淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


  查詢圖書館館藏目錄
系統識別號 U0002-1701201323050800
中文論文名稱 利用非接觸式無線電源傳輸技術實現傳輸效率的最佳化
英文論文名稱 Employing Wireless Power Supply Technology to Optimize Power Transfer Efficiency.
校院名稱 淡江大學
系所名稱(中) 電機工程學系碩士在職專班
系所名稱(英) Department of Electrical Engineering
學年度 101
學期 1
出版年 102
研究生中文姓名 郭瓊茹
研究生英文姓名 Chiung-Ju Kuo
學號 797440095
學位類別 碩士
語文別 中文
口試日期 2013-01-02
論文頁數 65頁
口試委員 指導教授-丘建青
委員-方文賢
委員-曹恆偉
中文關鍵字 無線電源傳輸  效率  非接觸式 
英文關鍵字 Wireless Power Transmission  Contactless  WPC (Wireless Power Consortium)  Qi  Electromagnetic Induction 
學科別分類 學科別應用科學電機及電子
中文摘要 隨著可攜式通訊產品的日益普及,無線電源傳輸系統的技術也逐漸受到重視,因此在本文中吾人將會利用符合無線電力聯盟 WPC (WPC--Wireless Power Consortium) 架構規範的 Free-scale 的無線電源傳輸模組-傳送端 (TX):56800E V3 與接收端 (Rx): RS08KB 的一、二次線圈做電磁感應測試,將能量由一次測的線圈透過鐵芯的磁場感應耦合到二次側的線圈。此外實驗中也會加入同樣符合 WPC 聯盟規範的 TI (德州儀器)的無線電源傳輸模組做模擬實驗的對照組。
由於目前無線電源傳輸系統所遇到最大的問題就是效率比傳統式的電源供應器低。因此針對效率的提升也做了一些實驗與比較,希望能提升傳輸效率。本論文的實驗內容包含比較 Free-scale 與 TI 無線電源傳輸模組的傳輸效率,以及比較兩個模組傳輸端 (TX)的交換式電源開關線路的開關波形的差異。由於 Free-scale 與 TI 都是 WPC 的聯盟,因此實驗中也會利用 Free-scale 搭配 TI 的無線充電模組測試比對四種的測試結果來驗證實驗的推論。此外透過改變 2 電源傳輸模組的輸入電壓,並量測在不同輸入電壓與輸出負載時的效率曲線可以比較出不同輸入電壓對效率的影響。
本論文最主要的貢獻有二, 第一個貢獻就是透過比較Free-scale 與 TI 的傳輸效率與傳輸端 (TX) 的交換式電源開關線路的開關波形變化,可以得知 TI 的開關電源電路是採用變頻式的架構,而 Free-scale 是固定頻率的架構,由於 TI傳送端可以依據輸出負載的電流狀態調整開關電源的頻率以獲得較佳的效率,因此使用 TI 做為傳送端(TX) 做測試的模組所量到的效率較高。
第二個貢獻就是改變 Free-scale 與 TI 的模組2 電源傳輸模組的輸入電壓,並量測不同輸入電壓與輸出負載的效率曲線,透過不同的效率曲線可以發現,當輸入電壓與輸出電壓的電壓差越接近時所量到的效率越高。以 Free-scale 的模組來說,當輸入電壓由廠商建議的 12V 調低到 7V時,輸出負載在滿載 (5V/1A) 的效率可以由 53.7% 提升到 57.7%。以相同的方式對 TI 的充電模組做試驗,當輸入電壓由廠商建議的 19V 調低到 17V時,輸出負載在滿載 (5V/1A) 的效率可以由 73.61% 提升到 75.89%。由於無線電源傳輸模組是採用降壓式電源轉換線路作為交換式電源電路,因此我們可以透過降低傳送端的輸入電壓與輸出電壓的電壓差距來提升交換式電源電路的效率,而達到提升整體無線電源傳輸效率的目標。
英文摘要 When transportable communication equipment becomes popularity, wireless power transmission technology is become important. In this essay, I use Free-scale wireless transmission module “(TX):56800E V3/(RX): RS08KB” which meets WPC (Wireless Power Consortium) standard to do electromagnetic magnetic coupling and power transmission test. Moreover, also add TI’s wireless power transmission module which also meets the same qualification WPC standard as a control group.
The biggest problem of the wireless power transmission system is efficiency. The efficiency of wireless power transmission system is lower than the traditional power supply. For this purpose to increase the transmission efficiency, I have do the comparison and experiment. This essay includes comparison between Free-scale and TI wireless power transmission module efficiency and TX’s waveform of the switching power circuit different. Due to these two transmission modules can meet WPC (Wireless Power Consortium) communication topology, I use Free-scale with TI’s wireless module to verify four test. Besides, measure the efficiency curve in different input voltage by two power transmission modules. I can make sure how the input voltage to influence the power efficiency.
There are two major contributions in this essay. The first contribution is through compare between Free-scale and TI’s transmitter (TX) transmission efficiency and switching power circuit waveform. By using this, we can know that TI’s switching power circuit is applying frequency conversion architecture and Free-scale is fixed frequency architecture. Because the TI’s module can adjust the switching frequency by different output loading. So, TI’s transmitter (TX) as the test module can get higher efficiency.
The second contribution is change Free-scale and TI module’s power transmission input voltage and measure the efficiency curve. Through the different efficiency curve, we can fine the relation of input voltage and efficiency. When the input voltage is narrow to the output voltage, we can measure the higher efficiency. Take Free-scale module as an example, when input voltage is lower from 12V to 7V, and output keep full loading (5V/1A). The efficiency can increase from 53.7% to 57.7%. Using the same test method to TI test module, when input voltage is lower from 19V to 17V, and output keep full loading (5V/1A) .The efficiency can increase from 73.61% to 75.89%. Because the wireless power transmission module is applying step down (Buck) power converter as a switching power circuit, hence we can through to narrow the transmitter input and output voltage to increase the switching power circuit efficiency. And improve wireless power transmission system efficiency.
論文目次 目錄

第一章 緒論……………………………………………………………1
1-1 研究動機……………………………………………………1
1-2研究背景……………………………………………………3
1-3 研究目的與方法……………………………………………5
1-4 本研究之貢獻………………………………………………6
1-5論文大綱……………………………………………………6
第二章 非接觸式無線電源傳輸的技術原理與………………………7
2-1前言……………………………………………………………7
2-2非接觸式無線電源傳輸的技術的基本原理…………………7
2-3接觸式與非接觸式電源傳輸的基本原理與比較……………11
2-4非接觸式無線電源傳輸技術之發展…………………………15
2-5非接觸式電源傳輸技術之電路拓墣…………………………16
2-6非接觸式變壓器鐵芯形狀……………………………………18
2-7非接觸式電源系統的控制方法………………………………23
2-8非接觸式電源傳輸系統的傳效率……………………………24
2-9非接觸式電源傳輸系統的應用領域…………………………26
第三章 非接觸式無線電源傳輸技術的硬體架構……………………29
3-1非接觸式無線電源傳輸之架構………………………………29
3-2發射端(TX)與接收端(RX) 的傳輸資料格式………………31
3-3 無線電源傳輸協會 WPC 與 Qi 認證……………………32
3-4 感應線圈的形式……………………………………………34
第四章 非接觸式無線電源傳輸之實驗………………………………39
4-1概論……………………………………………………………39
4-2實驗設備與儀器介紹…………………………………………39
4-3無線電源傳輸模組基本效率測試與比較……………………40
4-4不同負載條件下切換波形比較與討論………………………44
4-5不同輸入電壓下無線電源模組效率的比較與討論…………48
4-6無線電源模組的電源線路……………………………………51
第五章總結與討論……………………………………………………54
5-1實驗結果討論…………………………………………………54
5-2現存發展與推廣問題…………………………………………55
5-3結語……………………………………………………………56
參考文獻………………………………………………………………59


圖目錄

圖1-1.1 電磁感應示意圖………………………………………………2
圖1-2.1 非接觸式無線電源傳輸技術的應用範圍……………………4
圖1-2.2 非接觸式無線電源傳輸技術的實際應用範例………………4
圖2-2.1 安培右手定律…………………………………………………8
圖2-2.2 環形線圈的磁場分布圖………………………………………9
圖2-2.3 不同線圈半徑環形線圈磁場強度與距離變化的關係圖……10
圖2-2.4 法拉第電磁感應現象示意圖…………………………………11
圖2-3.1 傳統接觸式電源供應器系統架構……………………………12
圖2-3.2 非接觸式電源供應器系統架構………………………………13
圖2-4.1 非接觸式電源供應器系方塊圖………………………………16
圖2-5.1 非自我振盪 C 級 DC/DC 轉換器…………………………17
圖2-5.2 半橋式諧振轉換器……………………………………………17
圖2-5.3 全橋式諧振轉換器……………………………………………18
圖2-6.1 不同變壓器鐵芯結構…………………………………………19
圖2-6.2 I 型鐵芯感應結構磁場分佈圖………………………………20
圖2-6.3 E 型鐵芯感應結構磁場分佈圖………………………………20
圖2-6.4 U 型鐵芯感應結構磁場分佈圖………………………………21
圖2-6.5 罐型鐵芯感應結構磁場分佈圖………………………………22
圖2-7.1 電壓控制振盪及頻率控制器…………………………………23
圖2-7.2 具強健(Robust) 的非接觸式電源控制器…………………24
圖2-8.1 無線電源傳輸線圈感應示意圖………………………………25
圖2-8.2 無線電源傳輸線圈效率曲線…………………………………26
圖2-9.1 PCB 繞線式變壓器與架構圖………………………………27
圖2-9.2 以PCB 繞線式變壓器應用在手機充電架構………………27
圖2-9.3 陣列式線圈……………………………………………………28
圖3-1.1 線圈感應示意圖………………………………………………29
圖3-1.2 發射端(TX)與接收端(RX)的傳輸流程圖……………………30
圖3-1.3 無線電源傳輸架構……………………………………………31
圖3-2.1 發射端(TX)與接收端(RX)的傳輸資料格式…………………32
圖3-3.1 無線電源傳輸協會 WPC 組織成員………………………33
圖3-3.2 Qi認證識別商標………………………………………………34
圖3-3.3 印有 Qi商標的產品…………………………………………34
圖3-4.1 三種形式的感應線圈…………………………………………35
圖3-4.2 磁吸式感應線圈………………………………………………36
圖3-4.3 可移動式感應線圈……………………………………………37
圖3-4.4 陣列式感應線圈………………………………………………38
圖3-4.5 陣列式感應線圈接收端位置可隨意擺放……………………38
圖4-3.1 Free-scale 無線電源傳輸模組傳送端 (TX):56800E V3…40
圖4-3.2 Free-scale 無線電源傳輸模組傳送端 (RX):RS08KB……40
圖4-3.3 TI 無線電源傳輸模組傳送端 (TX): BQ500210……………41
圖4-3.4 TI 無線電源傳輸模組接收端 (Rx): BQ51013A……………42
圖4-3.5 Free-scale 與 TI 效率曲線比較…………………………44
圖4-4.1 Free-scale 在輸出 5V/500mA 的開關電路波形…………45
圖4-4.2 Free-scale 在輸出 5V/1000mA 的開關電路波形…………45
圖4-4.3 TI 在輸出 5V/500mA 的開關電路波形……………………46
圖4-4.4 TI 在輸出 5V/1000mA 的開關電路波形…………………47
圖4-5.1 Free-scale 在不同電壓與負載狀態下的效率曲線………49
圖4-5.2 TI 在不同電壓與負載狀態下的效率曲線…………………50
圖4-6.1 TI 無線電源傳輸模組電源線路(TX)………………………51
圖4-6.2 降壓式基本電路………………………………………………51
圖4-6.3 降壓式模型……………………………………………………52
圖5-3.1 無線電源傳輸的應用…………………………………………57


表目錄

表2-3.1 接觸式與非接觸式電源供應系統架構比較表……………15
表4-3.1 Free-scale 基本效率量測結果……………………………41
表4-3.2 TI 基本效率量測結果………………………………………42
表4-3.3 Free-scale (TX)搭配TI的(RX)基本效率量測結果………43
表4-3.4 TI (TX)搭配Free-scale的(RX)基本效率量測結果………43
表4-5.1 Free-scale 在不同電壓與負載狀態下的效率比較………48
表4-5.2 TI 在不同電壓與負載狀態下的效率曲線…………………49

參考文獻 [1] J. Yungtaek and M. M. Jovanovic, “A contactless electrical energy transmission system for portable-telephone battery chargers,” IEEE Trans. Ind. Electron., vol. 50, no. 3, pp. 520-527, 2003.
[2] Griffiths and J. David, “Introduction to Electrodynamics,” Prentice Hall.
[3] S. Y. R. Hui and W. C. Ho, “A new generation of universal Contactless battery charging platform for portable consumer electronic equipment,” IEEE Trans. Power Electron., vol. 20, no. 3, pp. 620-627, 2005.
[4] H. Abe, H. Sakamoto, and K. Harada, “A noncontact charger using a resonant converter with parallel capacitor of the secondary coil,” IEEE Trans. Ind. Appl., vol. 36, no. 2, pp. 444-451, 2000.
[5] A. Esser, “Contactless charging and communication for electric vehicles,” IEEE Trans. Ind. Appl., vol. 1, no. 6, pp. 4-11, 1995.
[6] F. Sato, J. Murakami, T. Suzuki, H. Matsuki, S. Kikuchi, K. Harakawa, H. Osada, and K. Seki, “Contactless energy transmission to mobile loads by CLPS-test driving of an EV with starter batteries,” IEEE Trans. Magn., vol. 33, no. 5, pp. 4203-4205, 1997.
[7] Y. Matsuo, O. M. Kondoh, and F. Nakao, “Controlling new die mechanisms for magnetic characteristics of super-large ferrite cores,” IEEE Trans. Magn., vol. 36, no. 5, pp. 3411-3414, 2000.
[8] G. A. J. Elliott, J. T. Boys, and A. W. Green, “Magnetically coupled systems for power transfer to electric vehicles,” in Proc. IEEE PEDS, 1995, pp. 797-801.
[9] N. H. Kutkut and K. W. Klontz, “Design considerations for power converters supplying the SAE J-1773 electric vehicle inductive coupler,” in Proc. APEC, 1997, pp. 841-847.
[10] K. W. Klontz, D. M. Divan, D. W. Novotny, and R. D. Lorenz, “Contactless power delivery system for mining applications,” IEEE Trans. Ind. Appl., vol. 31, no. 1, pp. 27-35, 1995.
[11] Y. H. Kim and H. D. Ha, “Design of interface circuits with electrical battery models,” IEEE Trans. Ind. Electron., vol. 44, no. 1, pp. 81-86,1997.
[12] Texas Instruments Corp.
www.ti.com
[13] Freescale Semiconductor, Inc
http://www.freescale.com/
[14] Switch mode Power Supplies “Reference Manual and Design uide”, Motorola,SMPSRM/D, Rev. 0, 5/1999
[15] Feynman and Richard., “The Feynman Lectures on Physics,” Addison-Wesley, 2006.
[16] H. E. Knoepfel, “Magnetic Fields: A Comprehensive Theoretical Treatise for Practical Use,” Wiley, Page 4, 2000.
[17] R. P. Feynman, R. B. Leighton ,and M. L. Sands, “The Feynman Lectures on Physics,” San Francisco: Pearson/Addison-Wesley. Volume 2, Page 17-2, 2006.
[18] Furlani and P. Edward, “Permanent Magnet and Electromechanical Devices: Materials, Analysis and Applications,” Academic Press Series in Electromagnetism, 2001.
[19] H. Sakamoto and K. Harada, “A novel circuit for non-contact charging through electro-magnetic coupling,” in Proc. IEEE PESC, pp.168-174, June. 1992.
[20] R. Laouamer, M. Brunello and J. P. Ferrieux, “A Multi-Resonant Converter for Non-Contact Charging with Electromagnetic Coupling,” in Proc. IEEE APEC, vol. 1, pp. 450-457, Nov. 1997.
[21] Y. Jang and M. M. Jovanovic, “A Contactless Electrical Energy Transmission System for Protable-Telephone Battery Chargers,” IEEE Trans. Ind. Electron., vol. 50, pp. 520-527, June 2003.
[22] K. D. T. Ngo and R. S. Lai, “Effect of height on power density in spiral-wound power-pot-core transformers,” IEEE Trans. Power Electron., vol. 7, no. 3, pp. 601-606, 1992.
[23] K. D. T. Ngo, R. P. Alley, A. J. Yerman, R. J. Charles, and M. H. Kuo,“Design issues for the transformer in a low-voltage power supply with high efficiency and high power density,” IEEE Trans. Power Electron.,vol. 7, no. 3, pp. 592-600, 1992.
[24] T. O. Howard and K. H. Carpenter, “A numerical study of the coupling coefficients for pot core transformers,” IEEE Trans. Magn., vol. 31, no. 3,pp. 2249-2253, 1995.pp. 2249-2253, 1995.
[25] R. Laouamer, M. Brunello, J. P. Ferrieux, O. Normand, and N. Buchheit,“A multi-resonant converter for non-contact charging with electromagnetic coupling,” in Proc. IEEE IECON, 1997, vol. 2, pp. 792-797.
[26] S. C. Tang, S. Y. Hui, and H. S. H. Chung, “Coreless planar printed-circuit-board (PCB) transformers-A fundamental concept for signal and energy transfer,” IEEE Trans. Power Electron., vol. 15, no. 5,86 pp. 931-941, 2000.
[27] S. C. Tang, S. Y. Hui, and H. S. H. Chung, “Characterization of coreless printed circuit board (PCB) transformers,” IEEE Trans. Power Electron.,vol. 15, no. 6, pp. 1275-1282, 2000.
[28] S. Y. Hui, S. C. Tang, and S. H. C. Henry, “Optimal operation of coreless PCB transformer-isolated gate drive circuits with wide switching frequency range,” IEEE Trans. Power Electron., vol. 14, no. 3, pp. 506-514, 1999.
[29] C. Byungcho, N. Jaehyun, C. Honnyong, A. Taeyoung, and C. H. Seungwon, “Design and implementation of low-profile contactless battery charger using planar printed circuit board windings as energy transfer device,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 140-147,2004.
[30] S. C. Tang, S. Y. R. Hui, and S. H. C. Henry, “A low-profile low-power converter with coreless PCB isolation transformer,” IEEE Trans. Power Electron., vol. 16, no. 3, pp. 31-315, 2001.
[31] S. C. Tang, S. Y. R. Hui, and H. S. C. Chung, “A low-profile wide-band three-port isolation amplifier with coreless printed-circuit-board (PCB) transformers,” IEEE Trans. Ind. Electron., vol. 48, no. 6, pp. 1180-1187,2001.
[32] G. B. Joung and B. H. Cho, “An Energy Transmission System for an Artificial Heart Using Leakage Inductance Compensation of Transcutaneous Transformer,” IEEE Trans. Power Electron., pp. 1013-1022, Nov. 1998.
[33] Y. Jang and M. M. Jovanovic, “A Contactless Electrical Energy Transmission System for Protable-Telephone Battery Chargers,” IEEE Trans. Ind. Electron., vol. 50, pp. 520-527, June 2003.
[34] Wireless Power Consortium.
http://www.wirelesspowerconsortium.com/
[35] W.X. Zhong, X. Liu, S.Y.R. Hui,”Analysis on a Single-Layer Winding Array Structure for Contactless BatteryCharging Systems with Free-positioning and Localized Charging Features”,Energy Conversion Congress and Exposition (ECCE), 2010 IEEE
[36] C. G. Kim, D. H. Seo, J.S. You, J. H. Park, and B. H. Cho, “Design of a contactless battery charger for cellular phone,” IEEE Trans. Ind. Electron., vol. 48, no. 6, pp. 1238-1247, 2001.
[37] F. Nakao, Y. Matsuo, M. Kitaoka, and H. Sakamoto, “Ferrite core couplers for inductive chargers,” in Proc. PCC, 2002, pp. 850-854.
[38] H. Sakamoto, K. Harada, S. Washimiya, K. Takehara, Y. Matsuo, and F. Nakao, “Large air-gap coupler for inductive charger [for electric vehicles],” IEEE Trans. Magn., vol. 35, no. 5, pp. 3526-3528, 1999.
[39] H. Sakamoto and K. Harada, “A novel converter for noncontact Charging with electro-magnetic coupling,” in Proc. INTELEC, 1993, pp. 87-93.
[40] 羅國原,”非接觸式感應充電技術應用於可攜式電子產品之研究”,國立成功大學電機工程系碩士論文,民國95 年6 月。
[41] 張宗文,”陣列鐵芯結構應用於非接觸式手機充電平台之研究”,國立成功大學電機工程系碩士論文,民國96 年6 月。
[42] J. Hirai, T. W. Kim, and A. Kawamura, “Practical study on wireless transmission of power and information for autonomous decentralized manufacturing system,” IEEE Trans. Ind. Electron., vol. 46, no. 2, pp.349-359, 1999.
[43] J. Hirai, T. W. Kim, and A. Kawamura, “Wireless transmission of power and information and information for cableless linear motor drive,” IEEE Trans. Ind. Appl., vol. 15, no. 1, pp. 21-27, 2000.
[44] H. Matsuki, M. Shiiki, K. Murakami, and T. Yamamoto, “Investigation of coil geometry for transcutaneous energy transmission for artificial heart,” IEEE Trans. Magn., vol. 28, no. 5, pp. 2406-2408, 1992.
[45] C. C. Tsai, B. S. Chen, and C. M. Tsai, “Design of wireless transcutaneous energy transmission system for totally artificial hearts,” in Proc. IEEE APCCAS, 2000, pp. 646-649.
[46] M. Takahashi, K. Watanabe, F. Sato, and H. Matsuki, “Signal transmission system for high frequency magnetic telemetry for an artificial heart,” IEEE Trans. Magn., vol. 37, no. 4, pp. 2921-2924, 2001.
[47] 趙恆生,“感應充電器耦合電路設計研究”,私立中原大學電機所碩士論文,民國90 年6 月。
[48] 羅志宏,“具負載與間距偵測之非接觸式供電系統”,國立中央大學電機所碩士論文,民國95 年6 月。
[49] A. Kurs, “Wireless Power Transfer via Strongly Coupled Magnetic Resonances, ” Science 317, Page 83-86, 2007.
[50] J. Hirai, T. W. Kim and A. Kawamura, “Study on Crosstalk in Inductive Transmission of Power and Information,” IEEE Trans. Ind.
Electron., vol. 46, pp. 1174-1182, Dec. 1999.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-01-25公開。
  • 同意授權瀏覽/列印電子全文服務,於2018-01-25起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信