. 274 (2006) 64-72.
35.Weixing Li; Weihong Xing; Nanping Xu, Modeling of relationship between water permeability and microstructure parameters of ceramic membranes, Desalination 192 (2006) 340–345.
36.J.S. Mackie and E Meares, Proc. Roy. Soc., A232 (1955) 498.
37.S.B. Iversen; V.K. Bhatia a; K. Dam-Johansen; G. Jonsson, Characterization of microporous membranes for use in membrane contactors, J Membr. Sci. 130 (1997) 205-217
38.Joseph Kestin, Mordechai Sokolov, William A. Wakeham, Viscosity of Liquid Water in the Range-8℃ to 150℃, J. Phys. Chem. Ref. Data 7 (1978) 941-948
39.Russo, P.; Acierno, D.; Di Maio, L.; Demma, G., Thermal and mechanical characterisation of films from Nylon 6/EVOH blends, Eur Polym J. 35 (1999) 1261-1268.
40.Lopez-Rubio, A.; Lagaron, J. M.; Gimenez, E.; Cava, D.; Hernandez-Munoz, P.; Yamamoto, T.; Gavara, R., Morphological alterations induced by temperature and humidity in ethylene-vinyl alcohol copolymers, Macromolecules 36 (2003) 9467–9476.
41.Huang, C. H.; Wu, H. M.; Chen, C. C.; Wang, C. W.; Kuo, P. L., Preparation, characterization and methanol permeability of proton conducting membranes based on sulfonated ethylene-vinyl alcohol copolymer, J Membr. Sci. 353 (2010) 1-9.
42.Cerrada, M. L.; Perez, E.; Perena, J. M.; Benavente, R., Wide-angle X-ray diffraction study of the phase behavior of vinyl alcohol ethylene copolymers, Macromolecules 31 (1998) 2559-2564.
43.Lin DJ; Chang HH; Chen TC; Lee YC; Cheng LP, Formation of porous poly(vinylidene fluoride) membranes with symmetric or asymmetric morphology by immersion precipitation in the water/TEP/PVDF system, Eur Polym J. 42 (2006) 1581-1594.
44.de Lima, J. A.; Felisberti, M. I., Poly(ethylene-co-vinyl alcohol) and poly(methyl methacrylate) blends: Phase behavior and morphology, Eur Polym J.  44 (2008) 1140-1148.

第三章
1.J.E. Dohany, L.E. Robb, Polyvinylidene fluoride, in: Kirk-Othmer Encyclopedia of Chemical Technology, vol. 11, 3rd ed., Wiley, New York, (1980) 64–74.
2.A.J. Lovinger, poly(vinylidene fluoride), in: D.C. Bassett (Ed.), Development in Crystalline Polymers, vol. 1, Applied Science, London, (1982) 195.
3.D.R. Lloyd, K.E. Kinzer, H.S. Tseng, Microporous membrane formation via thermally induced phase separation. I. Solid–liquid phase separation, J. Membr. Sci. 52 (1990) 239–261.
4.X. Li, X. Lu, Morphology of polyvinylidene fluoride and its blends in thermally induced phase separation process, J. Appl. Polym. Sci. 101 (2006) 2944–2952.
5.Q. Zhang, E.L. Cussler, Microporous hollow fibres for gas absorption I: Mass transfer in the liquid, J. Membr. Sci. 23 (1985) 321.
6.N.P. Tirmizi, B. Raghuraman, J. Wiencek, Demulsification of water/oil/solid emulsions by hollow-fiber membranes, AIChE Journal 42 (1996) 1263–1276.
7.Dar-Jong Lin, Cheng-Liang Chang, Horng-Yue Shaw, Yi-Su Jeng, Liao-Ping Cheng, Formation of multilayer poly(acrylic acid)/poly(vinylidene fluoride) composite membranes for pervaporation, J. Appl. Polym. Sci. 93 (2004) 2266 –2274.
8.Saeid Rajabzadeh, Tatsuo Maruyama, Tomohiro Sotani, Hideto Matsuyama, Preparation of PVDF hollow fiber membrane from a ternary polymer/solvent/nonsolvent system via thermally induced phase separation (TIPS) method, Separation and Purification Technology 63 (2008) 415–423.
9.Dongliang Wang, K. Li, W.K. Teo, Preparation and characterization of polyvinylidene fluoride (PVDF) hollow fiber membranes, J Membr. Sci. 163 (1999) 211–220.
10.Yong-Hong Zhao, Yan-Ling Qian, Bao-Ku Zhu, You-Yi Xu, Modification of porous poly(vinylidene fluoride) membrane using amphiphilic polymers with different structures in phase inversion process, J Membr. Sci. 310 (2008) 567–576.
11.Xuyun Wang, Lin Zhang, Dahai Sun, Quanfu An, Huanlin Chen, Formation mechanism and crystallization of poly(vinylidene fluoride) membrane via immersion precipitation method, Desalination 236 (2009) 170–178.
12.Xianfeng Li, Yonggang Wang, Xiaolong Lu, Changfa Xiao, Morphology changes of polyvinylidene fluoride membrane under different phase separation mechanisms, J Membr. Sci. 320 (2008) 477–482. 
13.Dar-Jong Lin, Hsu-Hsien Chang, Tzung-Chin Chen, Yi-Chi Lee, Liao-Ping Cheng, Formation of porous poly(vinylidene fluoride) membranes with symmetric or asymmetric morphology by immersion precipitation in the water/TEP/PVDF system, Eur. Polym. J. 42 (2006) 1581–1594.
14.D.J. Lin, C.L. Chang, T.C. Chen, L.P. Cheng, Microporous PVDF membrane formation by immersion precipitation from water/TEP/PVDF system, Desalination 145 (2002) 25-29.
15.L.P. Cheng, Effect of Temperature on the Formation of Microporous PVDF Membranes by Precipitation from 1-Octanol/DMF/ PVDF and Water/DMF/PVDF Systems, Macromolecules 32 (1999) 6668-6674.
16.D.J. Lin, C.L. Chang, F.M. Huang, L.P. Cheng, Effect of salt additive on the formation of microporous poly(vinylidene fluoride) membranes by phase inversion from LiClO4/Water/DMF/PVDF system, Polymer 44 (2003) 413–422.
17.D.J. Lin, C.L. Chang, C.K. Lee, L.P. Cheng, Fine structure and crystallinity of porous Nylon 66 membranes prepared by phase inversion in the water/formic acid/Nylon 66 system, Eur. Polym. J. 42 (2006) 356–367.
18.L.P. Cheng, T.H. Young, L. Fang, J.J. Gau, Formation of particulate microporous poly(vinylidene fluoride) membranes by isothermal immersion precipitation from the 1-octanol/dimethylformamide/ poly(vinylidene fluoride) system, Polymer 40 (1999) 2395–2403.
19.Douglas R. Lloyd, Sung Soo Kim, Kevin E. Kinzer, Microporous membrane formation via thermally-induced phase separation. II. Liquid—liquid phase separation, J Membr. Sci. 64 (1991) 1–11.
20.P. Sukitpaneenit, T.S. Chung, Molecular elucidation of morphology and mechanical properties of PVDF hollow fiber membranes from aspects of phase inversion, crystallization and rheology, J Membr. Sci. 340 (2009) 192-205.
21.F. Edwie, M.M. Teoh, T.S. Chung , Effects of additives on dual-layer hydrophobic–hydrophilic PVDF hollow fiber membranes for membrane distillation and continuous performance, Chem. Eng. Sci. 68 (2012) 567-578.
22.Z. Wang, J. Ma, The role of nonsolvent in-diffusion velocity in determining polymeric membrane morphology, Desalination 286 (2012) 69-79.
23.J.Y. Lai, Y.H. Chu, S.L. Huang, Y.L. Yin, Separation of water-alcohol mixtures by pervaporation through asymmetric nylon-4 membrane, J. Appl. Polym. Sci. 53 (1994) 999-1009. 
24.D.J. Lin , L.P. Cheng, S.P. Lin, Effect of compatible nucleation seeds on the morphology of porous Nylon-6 membrane, Desalination 145 (2002) 31-37.
25.C.H. Shih, C.C. Gryte, L.P. Cheng, Morphology of membranes formed by the isothermal precipitation of polyamide solutions from water/formic acid systems, J. Appl. Polym. Sci. 96 (2005) 944-960.
26.D.J. Lin, C.L. Chang, C.K. Lee, L.P. Cheng, Fine structure and crystallinity of porous Nylon 66 membranes prepared by phase inversion in the water/formic acid/Nylon 66 system, Eur. Polym. J. 42 (2006) 356-367.
27.D.J. Lin , K. Beltsios , T.H. Young , Y.S. Jeng , L.P. Cheng, Strong effect of precursor preparation on the morphology of semicrystalline phase inversion poly(vinylidene fluoride) membranes, J Membr. Sci. 274 (2006) 64-72.
28.L.H. Sperling, Introduction to physical polymer science fourth edition, John Wiley & Sons, Inc. (2006) 265-266.
29.張旭賢,多孔型聚偏二氟乙烯薄膜固定離胺酸與己二胺,淡江大學化學工程與材料工程碩士論文(2005)
30.L.P. Cheng; A.W. Dwan; C.C. Gryte, Membrane formation by isothermal
precipitation in polyamide-formic acid-water systems I. Description of membrane morphology, J. Polym. Sci., Part B: Polym. Phys. 33 (1995) 211-222.
31.Wenzhong Ma, Jun Zhang, Xiaolin Wang, Shengmin Wang, Effect of PMMA on crystallization behavior and hydrophilicity of poly(vinylidene fluoride)/poly(methyl methacrylate) blend prepared in semi-dilute solutions[J], Applied Surface Science 253 (2007) 8377–8388.
32.M. Khayet, N.N. Li, A.G. Fane, W.S.W. Ho, T. Membrane distillation, Advanced Membrane Technology and Applications, John Wiley, New Jersey, (2008).
33.Rinaldo Gregorio Jr and Nadia Chaves Pereira de Souza Nociti, Effect of PMMA addition on the solution crystallization of the α and β phases of poly(viny1idene fluoride) (PVDF), J. Phys. D: Appl. Phys. 28 (1995) 432–436.
34.Wenzhong Ma, Jun Zhang, Shuangjun Chen, Xiaolin Wang. β-Phase of poly (vinylidene fluoride) formation in poly(vinylidene fluoride)/ poly(methylmethacrylate) blend from solutions[J], Applied Surface Science 254 (2008) 5635–5642.
35.Pawel Sajkiewicz, Crystallization behaviour of poly(vinylidene fluoride), Eur. Polym. J. 35 (1999) 1581–1590.
36.Xuejuan Zhao, Shuangjun Chen, Jun Zhang, Wei Zhang, Xiaolin Wang, Crystallization of PVDF in the PVDF/PMMA blends precipitated from their
non-solvents: Special ‘‘orientation’’ behavior, morphology, and thermal properties, Journal of Crystal Growth 328 (2011) 74–80.
37.莊清榮、游勝傑,流體中的最佳守門員-微過濾與超過濾,科學發展 429 (2008).
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信