§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1701201322272100
DOI 10.6846/TKU.2013.00569
論文名稱(中文) 非接觸式無線電能傳輸系統技術之研究與應用
論文名稱(英文) Contactless Wireless Power Transmission Technology and Application
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系碩士在職專班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 101
學期 1
出版年 102
研究生(中文) 鄭博元
研究生(英文) Po-Yuan Cheng
學號 798440086
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2013-01-02
論文頁數 100頁
口試委員 指導教授 - 丘建青
委員 - 李慶烈
委員 - 林信標
委員 - 丘建青
關鍵字(中) 非接觸式無線電能傳輸
無線充電
金屬異物偵測
一次線圈
二次線圈
電磁耦合
關鍵字(英) Wireless Power Transmission
Contactless
Wireless Power Consortium(WPC)
Qi
PMOD
Electromagnetic Induction
Guided Positioning
Magnetic Attraction
TI(Texas Instruments)
Free-Scale
BQ500210
BQ51013A
第三語言關鍵字
學科別分類
中文摘要
本論文使用符合WPC(Wireless Power Consortium)聯盟架構規範的TI(Texas Instruments)公司高效率硬體模組,透過磁吸引式(Magnetic Attraction)的發射器(TX)_BQ500210與接收器(RX)_BQ51013A模組,利用發射端的一次線圈與接收端二次線圈的電磁感應(Electromagnetic Induction)耦合,來進行模擬非接觸式無線電能傳輸模擬之實驗,並使用Free-Scale公司同樣為符合WPC規範的RX裝置,做為對照組的實驗測試。
    本研究主要貢獻有三點,其一為無線電能傳輸之模擬實驗與功能驗證測試,包含TX及RX之間的偵測與辨證溝通識別、金屬異物偵測、低電壓與過電壓保護、效率等;由於WPC聯盟規範內的無線電能傳輸裝置是可以任意互相搭配使用,本研究貢獻之二,為搭配同樣符合WPC聯盟規範的Free-Scale RX裝置做為實驗對照組,針對無線電能傳輸品質、低電壓與過電壓保護、金屬異物偵測與保護、效率等四大重點部分做差異比較;貢獻之三為將非接觸式無線電能傳輸發展聯盟WPC與其Qi認證(Certification)內容,做一整合與介紹,並探究非接觸式無線電能傳輸技術開發推廣問題,及未來的發展目標與方向。
    實驗結果發現,TX與RX之間的快速辨識認證僅需2秒鐘左右,即可開始無線電能傳輸的進行;無線電能傳輸品質方面,發現使用同為TI公司開發的TX與RX進行測試時,RX可獲得較完整的能量傳輸,而搭配使用Free-Scale的RX出現明顯的傳輸損耗,直接影響了效率的表現;而透過模擬手持裝置的負載抽載與卸載(低電壓與過電壓保護)實驗,雖然兩組RX的輸出電壓在瞬間抽載與卸載時,均超出了正常工作範圍(4.85V~5V),但都能在短時間內(約200微秒~240毫秒)即恢復穩態,所以都還是能維持無線電能傳輸的正常進行;在金屬異物入侵實驗方面,若在限制時間內排除金屬物體,則隨即恢復無線電能的傳輸,但若該金屬物體持續入侵時間超過限制時間,則終止該傳輸平台,需重新開關啟動TX與RX裝置才能恢復無線電能傳輸的進行,其中TI的RX_BQ51013A模組限制時間為22秒鐘,而對照組的Free-Scale RX裝置限制時間則約為10秒鐘;在輸入電源安全保護測試方面,當偵測到傳統變壓器接入時,TX應隨即停止能量的供應,直到變壓器移除後,才又重新恢復無線電能的傳輸,避免兩個以上電壓源同時接入時所可能造成的安全疑慮;在效率表現方面,以相同的TI TX,搭配使用不同的TI 與Free-Scale RX做比較,其中使用TI的RX最高傳輸效率約為68%,而Free-Scale的RX為65%。
英文摘要
This essay keeps with TI(Texas Instruments) high efficient hardware module and Free-Scale RX device which are following WPC(Wireless Power Consortium) concept standard. The high efficient module is through magnetic attraction transceiver and receiver by using prime and secondary electromagnetic induction coupling to simulate wireless power supply technology as experimental group and use Free-Scale’s receiver device as control group.
    There are three contributions in this study. The first is related to stimulation and function test of wireless power transmission technology which includes transceiver and receiver detect and distinguish communication, metal object detection, under-shoot and over-shoot protection, efficiency between each other. WPC (Wireless Power Consortium) specification allows wireless power transmission device can compatible used. Therefore, for second contribution, it takes Free-Scale receiver device which is also under WPC standard as control group to compare wireless power transmission quality, under-shoot and over-shoot protection, metal object detection, protection and efficiency each difference. The third contribution will use WPC(Wireless Power Consortium) and Qi certification as integration and introduction to explore development, future target and direction of wireless power transmission technology.
    According to the test result, it only takes 2 seconds to distinguish authentication between transceiver and receiver then can start process wireless power transmission. At the wireless power transmission quality, it found that when transceiver and receiver which are developed by TI processed test, receiver can acquire more completed power transfer from transceiver. Moreover, using Free-Scale receiver apparently showed that power transfer decrease effected performance efficient. Through simulated handy device test to loading and load off(under-shoot and over-shoot), and it showed that although two receiver groups output voltage even loading and load off suddenly and both are over normal working range (4.85V~5V), but still can back to stable in short time(around 200us~240ms) and maintain wireless power transmission abnormally. At metal object invade experiment aspect, if it can exclusive metal object in limited period will also restore wireless power supply. Otherwise, it will terminate wireless power transmission when metal object continually invade in limited period. Among TI’s receiver_BQ51013A module limited time is 22 seconds compared to receiver of Free-Scale’s 10 seconds. At power input protection test aspect, transceiver should stop power transmission immediately once it detects traditional adapter input. Otherwise, it will restore wireless power transmission when adapter removed, to avoid more than two voltages input at the same time and cause safety issue. At performance efficient aspect, it makes comparison by using the same TI’s transceiver along with different TI and Free-Scale’s receiver. Among using these, TI’s receiver get the highest power transfer efficiency is 68% and Free-Scale’s receiver is 65%.
第三語言摘要
論文目次
目錄

第一章 簡介…………………………………………………………....1
	1.1 研究動機………………………………………………….…1
	1.2 應用與發展……………………………………………….…2
	1.3 研究目的與方法…………………………………………….5
	  1.4 本研究之貢獻……………………………………………….5
	1.5 論文大綱…………………………………………………….6
第二章 非接觸式無線電能傳輸的技術基本原理與架構……………7
	2.1 電磁場理論……………………………………………….…7
	2.2接觸式與非接觸式電能傳輸架構說明…………….……….10
	2.3接觸式與非接觸式電能傳輸的差異比較…………….…….11
	2.4非接觸式無線電能傳輸技術拓墣…………………………..13
	2.5非接觸式鐵芯……………………………………………..…16
	2.6非接觸式控制方法………………………………………..…19
	2.7非接觸式無線電能傳輸的歷史演進與重要研究發展…..…20
第三章 非接觸式無線電能傳輸之概述與實驗晶片規格介紹說明…30
	3.1概論………………………………………..…………………30
	3.2發射端(TX)與接收端(RX)之間的溝通………………..……31
	3.3傳輸效率……………………………………………….……32
	3.4 Wireless Power Consortium (WPC) & Qi Certification….…34
	3.5 感應線圈種類………………………………………………37
	3.6發射器(TX)晶片 - BQ500210………………………….…..40
	3.6.1晶片功能與特色簡述…………………………………..…40
	    3.6.2無線充電狀態告知…………………………………..43
	    3.6.3異物(金屬傳導)探測技術Parasitic Metal Object 
	         Detection (PMOD) ………………………………..…44
	    3.6.4過溫度保護Thermal Protection………………………46
	    3.6.5封裝方式與晶片尺寸規格………………………...…47
	3.7接收器(RX)晶片 - BQ51013A…………………………...…49
	    3.7.1晶片功能與特色簡述……………………………...…49
	    3.7.2 Dynamic Rectifier Control algorithm & Dynamic 
	        Efficiency Scaling 能量傳輸效率的最佳化…………51
	    3.7.3保護機制(一) 輸入過電壓保護(Input Overvoltage)...52
	    3.7.4保護機制(二) 過溫度保護(Thermal Protection)…….53
	    3.7.5保護機制(三) End Power Transfer (EPT)………….…54
	    3.7.6通訊協定–Interface Definition……………………...54
	    3.7.7封裝方式與晶片尺寸規格……………………….…..57
第四章 非接觸式無線電能傳輸之實驗………………………………59
	4.1概論………………………………………………………..…59
	4.2測試設備儀器介紹………………………………………….59
4.3 BQ500210(TX)實驗………………………………………………..62
	    4.3.1發射端TX模組BQ500210…………………………62
	    4.3.2 BQ500210自我檢測與環境架設………………...…63
	    4.3.3 BQ500210訊號量測–Start Up Without RX…….....64
	    4.3.4 BQ500210訊號量測–Apply RX………………..…66
	    4.3.5 PMOD金屬異物偵測實驗...………………………..68
4.4 BQ51013A (RX)實驗………………………………………………72
	    4.4.1接收端RX模組BQ51013A………………………...72
	    4.4.2 BQ51013A自我檢測………………………………...73
	    4.4.3 BQ51013A訊號量測–Rectifier RX Detect…………74
	    4.4.4 Load Test - 低電壓與過電壓保護測試……………...75
4.4.5 Adapter In輸入電源切換測試……………………………78
	    4.4.6 效率(Efficiency)量測…………………………….…..82
	    4.4.7 無線電能傳輸品質測試……………………………..83
第五章 結論…………………………………………………………....85
	5.1實驗結果討論…………………………………………..……85
	5.2現存發展與推廣問題……………………………………..…87
	5.3未來展望……………………………………………………..90
	5.4結語…………………………………………………………..91
參考文獻……………………………………………………………..…93

















圖目錄

圖1.2-1 初級線圈與次級線圈之電磁感應示意圖……………………3
圖1.2-2 非接觸式感應電能傳輸技術之應用概略圖…………………4
圖1.2-3 非接觸式無線感應技術之運用………………………………4
圖2.1-1 安培右手定律…………………………………………………7
圖2.1-2 流過電流之線圈與該磁場強度………………………………8
圖2.1-3 法拉第電磁感應現象示意圖…………………………………9
圖2.2-1 接觸式供電系統架構…………………………………………10
圖2.2-2 非接觸式供電系統架構………………………………………11
圖2.4-1 非接觸式無線電能傳輸電源供應器架構……………………14
圖2.4-2自我振盪C級直流轉換器……………………………………...14
圖2.4-3 全橋式諧振轉換器……………………………………………15
圖2.4-4 半橋式諧振轉換器……………………………………………16
圖2.5-1 Pot-Core示意圖………………………………………………..17
圖2.5-2 UU-Core與EE-Core的磁路分析示意圖………………………17
圖2.5-3 CI-Core磁路分析示意圖………………………………………18
圖2.5-4 不同的鐵心構造示意圖………………………………………19
圖2.6-1 電壓控制振盪及頻率控制器…………………………………19
圖2.6-2 具強健(Robust)控制器………………………………………20
圖2.7-1 PCB繞線式變壓器……………………………………………21
圖2.7-2 PCB繞線式可攜式手機充電器之架構示意圖………………21
圖2.7-3萬用型平板式充電器實際應用………………………………22
圖2.7-4 非接觸式無線電能傳輸相關技術概略分類示意圖………..23
圖2.7-5 電磁感應式………………………………………………..…24
圖2.7-6 電磁共振式………………………………………………..…24
圖2.7-7 MIT成功在2公尺外點亮60W燈泡…………………………..25
圖2.7-8 2007 ICES展示eCoupled…………………………………..…26
圖2.7-9 2008年Intel發表無線電力傳輸設計…………………………27
圖2.7-10 無線功率傳輸架構方塊圖…………………………………28
圖2.7-11 NASA太陽能衛星示意圖…………………………………..29
圖2.7-12 特斯拉線圈示意圖…………………………………………29
圖3.1-1 感應磁場示意圖…………………………………………..…30
圖3.1-2 感應式無線電能傳輸系統概略圖………………………..…31
圖3.2-1 發射端TX與接收端RX的傳輸溝通…………………………32
圖3.3-1 無線傳輸磁力線圈感應示意圖…………………………..…33
圖3.3-2 線圈距離與感應面積對效率的影響……………………..…34
圖3.4-1 WPC成員示意圖……………………………………………..35
圖3.4-2 Qi認證識別商標……………………………………………...37
圖3.5-1 陣列式感應線圈……………………………………………..38
圖3.5-2 磁力式感應線圈…………………………………………..…39
圖3.5-3 自動偵測式感應線圈………………………………….….…39
圖3.6.1-1 BQ500210發射器單元應用於無線電能傳輸架構……..…40
圖3.6.1-2 BQ500210效率曲線圖…………………………………..…41
圖3.6.1-3 輸出功率與PMOD能量反饋的關聯示意圖…………...…42
圖3.6.2-1 透過LED燈號顯示無線充電狀態圖……………………..43
圖3.6.3-1 PMOD反饋狀態圖…………………………………………46
圖3.6.5-1 BQ500210發射晶片48pin接腳示意圖…………………….48
圖3.6.5-2 BQ500210尺寸示意圖…………………………………..…48
圖3.7.1-1 BQ51013A接收器單元應用於無線電能傳輸架構…….…50
圖3.7.2-1 Dynamic Efficiency Scaling流程圖………………………..52
圖3.7.6-1 通訊封包傳送示意圖…………………………………..…55
圖3.7.6-2 八位元二進制編碼原則…………………………………..56
圖3.7.6-3 單一指令完整編碼原則………………………………..…56
圖3.7.6-4 完整的封包結構示意圖………………………………..…57
圖3.7.7-1 BQ51013A QFN尺寸示意圖………………………………57
圖3.7.7-2 BQ51013A DSBGA尺寸示意圖…………………………...58
圖4.2-1 Programmable Power Supply……………………………….…59
圖4.2-2 Smart Electronic Load…………………………………………60
圖4.2-3 Digital Phosphor Oscilloscope………………………………...60
圖4.2-4 AC/DC Current Probe…………………………………………61
圖4.2-5 Digital Multimeter………………………………………….….61
圖4.2-6 Electric Meter……………………………………………….…62
圖4.3.1-1 BQ500210 EVM實體圖……………………………………..63
圖4.3.2-1 BQ500210 EVM自我檢測示意圖………………………..…64
圖4.3.3-1 BQ500210 TX模組狀態顯示燈號位置…………………..…65
圖4.3.3-2 BQ500210 TX對RX裝置的偵測感應……………………....65
圖4.3.3-3 BQ500210 TX偵測RX裝置的脈波展開圖…………………66
圖4.3.4-1 BQ500210蜂鳴器enable時間約為400毫秒…………………67
圖4.3.4-2 無線電能傳輸進行中時的TX一次線圈波形圖………...…67
圖4.3.4-3 無線電能傳輸進行中TX一次線圈波形展開圖…………...68
圖4.3.5-1 金屬異物入侵示意圖………………………………………69
圖4.3.5-2 PMOD啟動後的狀態顯示燈號…………………………….70
圖4.3.5-3 PMOD with TI RX……………………………………….….70
圖4.3.5-4 PMOD with Free-Scale RX……………………………….…71
圖4.3.5-5 Free-Scale RX實體圖……………………………………..…71
圖4.4.1-1 BQ51013A EVM實體圖………………………………….…72
圖4.4.2-1 BQ51013A EVM自我檢測示意圖………………………….73
圖4.4.3-1 RX Rectifier Pulse……………………………………………74
圖4.4.3-2 RX Rectifier vs Vout…………………………………………75
圖4.4.3-3 TX Vin vs RX rectifier…………………………………….…75
圖4.4.4-1 TI RX Vout undershoot when load-in……………………..…76
圖4.4.4-2 Free-Scale RX Vout undershoot when load-in………….……77
圖4.4.4-3 TI RX Vout overshoot when load-off………………………...77
圖4.4.4-4 Free-Scale RX Vout overshoot when load-off……………..…77
圖4.4.5-1 Adapter off and WPC on…………………………………..…79
圖4.4.5-2 Adapter on and WPC off……………………………………..80
圖4.4.5-3 Adapter off and WPC re-build………………………………..81
圖4.4.5-4 Adapter on/off vs RX Vout……………………………….…..81
圖4.4.6-1 TI 效率分佈曲線………………………………………..…..82
圖4.4.6-2 Free-Scale效率分佈曲線………………………………..…...83
圖4.4.7-1 TI RX能量接收訊號…………………………………………84
圖4.4.7-2 Free-Scale RX能量接收訊號……………………………..…84
圖5.4-1 無線電能傳輸應用於數位家庭………………………………92
圖5.4-2 無線電能傳輸於車用與行動生活…………………………....92
圖5.4-3 車內無線充電平台…………………………………………..93


















表目錄

表2.3-1 接觸式與非接觸式電能傳輸系統架構差異比較表………….……13
表2.7-1 無線電力傳送效率比較表………………………………………………….…………26
表3.6.2-1 LED Modes…………………………………………………………………………………..…44
表3.6.3-1 PMOD反饋表………………………………………………………………………..………46
表3.7.2-1 Dynamic Efficiency Scaling刻度表……………………………………….…51
表3.7.5-1 EPT啟動條件概述…………………………………………………………………….…54
表4.4.6-1 效率測試結果with TI RX…………………………………………………..…..…82
表4.4.6-2 效率測試結果with Free-Scale RX………………………………………..…83
參考文獻
[1] J. Yungtaek and M. M. Jovanovic, “A contactless electrical energy
transmission system for portable-telephone battery chargers,” IEEE
Trans. Ind. Electron., vol. 50, no. 3, pp. 520-527, 2003.
[2] S. Y. R. Hui and W. C. Ho, “A new generation of universal 
Contactless battery charging platform for portable consumer electronic equipment,” IEEE Trans. Power Electron., vol. 20, no. 3, pp. 620-627, 2005.
[3] H. Abe, H. Sakamoto, and K. Harada, “A noncontact charger using a
resonant converter with parallel capacitor of the secondary coil,” IEEE Trans. Ind. Appl., vol. 36, no. 2, pp. 444-451, 2000.
[4] A. Esser, “Contactless charging and communication for electric
vehicles,” IEEE Trans. Ind. Appl., vol. 1, no. 6, pp. 4-11, 1995.
[5] C. G. Kim, D. H. Seo, J.S. You, J. H. Park, and B. H. Cho, “Design of 
a contactless battery charger for cellular phone,” IEEE Trans. Ind.
Electron., vol. 48, no. 6, pp. 1238-1247, 2001.
[6] F. Nakao, Y. Matsuo, M. Kitaoka, and H. Sakamoto, “Ferrite core
couplers for inductive chargers,” in Proc. PCC, 2002, pp. 850-854.
[7] H. Sakamoto, K. Harada, S. Washimiya, K. Takehara, Y. Matsuo, and 
F. Nakao, “Large air-gap coupler for inductive charger [for electric
vehicles],” IEEE Trans. Magn., vol. 35, no. 5, pp. 3526-3528, 1999.
[8] H. Sakamoto and K. Harada, “A novel converter for noncontact 
Charging with electro-magnetic coupling,” in Proc. INTELEC, 1993, pp. 87-93.
[9] 羅國原,非接觸式感應充電技術應用於可攜式電子產品之研究,
國立成功大學電機工程系碩士論文,2006。
[10] J. O. McSpadden and J. C. Mankins, “Space solar power programs 
And microwave wireless power transmission technology,” IEEE Trans. Microw. Magn., vol. 3, no. 4, pp. 46-57, 2002.
[11] J. Hirai, T. W. Kim, and A. Kawamura, “Practical study on wireless
transmission of power and information for autonomous decentralized
manufacturing system,” IEEE Trans. Ind. Electron., vol. 46, no. 2, pp.349-359, 1999.
[12] Y. Kanai, M. Mino, and T. Sakai, “A non-contact power supply card
powered by solar cells for mobile communication,” in Proc. INTELEC, 2001, pp. 14-18.
[13] T. Bieler, M. Perrottet, V. Nguyen, and Y. Perriard, “Contactless 
Power and information transmission,” IEEE Trans. Ind. Appl., vol. 38, no. 5, pp. 1266-1272, 2002.
[14] J. Hirai, T. W. Kim, and A. Kawamura, “Integral motor with driver 
and wireless transmission of power and information for autonomous
subspindle drive,” IEEE Trans. Power Electron., vol. 15, no. 1, pp.
13-20, 2000.
[15] J. Hirai, T. W. Kim, and A. Kawamura, “Wireless transmission of 
power and information and information for cableless linear motor drive,” IEEE Trans. Ind. Appl., vol. 15, no. 1, pp. 21-27, 2000.
[16] H. Matsuki, M. Shiiki, K. Murakami, and T. Yamamoto, 
“Investigation of coil geometry for transcutaneous energy transmission for artificial heart,” IEEE Trans. Magn., vol. 28, no. 5, pp. 2406-2408, 1992.
[17] C. C. Tsai, B. S. Chen, and C. M. Tsai, “Design of wireless
transcutaneous energy transmission system for totally artificial hearts,” in Proc. IEEE APCCAS, 2000, pp. 646-649.
[18] M. Takahashi, K. Watanabe, F. Sato, and H. Matsuki, “Signal
transmission system for high frequency magnetic telemetry for an
artificial heart,” IEEE Trans. Magn., vol. 37, no. 4, pp. 2921-2924, 2001. 
[19] F. Sato, J. Murakami, T. Suzuki, H. Matsuki, S. Kikuchi, K. 
Harakawa, H. Osada, and K. Seki, “Contactless energy transmission to mobile loads by CLPS-test driving of an EV with starter batteries,” IEEE Trans. Magn., vol. 33, no. 5, pp. 4203-4205, 1997.
[20] Y. Matsuo, O. M. Kondoh, and F. Nakao, “Controlling new die
mechanisms for magnetic characteristics of super-large ferrite cores,”
IEEE Trans. Magn., vol. 36, no. 5, pp. 3411-3414, 2000.
[21] G. A. J. Elliott, J. T. Boys, and A. W. Green, “Magnetically coupled
systems for power transfer to electric vehicles,” in Proc. IEEE PEDS,
1995, pp. 797-801.
[22] N. H. Kutkut and K. W. Klontz, “Design considerations for power
converters supplying the SAE J-1773 electric vehicle inductive coupler,” in Proc. APEC, 1997, pp. 841-847.
[23] Griffiths and J. David, “Introduction to Electrodynamics,” 
Prentice Hall.
[24] Feynman and Richard., “The Feynman Lectures on Physics,” 
Addison-Wesley, 2006.
[25] H. E. Knoepfel, “Magnetic Fields: A Comprehensive Theoretical 
Treatise for Practical Use,” Wiley, Page 4, 2000.
[26] R. P. Feynman, R. B. Leighton ,and M. L. Sands, “The Feynman 
Lectures on Physics,” San Francisco: Pearson/Addison-Wesley. Volume 2, Page 17-2, 2006.
[27] Furlani and P. Edward, “Permanent Magnet and Electromechanical 
Devices: Materials, Analysis and Applications,” Academic Press Series in Electromagnetism, 2001.
[28] H. Sakamoto and K. Harada, “A novel circuit for non-contact
charging through electro-magnetic coupling,” Proc. of IEEE Power
Electronics Specialist Conference, pp.168-174, June. 1992.
[29] A. Kurs, “Wireless Power Transfer via Strongly Coupled Magnetic 
Resonances, ” Science 317, Page 83-86, 2007.
[30] “CES Best of 2007”, 
http://reviews.cnet.com/4520-12760_7-6676861-1.html
[31] “Nikola Tesla's Priority in the Invention of Radio”,
http://en.wikipedia.org/wiki/Invention_of_radio#Nikola_Tesla.E2.80.99s_Priority_in_the_Invention_of_Radio
[32] “Nikola Tesla's Priority in the Invention of Radio”,
http://en.wikipedia.org/wiki/Invention_of_radio#Nikola_Tesla.E2.80.99s_Priority_in_the_Invention_of_Radio
[33] W. C. Brown, “The History of Power Transmission by Radio 
Waves,” IEEE Transactions on Microwave Theory and Techniques, vol. 32, no. 9, pp. 1230-1242, Sep. 1984.
[34] M. Cheneyet, “Tesla: Man Out of Time,” Simon and Schuster, 
October 2, 2001.
[35] J. O. McSpadden and J. C. Mankins, “Space Solar Power Programs 
and Microwave Wireless Power Transmission Technology,” IEEE Microwave Magazine, vol. 3, no. 4, pp. 46-57, Dec. 2002.
[36] W. C. Brown, “The History of Power Transmission by Radio 
Waves,” IEEE Transactions on Microwave Theory and Techniques, Volume 32, Page 1230-1242, 1984.
[37] R. H. Nansen, “Wireless Power Transmission: the Key to Solar 
Power Satellites,” IEEE AES Systems Magazine, Volume 11, Issue 1, Page 33-39, 1996.
[38] H. Sakamoto and K. Harada, “A novel circuit for non-contact 
harging through electro-magnetic coupling,” in Proc. IEEE PESC, pp.168-174, June. 1992.
[39] R. Laouamer, M. Brunello and J. P. Ferrieux, “A Multi-Resonant
Converter for Non-Contact Charging with Electromagnetic
Coupling,” in Proc. IEEE APEC, vol. 1, pp. 450-457, Nov. 1997.
[40] Y. Jang and M. M. Jovanovic, “A Contactless Electrical Energy
Transmission System for Protable-Telephone Battery Chargers,” IEEE Trans. Ind. Electron., vol. 50, pp. 520-527, June 2003.
[41] J. Hirai, T. W. Kim and A. Kawamura, “Study on Crosstalk in
Inductive Transmission of Power and Information,” IEEE Trans. Ind.
Electron., vol. 46, pp. 1174-1182, Dec. 1999.
[42] C. G. Kim, D. H. Seo, J S. You, J. H. Park and B. H. Cho, “Design 
Of a Contactless Battery Charger for Cellular Phone,” IEEE Trans. Ind.	Electron., vol. 48, no. 6, pp. 1238-1246, Dec. 2001
[43] H. Ayano, K. Yamamoto, N. Hino and I. Yamato, “Highly efficient
contactless electrical energy transmission system,” IEEE Trans. Ind.
Electron., pp. 1346-1369, Nov. 2002.
[44] 趙恆生,“感應充電器耦合電路設計研究”,私立中原大學電
機所碩士論文,民國90 年6 月。
[45] G. B. Joung and B. H. Cho, “An Energy Transmission System for an
Artificial Heart Using Leakage Inductance Compensation of
Transcutaneous Transformer,” IEEE Trans. Power Electron., pp.
1013-1022, Nov. 1998.
[46] Y. Jang and M. M. Jovanovic, “A Contactless Electrical Energy
Transmission System for Protable-Telephone Battery Chargers,” IEEE Trans. Ind. Electron., vol. 50, pp. 520-527, June 2003.
[47] Texas Instruments Corp. 
	www.ti.com
[48] Free-Scale Corp.
	http://www.freescale.com/
[49] WPC(Wireless Power Consortium)
	http://www.wirelesspowerconsortium.com/
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信