§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1701200711060200
DOI 10.6846/TKU.2007.00473
論文名稱(中文) CVD鑽石膜複合拋光及微加工之加工機制與加工表面性狀研究
論文名稱(英文) Research of the material removal mechanism and surface integrity involved in precision polishing and micro-machining of CVD diamond film
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 機械與機電工程學系博士班
系所名稱(英文) Department of Mechanical and Electro-Mechanical Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 95
學期 1
出版年 96
研究生(中文) 周文成
研究生(英文) Wen-Chen Chou
學號 892340059
學位類別 博士
語言別 繁體中文
第二語言別
口試日期 2007-01-08
論文頁數 147頁
口試委員 指導教授 - 趙崇禮
委員 - 簡錫新
委員 - 陳大同
委員 - 馬廣仁
委員 - 楊耀波
委員 - 趙崇禮
關鍵字(中) 化學氣相沉積鑽石膜
材料移除機制
表面粗糙度
拋光
關鍵字(英) CVD diamond film
material removal mechanism
surface roughness
polishing
第三語言關鍵字
學科別分類
中文摘要
鑽石擁有許多優異的物理、化學、光學、力學與電學特性,例如它擁有最高的熱傳導係數、具化學惰性、具有最高硬度、高楊氏係數與低摩擦係數、具有寬能隙與寬的光學穿透頻域。因此,鑽石膜可以用來解決目前許多工程上難解的問題。雖然鑽石擁有這些極佳的性質,但是天然鑽石高成本與產量的限制,使得工業應用大為受限。然而,現今使用化學氣相沉積(chemical vapor deposition, CVD)法來成長鑽石膜,已經是相當成熟且普遍的方法。然而,由於鑽石晶體成長時,晶粒間柱狀成長競爭之特性使然,所以當鑽石膜厚度愈厚、晶粒愈大時,所得到的表面粗糙度也愈高。根據所沉積的厚度與成長參數之不同,表面粗糙度值(Ra)可以從數十μm到數μm。然而,低表面粗糙度與平滑的表面幾乎是許多工業應用的基本需求。目前有許多研究者以各種方法試圖降低多晶鑽石膜的表面粗糙度,像是以機械拋光、化學拋光、熱化學拋光、化學輔助機械拋光、雷射拋光、離子束拋光、電子迴旋共振電漿拋光與反應離子蝕刻等方式。在這些方法當中並沒有一種可以達到快速且有效的拋光。
在本論文中,CVD多晶鑽石膜將分別以常用的熱化學拋光、雷射拋光、感應耦合電漿蝕刻、熱氧化蝕刻與反應離子蝕刻等方式來進行實驗,除探討拋光或蝕刻機制對表面粗糙度的影響外,並分別以掃描式電子顯微鏡與微拉曼頻譜分析儀來觀察其表面形貌的改變與微結構成分分析。透過一系列的實驗,提出最有效率的快速複合拋光鑽石膜的加工方法。
英文摘要
Diamond has many outstanding physical, chemical, optical, mechanical, and electrical properties such as the highest thermal conductivity, the extreme chemical inertness, the highest known hardness, the lowest compressibility of known material, high in Young’s modulus, low in friction coefficient, wide in band gap, and a wide optical transparency bandwidth. Thus, diamond can be a potential solution to many advanced engineering problems. Though diamond possesses all those excellent properties, high cost and difficulty in machining have hindered its industrial applications. Nowadays, using CVD method to synthesize high quality diamond film is a rather mature and stable technology. Diamond grains normally get bigger and the surface gets rougher when the film gets thicker as the result of competition growth. Depending on the film thickness and growing conditions, the surface roughness can vary from tens micrometer to a few micrometers. However, a smooth surface in many industrial applications is a necessity. Many researches have been conducted to improve the surface roughness of CVD diamond film by various approaches such as by mechanical polishing, chemical polishing, thermo-chemical polishing, chemical- assisted mechanical polishing, laser ablation, ion beam irradiation, ECR plasma polishing, and reactive ion etching. Unfortunately, none of them could quickly and efficiently lower the surface roughness, especially in terms of large area and thick CVD diamond film.
In this thesis, the CVD diamond film was conducted with the thermo-chemical polishing, laser ablation, inducted coupling plasma, and reactive ion etching, respectively. The research aimed to improve the surface roughness and to investigate the mechanism of material removal. The SEM micrographs and micro-Raman were used to analyze the morphology and microstructure of the obtained surface. The results showed that the compound polish method could effectively shorten the processing time needed to polish the CVD diamond by weakening its surface structure.
第三語言摘要
論文目次
中文摘要	   I
英文摘要    III
致謝	V
目錄	VI
圖目錄	VIII
表目錄	XII
符號說明	XIII
第一章、概論	1
第一節、鑽石的特性	2
第二節、鑽石的合成技術	8
第三節、研究動機與目的	14
第四節、小結	16
參考文獻	17
第二章、文獻回顧	20
第一節、接觸式拋光	23
第二節、非接觸式拋光	30
第三節、複合式拋光	50
第四節、拉曼頻譜分析	52
第五節、小結	55
參考文獻	56
第三章、實驗設計規劃	64
第一節、實驗流程	64
第二節、實驗分析設備	65
第三節、實驗設備與參數	70
參考文獻	77
第四章、結果與討論	78
第一節、熱化學拋光鑽石膜	78
第二節、準分子雷射拋光鑽石膜	88
第三節、反應離子蝕刻(RIE)鑽石膜	95
第四節、ICP蝕刻鑽石膜研究	110
第五節、熱氧化法弱化鑽石膜	116
第六節、複合式拋光鑽石膜	117
參考文獻	124
第五章、工業應用與未來展望	128
第一節、奈米壓印	129
第二節、CVD鑽石膜在加工上之應用	133
第三節、CVD鑽石在熱管理的應用	134
第四節、表面聲波濾波元件	136
第五節、鑽石場發射器	136
第六節、MEMS應用	137
小結	139
參考文獻	140
第六章、結論	142
博士班期間發表之文章	145
(一)期刊論文	145
(二)會議論文	145

圖目錄
頁次
圖1-1、(a)CVD鑽石膜沉積成本,(b)全球合成寶石與工業晶體產值………………2
圖1-1-1、鑽石與其他材料的硬度比較………………………………………………4
圖1-1-2、CVD鑽石薄膜與銅之熱傳導係數比較圖…………………………………4
圖1-1-3、鑽石的光學透光性…………………………………………………………6
圖1-1-4、以ZnO/Diamond作為SAW元件之應用…………………………………7
圖1-1-5、鑽石的各項優異特性………………………………………………………8
圖1-2-1、鑽石的相圖與Gibbs自由能曲線…………………………………………9
圖1-2-2、鑽石成長之CVD物理與化學過程………………………………………10
圖1-2-3、C-H-O成分相圖……………………………………………………………13
圖1-2-4、為CVD生長鑽石之示意圖………………………………………………13
圖1-3-1、鑽石結構示意圖…………………………………………………………14
圖2-2-1、離子束拋光示意圖………………………………………………………39
圖2-2-2、金屬掩模的製作方法……………………………………………………46
圖2-2-3、放電拋光摻雜CVD鑽石膜………………………………………………48
圖3-1-1、實驗步驟流程圖…………………………………………………………64
圖3-2-1、表面/次表面分析流程示意圖……………………………………………65
圖3-2-2、Alpha-step 500型…………………………………………………………66
圖3-2-3、光學顯微鏡………………………………………………………………66
圖3-2-4、掃描式電子顯微鏡………………………………………………………67
圖3-2-5、各種碳基材料的拉曼特徵頻譜圖………………………………………68
圖3-2-6、Renishaw公司的Raman頻譜分析儀……………………………………69
圖3-3-1、熱化學拋光設備示意圖…………………………………………………71
圖3-3-2、加熱器升溫曲線…………………………………………………………71
圖3-3-3、熱化學拋光流程圖………………………………………………………72
圖3-3-4、準分子雷射加工機示意圖………………………………………………73
圖3-3-5、RIE實驗機台示意圖………………………………………………………74
圖3-3-6、常壓電漿處理設備………………………………………………………76
圖3-3-7、常壓空氣電漿噴流示意圖………………………………………………76
圖3-3-8、(a)熱氧化反應設備示意圖, (b)熱化學弱化概念圖………………………76
圖4-1-1、熱化學拋光原理示意圖…………………………………………………78
圖4-1-2、熱拋光後所得之CVD鑽石膜SEM圖片…………………………………82
圖4-1-3、化學勢能圖………………………………………………………………83
圖4-1-4、EDX分析熱化學拋光表面成份…………………………………………84
圖4-1-5、熱化學拋光 (a)表面形成物 (b)拉曼頻譜分析、(c)擴散機制示意圖…85
圖4-1-6、(a)擴散機制示意圖、(b)-(f)低含碳量之拋光盤在拋光溫度550 oC時之連續拋光表面形貌變化SEM圖片……………………………86
圖4-1-7、(a)為其拋光機制之示意圖、(b)~(f)高含碳量拋光盤之連續拋光表面形貌變化SEM圖…………………………………………………………87
圖4-1-8、熱化學拋光CVD鑽石膜之SEM圖片(2.1m/s, 30min, 550oC, 3.8MPa) …………………………………………………………………87
圖4-1-9、熱化學拋光CVD鑽石膜之SEM圖片(4.27m/s, 30min, 550oC, 4.2MPa) ………………………………………………………………87
圖4-2-1、分子之鍵結能與雷射光子能量…………………………………………88
圖4-2-2、準分子雷射移除鑽石膜之示意圖………………………………………91
圖4-2-3、雷射光加工之入射角……………………………………………………91
圖4-2-4、準分子雷射拋光CVD鑽石膜之拋光過程………………………………92
圖4-2-5、ArF雷射拋光CVD鑽石膜之拉曼頻譜分析
(24kV, 10Hz, 401mJ)…………………………………………93
圖4-2-6、ArF雷射拋光CVD鑽石膜之石墨化SEM圖片
(8000 shots, 2.8 J/cm2, repetition rate (a) (b) 10Hz, (c) 20Hz) …………94
圖4-2-7、(a) CVD化學氣相沈積之鑽石膜之原有表面(b) CVD鑽石膜經雷射加工( 385mJ /10Hz) 5000 Shots 後之表面形態……………………………94
圖4-2-8、表面粗糙度與脈衝次數之關係…………………………………………95
圖4-3-1、(a) RIE所產生之激態電漿、(b) RIE反應生成物之產生…………………99
圖4-3-2、(a)鑽石初成膜表面SEM照片、(b)初成膜之拉曼頻譜圖………………101
圖4-3-3、(a)RIE前鑽石薄膜表面形貌(b)使用O2 RIE後鑽石薄膜表面形貌
(50 sccm、25 min、200 W)………………………………………………103
圖4-3-4、(a)RIE前鑽石薄膜表面形貌,(b)使用O2/CF4 (50/10 sccm、25 min、200 W)RIE後鑽石薄膜表面形貌…………………………………………104
圖4-3-5、使用O2/SF6 (50/10 sccm、25 min、200 W) RIE後鑽石薄膜表面形貌(a)800倍(b)4500倍……………………………………………………………104
圖4-3-6、RIE後之鑽石拉曼頻譜分析(25min、200W、O2=50sccm、O2/CF4=50/10sccm、O2/SF6=50/10sccm) ………………………………105
圖4-3-7、鍵結蝕刻反應……………………………………………………………106
圖4-3-8、以金掩模進行RIE(O2,50sccm,15min,鍍金30秒) ……………………106
圖4-3-9、O2 RIE 5分鐘鑽石膜不同鍍金厚度(a)鍍金10秒(b)鍍金20秒(c)鍍金30秒………………………………………………………………………107
圖4-3-10、O2 RIE 15分鐘鑽石膜不同鍍金厚度(a)鍍金10秒(b)鍍金20秒(c)鍍金30秒……………………………………………………………………108
圖4-3-11、O2 RIE 25分鐘鑽石膜不同鍍金厚度(a)鍍金10秒(b)鍍金20秒(c)鍍金30秒……………………………………………………………………109
圖4-4-1、ICP蝕刻後之形貌 (O2/50sccm/200w/3.8mTorr/5min/偏壓600w) …………………………………………………………………111
圖4-4-2、ICP蝕刻後的拉曼頻譜分析(O2/50sccm/200w/3.8mTorr/5min/偏壓600w) …………………………………………………………………111
圖4-4-3、在不同處理時間下的常壓空氣電漿拉曼頻譜圖………………………112
圖4-4-4、常壓空氣電漿處理5分鐘之SEM圖……………………………………112
圖4-4-5、使用常壓空氣電漿結合ICP蝕刻CVD鑽石,常壓空氣電漿處理時間分別為(a)(b) 30sec、(c)(d) 60sec、(e)(f) 3min ( ICP參數O2/ 50sccm/ 200w/ 3.8 mTorr/ 5min/偏壓600w) ………………………………………………114
圖4-4-6、常壓空氣電漿前處理與ICP蝕刻(O2/ 50sccm/ 200w/ 3.8 mTorr/ 5min/ 偏壓600w)後之拉曼頻譜分析…………………………………………115
圖4-5-1、(a)弱化前鑽石薄膜表面形貌,(b)使用O2氣體對鑽石薄膜弱化後之表面形貌(700oC) …………………………………………………………116
圖4-5-2、熱氧化蝕刻之弱化深度與移除深度之關係……………………………117
圖4-6-1、(a)熱化學拋光30分鐘、(b)60分鐘、(c)120分鐘之SEM圖片(拋光參數:350oC - 1.938 m/s - 0.1 MPa) ………………………………………119
圖4-6-2、RIE O2 15分鐘蝕刻(50sccm、200W) ……………………………………120
圖4-6-3、(a) AS-grown之表面形貌分析、(b)平面拋光60分鐘之表面形貌及表面粗糙度分析(拋光參數:350-1.938-0.1) Ra=350.7nm…………………121
圖4-6-4、(a) RIE-O2 (50/10sccm, 200W, 15min)之表面形貌分析、(b) RIE-O2 (50sccm、200W、15min) +平面拋光 60分鐘之表面形貌(拋光參數:350 - 1.938 - 0.1),Ra=290nm…………………………………………121
圖4-6-5、(a) RIE-O2/CF4(50/10sccm、200W、15min)之表面形貌分析、(b) RIE- O2/CF4 (50/10sccm, 200W, 15min) +平面拋光 60分鐘之表面形貌(拋光參數:350 - 1.938 - 0.1),Ra=301nm……………………………………122
圖4-6-6、(a) RIE-O2 (50sccm、200W、25min)之表面形貌分析、(b) RIE-O2 (50sccm、200W、25min) +平面拋光 60分鐘之表面形貌 (拋光參數:350 - 1.938 - 0.1),Ra=252.4nm………………………………………123
圖4-6-7、(a) RIE-O2/CF4(50/10sccm、200W、25min) -200W之表面形貌分析(拋光參數:350 - 1.938 - 0.1)、 (b) RIE- O2/CF4 (50/10sccm、200W、25min) +平面拋光 60分鐘之表面形貌(拋光參數:350 - 1.938 - 0.1),Ra=276.8nm……………………………………………………………123
圖4-6-8、拋光比較示意圖…………………………………………………………124
圖5-1、CVD鑽石鍍膜應用領域…………………………………………………128
圖5-1-1、NIL與SFIL之壓印方式圖………………………………………………130
圖5-1-2、(a)鑽石壓印模製作程序、(b)壓印程序…………………………………132
圖5-2-1、含鈷之材料表面處理……………………………………………………134
圖5-4-1、表面聲波元件SAW之應用……………………………………………136
圖5-5-1、鑽石場發射器示意圖……………………………………………………137
圖5-6-1、蝕刻微影法………………………………………………………………138
圖5-6-2、特定區域成長與蝕刻綜合法……………………………………………138
 
表目錄
頁次
表1-1-1、天然單晶鑽石與人造鑽石膜之比較………………………………………5
表1-1-2、在2.5GHz頻率下各種不同的基材所得的線寬 …………………………7
表1-2-1、一般常用之CVD長鑽石膜法及其優缺點 ………………………………12
表2-1、各種鑽石膜拋光技術比較 …………………………………………………23
表2-2-1在各種不同氣氛下以ArF雷射拋光後之表面粗糙度……………………33
表2-2-2、不同雷射對鑽石膜的損壞閥值 …………………………………………37
表2-2-3、各種雷射拋光鑽石膜的加工參數與拋光效果 …………………………38
表2-2-4、鑽石氧化的活化能 ………………………………………………………50
表3-2-1、CVD鑽石膜分析時常見的拉曼頻譜 ……………………………………69
表3-3-1、熱化學拋光實驗參數 ……………………………………………………72
表3-3-2、準分子雷射拋光實驗參數 ………………………………………………73
表3-3-3、RIE機台規格………………………………………………………………74
表3-3-4、RIE實驗參數………………………………………………………………75
表3-3-5、ICP實驗參數………………………………………………………………75
表3-3-6、鑽石薄膜複合拋光之熱化學拋光參數 …………………………………77
表4-3-1、蝕刻氣體種類與蝕刻時間對CVD鑽石表面形貌變化之比較 ………101
表4-4-1、使用不同前處理/蝕刻方式所得到的表面粗糙度………………………115
表5-1-1、為鑽石、藍寶石與石英之機械與熱性質 ………………………………131
 
符號說明

 
A		擴散截面積
c		Arrhenius係數
 		濃度梯度差
D		擴散係數
E		光的能量
P		氣體壓力
 		熱功率
R		氣體常數
T		絕對溫度
Te		電子溫度
Ti		離子溫度
Tg		中性粒子溫度
 		溫度梯度
V		切線速度
參考文獻
【1.1】S. Jin and H. Mavoori, “Processing and properties of CVD diamond for thermal management,” Journal of Electronic Materials, 27, No. 11, (1998), p.1148
【1.2】A. Bartl, S. Bohr, R. Haubner and B. Lux, ”A comparison of low-pressure CVD synthesis of diamond and c-BN,” International Journal of Refractory Metals and Hard Materials, 14, Issues 1-3, (1996), pp.145-157.
【1.3】B. Lux and R. Haubner, ” Diamond substrate interactions and the adhesion of diamond coatings,” Pure & Appl. Chem., 66, No.9, (1994), pp.1783-1788.
【1.4】J. Zimmer and K.V. Ravi, “Aspects of scaling CVD diamond reactors,” Diamond and Related Materials 15, (2006), p.229-233.
【1.5】T. Grotjohn, R. Liske, K. Hassouni and J. Asmussen, “Scaling behavior of microwave reactors and discharge size for diamond deposition,” Diamond and Related Materials 14, (2005), pp.288-291.
【1.6】P. W. May, “CVD diamond - a new technology for the future ?” Endeavour Magazine 19, (3), (1995), pp.101-106
【1.7】P.W. May, "Diamond Thin Films: A 21st Century Material," Phil. Trans. R. Soc. Lond. A, 358, (2000), pp.473-495
【1.8】H. Windischmann, "CVD Diamond Wafers for Thermal Management Application in Electronic Packaging,"1998 International Conference on Multichip Modules and High Density Packaging, pp.224-228
【1.9】http://www.bccresearch.com/advmat/GB045R.html, “Synthetic Gems and Minerals,” Andrew McWilliams, Published April 2003
【1.10】http://www.nationaljeweler.com/nationaljeweler/index.jsp, “A VNU leadership conference 2006 white paper summary,” VNU BUSINESS MEDIA, 2006
【1.11】A.M. Prelas, G. Popovici and K.L. Bigelow, Handbook of Industrial Diamond and Diamond Films, Marcel Dekker, Inc., 1998
【1.12】H.O. Pierson, Handbook of Carbon, Graphite, Diamond and Fullerences, Noyes Publications, Park Ridge, New Jersey, U.S.A., 1993
【1.13】R. Sauer, “Synthetic diamond-basic research and applications,” Cryst. Res. Technol. 34, No.2, (1999), pp.227-241.
【1.14】F.P. Bundy, “The P, T phase and reaction diagram for elemental carbon,” J. Geophys. Res. 85 (B12), (1980), p.6930
【1.15】M.N.R. Ashfold, P.W. May, and C.A. Rego, ”Thin film diamond by chemical vapour deposition methods,” Chemical Society Review, (1994), pp.21-30.
【1.16】T. P Mollart, ” The development of CVD infrared optics from planar windows to missile domes,” Proceedings of SPIE 5078, (2003), pp.127-136
【1.17】T. Sharda, A.K. Sikder, D.S. Misra, A.T. Collins, S. Bhargava, H.D. Bist, P. Veluchamy, H. Minoura, D. Kabiraj, D.K. Awasthi, and P. Selvam, "Studies of defects and impurities in diamond thin films," Diamond and Related Materials 7 (1998) pp.250-254.
【1.18】W.C. Chou, C.L. Chao, H.H. Chien, K.J. Ma and H.Y. Lin, ” Investigation of Thermo-Chemical Polishing of CVD Diamond Film,” Key Engineering Materials 329, (2007), pp. 195-200
【1.19】宋健民,鑽石合成—第四章、多晶鑽石燒結體,全華科技出版,民國89年初版。
【1.20】S.-Tong Lee, Zhangda Lin, and Xin Jiang, "CVD diamond films: nucleation and growth," Materials Science and Engineering, 25 (1999) pp.123-154
【1.21】陳光華、張陽,金剛石薄膜的製備與應用,第二章—金剛石薄膜的合成方法,化學工業出版社,2004年
【1.22】P. K. Bachmann and W. van Enckevort, "Diamond deposition technologies," Diamond and Related Materials, l (1992) pp.1021-1034
【1.23】X. Zhu and Dean M. Aslam, "CVD diamond thin film technology for MEMS packaging," Diamond & Related Materials 15 (2006) pp.254 – 258
【1.24】M. A Huff, D. A Aidala, and James E Butler, "MEMS applications using diamond thin films," Solid State Technology, April (2006), pp.45-49
【1.25】A.P. Malshe, B.S. Park, W.D. Brown, and H.A. Naseem, "A review of techniques for polishing and planarizing chemically vapor-deposited (CVD) diamond films and substrates," Diamond and Related Materials 8 (1999) pp.1198–1213
【2.1】W. Ahmed, C. A. Rego, R. Cherry, A. Afzal, N. Ali and I. U. Hassan," CVD diamond: controlling structure and morphology," Vacuum, 56, Issue 3, March 2000, pp.153-158
【2.2】C. Nørgård, S.S. Eskildsen, and A. Matthews,” The influence of oriented growth on the surface roughness of CVD diamond films,” Surface and Coatings Technology 74-51 (1995) pp.358-361.
【2.3】O.Auciello,” Ultrananocrystalline diamond thin film: fundamentals of synthesis and characterization of properties,” Workshop for the development and application of ultra-nano-crystalline diamond, 2005, Tam-kang university
【2.4】A.P. Malshe, B.S. Park, W.D. Brown, and H.A. Naseem, "A review of techniques for polishing and planarizing chemically vapor-deposited (CVD) diamond films and substrates," Diamond and Related Materials 8 (1999) pp.1198–1213
【2.5】J. E. Field and C. S. J. Pickles," Strength, fracture and friction properties of diamond," Diamond and Related Materials, 5, Issues 6-8, (1996), pp.625-634 
【2.6】H. Ohmori, "ELID (Electrolytic In-Process Dressing)-Grinding Technique" Ultrahard Materials Technical Conf. 1998
【2.7】C.J. Tang, A.J. Neves, A.J.S. Fernandes, J. Gracio, and N. Ali," A new elegant technique for polishing CVD diamond films," Diamond and Related Materials 12 (2003) pp.1411–1416
【2.8】W.C. Chou, C.L. Chao, H.H. Chien, K.J. Ma and H.Y. Lin, ” Investigation of Thermo-Chemical Polishing of CVD Diamond Film,” Key Engineering Materials 329 (2007) pp. 195-200
【2.9】J.A. Weima, J. von Borany, U. Kreissig, and W.R. Fahrner,” Quantitative analysis of carbon distribution in steel used for thermochemical polishing of diamond films,” Journal of The Electrochemical Society, 148 11 (2001) G607-G610.
【2.10】S.K. Choi, D.Y. Jung, S.Y. Kweon, S.K. Jung,” Surface characterization of diamond films polished by thermomechanical polishing method,” Thin Solid Films 279 (1996) pp.110-114.
【2.11】S. Jin, J.E. Graebner, G..W. Kammlott, T.H. Tiefel, S.G.. Kosinski, L.H. Chen, and R.A. Fastnacht,” Massive thinning of diamond films by a diffusion process,” Appl. Phys. Lett. 60 (1992), pp.1948-1950.
【2.12】S. Jin, J.E. Graebner, T.H. Tiefel, G..W. Kammlott, and G..J. Zydzik,” Polishing of CVD diamond by diffusion reaction with manganese powder,” Diamond and Related Materials, 1 (1992) pp.949-953.
【2.13】S. Jin, J.E. Graebner, T.H. Tiefel, and G..W. Kammlott,” Thinning and patterning of CVD diamond films by diffusional reaction,” Diamond and Related Materials, 2 (1993) pp.1038-1042.
【2.14】J.Y. Wang, Y.Z. Bai, H.Y. Chen, X.Y. Lu, Z.S. Jin, and H. Ji, ”Etching of CVD diamond thick films by rare-earth compound ink,” Journal of Functional Materials and Devices, 7, No.3, (2001), pp.240-243
【2.15】S. Jin, L.H. Chen, J.E. Graebner, M. McCormack, and M.E. Reiss,” Thermal conductivity in molten-metal-etched diamond films,” Appl. Phys. Lett. 63 (1993), pp.622-624.
【2.16】Y. Sun, S. Wang, S. Tian and Y. Wang," Polishing of diamond thick films by Ce at lower temperatures," Diamond and Related Materials, 15, Issue 9, 2006, pp.1412-1417
【2.17】C.D. Ollison,W.D. Brown, A.P. Malshe, H.A. Naseem and S.S. Ang," A comparison of mechanical lapping versus chemical-assisted mechanical polishing and planarization of chemical vapor deposited (CVD) diamond," Diamond and Related Materials, 8, Issue 6, (1999), pp.1083-1090
【2.18】H. Tokura, C.F. Yang, and M. Yoshikawa," Study on the polishing of chemically vapour deposited diamond film, " Thin Solid Films, 212 (1992), pp.49-55.
【2.19】S.H. Kim," Planarization of the diamond film surface by using the hydrogen plasma etching with carbon diffusion process," Journal of the Korean Chemical Society, 45, No.4, (2001), pp.351-356
【2.20】P. Ascarelli, E. Cappelli, S. Orlando, and F. Pinzari, “Structural modifications of diamond films induced by pulsed laser treatment”, Proc. Of SPIE, 3404, 178-186.
【2.21】E. Cappelli, G.. Matti, S. Orlando, F. Pinzari, P. Ascarelli,” Pulsed laser surface modifications of diamond thin films,” Diamond and Related Materials, (1999), pp.257-261.
【2.22】S.M. Pimenov, V.V. Kononenko, V.G. Ralchenko, V.I. Konov, S.Gloor, W.Luthy, H.P. Weber, A.V. Khomich,” Laser polishing of diamond plates,” Applied Physics A:Materials Science & Processing, 69(1999), pp.81-88.
【2.23】S.Gloor, S.M. Pimenov, E.D. Obraztsova, W. Luthy, H.P. Weber,” Laser ablation of diamond films in various atmospheres,” Diamond and Related Materials, (1998), pp.607-611.
【2.24】G.A. Shafeev, E.D. Obraztsova, S.M. Pimenov,” Laser-assisted etching of diamonds in air and in liquid media,” Applied Physics A: Materials Science & Processing, 65, 1, pp.29-32.
【2.25】S.Gloor, W. Luthy, H.P. Weber, S.M. Pimenov, V.G. Ralchenko, V.I. Konov, A.V. Khomich,” UV laser polishing of thick diamond films for IR windows”, Applied Surface Science, (1999), pp.135-139.
【2.26】T.V. Kononenko, V.G. Ralchenko, I.I. Vlasov, S.V. Garnov, V.I. Konov, “Ablation of CVD diamond with nanosecond laser pulses of UV-IR range,” Diamond and Related Materials, (1998), pp.1623-1627.
【2.27】P. Tosin, A. Blatter, and W. Luthy,” Laser-induced surface structures on diamond films,” J. Appl. Phys. 78, No.6, (1995), pp.3797-3800.
【2.28】V.N. Tokarev, J.I.B. Wilson, M.G. Jubber, P. John, D.K. Milne,” Modeling of self-limiting laser ablation of rough surfaces: application to the polishing of diamond films,” Diamond and Related Materials, (1995), 169-176.
【2.29】V.G. Ralchenko, S.M. Pimenov, Diamond Films and Technology, 7(1) 1997, pp.15~40
【2.30】U. Bögli and A. BlatterS. M. Pimenov, A. A. Smolin and V. I. Konov," Smoothening of diamond films with an ArF laser," Diamond and Related Materials, 1, Issue 7, (1992), pp.782-788
【2.31】郭鐘寧等,CVD金剛石膜拋光技術,工具技術1999年第33卷pp.3-7
【2.32】S. Kiyohara, I. Miyamoto, T. Masaki, and S. Honda, “Ion beam smoothing of CVD diamond thin films by etchback method”, Nuclear Instruments and Methods in Physics Research B 121 (1997) 191-194.
【2.33】N. Toyoda, N. Hagiwara, J. Matsuo, and I. Yamada, “Surface treatment of diamond films with Ar and O2 cluster ion beams ”, Nuclear Instruments and Methods in Physics Research B 148 (1999), pp.639-644.
【2.34】A.Yu. Didyk, V.S. Varichenko, A.M. Zaitsev, M.S. Rusetskii, K.De Weldige, Th. Fries, and K. Wandelt, ”Surface modification of diamond irradiated with swift heavy ions”, Radiation Measurements, 25, No. 1-4, (1995), pp.685-688.
【2.35】P.W. Leech, G..K. Reeves, A.S. Holland, and F. Shanks, “Ion beam etching of CVD diamond film in Ar, Ar/O2 and Ar/CF4 gas mixtures”, Diamond and Related Materials 11 (2002) 833-836.
【2.36】H. Buchkremer-Hermanns, C. Long, and H. Weiss, “ECR plasma polishing of CVD diamond films”, Diamond and Related Materials 5 (1996) 845-849.
【2.37】S. Kiyohara, Y. Yagi and K. Mori," Plasma etching of CVD diamond films using an ECR-type oxygen source," Nanotechnology,10 (1999) pp.385-388
【2.38】X. Zhu and Dean M. Aslam, “CVD diamond thin film technology for MEMS packaging,” Applied Diamond Conference Nanocarbon (2005), pp.15-19
【2.39】K. Teii, M. Hori, and T. Goto, ”Codeposition on diamond film surface during reactive ion etching in SF6 and O2 plasmas”, Journal of Vacuum Science & Technology A- Vacuum Surface and Films 18 (6), 2000, pp. 2779-2784.
【2.40】C. Vivensang and G. TurbanE. Anger and A. Gicquel,” Reactive ion etching of diamond and diamond-like carbon films,” Diamond and Related Materials, 3, Issues 4-6, (1994), pp.645-649
【2.41】Gopi M. R. Sirineni, H. A. Naseem, A. P. Malshe and W. D. Brown," Reactive ion etching of diamond as a means of enhancing chemically-assisted mechanical polishing efficiency," Diamond and Related Materials, 6, Issue 8, (1997), pp.952-958
【2.42】C. Vivensang, L. Ferlazzo-Manin, M.F. Ravet, G. Turban, F. Rousseaux, and A. Gicquel,“Surface smoothing of diamond membranes by reactive ion etching process”, Diamond and Related Materials 5 (1996) pp.840-844.
【2.43】B.R. Stoner, G..J. Tessmer, and D.L. Dreifus,” Bias assisted etching of diamond in a conventional chemical vapor deposition reactor,” Appl. Phys. Lett. 62 (1993), 1803-1805.
【2.44】K.K. Chan, G..A.J. Amaratunga, and T.K.S. Wong,” Defined etching of carbon-diamond films on silicon using an oxygen plasma with titanium masking,” Diamond and Related Materials, 1 (1992) 281-284.
【2.45】G. Ding, J. Yao, A. Yu, X. Zhao, L. Wang, T. Shen, “Patterning of diamond films by RIE and its MEMS applications”, Proceedings of SPIE 4174 (2000).
【2.46】F. Brunet, P. Germi and M. Pernet," Microstructural study of boron doped diamond films by X-ray diffraction profiles analysis," Thin Solid Films, 322, Issues 1-2, (1998), pp.143-147
【2.47】C.Wang, A. Hatta, N. Jiang, J. Won, Toshimichi Ito, Akio Hiraki, Z. Jin and G. Zou," Investigation of distribution of defects and impurities in boron-doped CVD diamond film by cathodoluminescence spectroscopy," Thin Solid Films,  308-309, (1997), pp.279-283
【2.48】曹振中等,”CVD金剛石厚膜電加工錶面粗糙度分析”, 金剛石與磨料磨具工程, 145, No.1, 2005
【2.49】盧文壯等,掺硼金剛石膜的電火花加工研究”, 中國機械工程第17卷第2期, 2006
【2.50】郭鐘寧等,CVD金剛石膜拋光新技術,新技術新工藝-材料與表面處理,第6期,2001, pp.41-43
【2.51】D.S. Hwang, T. Saito and N. Fujimori," New etching process for device fabrication using diamond," Diamond and Related Materials, 13, Issues 11-12, (2004), pp.2207-2210 
【2.52】R. E. Rawles, S. F. Komarov, R. Gat, W. G. Morris, J. B. Hudson and M. P. D'Evelyn," Mechanism of surface smoothing of diamond by a hydrogen plasma," Diamond and Related Materials, 6, Issues 5-7, (1997), pp.791-795 
【2.53】J.K. Lee, M.W.Anderson, F.A.Gray, Phillip John, J.Y. Lee, Y.J. Baik, and K.Y. Eun, “Oxidation of CVD diamond powders”, Diamond and related materials 13 (2004) 1070–1074
【2.54】A.M. Ozkan, A.P. Malshe, W.D. Brown, “Sequential multiple-laser-assisted polishing of free-standing CVD diamond substrates,” Diamond and Related Materials, (1997), 1789-1798.
【2.55】蘇清峰等,”複合拋光對CVD金剛石薄膜表面光潔度的改進研究, ”,無機材料學報,第21卷,第2期,2006
【2.56】S.M. Leeds, T.J. Davis, P.W. May, C.D.O. Pickard, M.N.R. Ashfold, “Use of different excitation wavelengths for the analysis of CVD diamond by laser Raman spectroscopy,” Diamond and Related Materials, 7, Issues 2-5, (1998), pp.233-237
【2.57】S.M. Huang, Z. Sun, Y.F.Lu, M.H. Hong, “Ultraviolet and visible Raman spectroscopy characterization of chemical vapor deposition diamond films,” Surface and coatings Technology 151-152 (2002) 263-267.
【3.1】K. Miyoshi,“ Surface analysis and tools,” NASA,2002
【3.2】W.H. Weber and R. Merlin, Raman Scattering in Materials Science, Springer, 2000
【3.3】S.S.M. Chan, M.D. Whitfield, R.B. Jackman, G. Arthur, F. Goodall, and R.A. Lawes “The effect of excimer laser etching on thin film diamond”, Semicond. Sci. Technol. 18 (2003) S47-S58.
【4.1】W.C. Chou, C.L. Chao, H.H. Chien, K.J. Ma and H.Y. Lin, ” Investigation of Thermo-Chemical Polishing of CVD Diamond Film,” Key Engineering Materials , 329 (2007) pp. 195-200
【4.2】C.L. Chao, W.C. Chou, K.J. Ma , T.T. Chen, Y.M. Liu, Y.S. Kuo and Y.T. Chen, “Investigation of Laser Ablation of CVD diamond film,” Proc. of SPIE, 5713, pp.21-28.
【4.3】C.L. Chao, W.C. Chou, K.J. Ma , T.T. Chen, Y.M. Liu, S.W. Huang and H.Y. Lin, “Machining of CVD diamond film by RIE, Laser Ablation and Thermo-chemical Polishing,” Leading Edge Manufacturing in the 21st Century, October 19-22, 2005, Nagoya, Japan.
【4.4】C.L. Chao, W.C. Chou, C.Y. Chien, “The Effect of Atmospheric Pressure Air-plasma Pretreatment on ICP Etching of CVD Diamond,“ Advances in Materials and Processing Technologies, Jul 30-Aug 3, 2006, Las Vegas, USA.
【4.5】C.L. Chao, W.C. Chou, C.Y. Chien, K.J. Ma, H.Y. Lin, “Investigation of the effect of atmospheric pressure air-plasma surface pretreatment on the ICP etching of CVD diamond film,” The 6th International euspen conference, 28th May-1st June 2006, Baden, Austria.
【4.6】C.L. Chao, W.C. Chou, C.Y. Chien, K.J. Ma, H.Y. Lin, T.C. Wu, ”Investigation of ICP Etching of CVD Diamond Film,” International Manufacturing Leaders Forum, 23-25 October 2006, Taipei
【4.7】C.L. Chao, W.H. Fan, W.C. Chou, C.Y. Chien, H.Y. Lin and J. G. Duduch, ”Research on Quick Polishing of CVD Diamond Film”, Asia Pacific Conference on Optics Manufacture 2007, 11-13 January 2007, Hong Kong
【4.8】P Grodzinski  “The effect of lubrication on friction, wear and abrasion” Br. J. Appl. Phys. 2 (1951) 86-89
【4.9】H.O. Pierson, Handbook of Carbon, Graphite, Diamond and Fullerence: Properties, Processing and Applications, Noyes, Park Ridge, NJ, 1993
【4.10】S.H. Kim, " Planarization of the diamond film surface by using the hydrogen plasma etching with carbon diffusion process," Journal of the Korean Chemical Society, 45, No.4, (2001), pp.351-356
【4.11】H. Ohmori, "ELID (Electrolytic In-Process Dressing)-Grinding Technique" Ultrahard Materials Technical Conf. 1998.
【4.12】Y. Chen, L.C. Zhang, J.A. Arsecularatne, and C. Montross," Polishing of polycrystalline diamond by the technique of dynamic friction, part 1: Prediction of the interface temperature rise," International Journal of Machine Tools & Manufacture 46 (2006) pp.580–587
【4.13】C.J. Evans,” Chemical aspects of tool wear in single point diamond turning,” Precision Engineering 18, (1996), pp.4-19
【4.14】S. Jin, J. E. Graebner, G. W. Kammlott, T. H. Tiefel, S. G. Kosinski, L. H. Chen, and R. A. Fastnacht," Massive thinning of diamond films by a diffusion process," Appl. Phys. Lett 60 (16), (1992), pp.1948-1950
【4.15】R. C. Crafer and P. J. Oakley," Laser processing in manufacturing," Chapman & Hall, 1993.
【4.16】P.M. Fabis, “Laser machining of CVD diamond: chemical and structural alteration effects,” Surface and Coatings Tech., 1996, pp.320-325.
【4.17】林登連,"高功率直流電漿火炬電極熔蝕之研究",中原大學機械工程學系碩士論文,民國92年
【4.18】李德元等,”等離子技術在材料加工中的應用—第一章、等離子體及其產生”,機械工業出版社,2005
【4.19】X. D. Wang, G. D. Hong, J. Zhang, B. L. Lin, H. Q. Gong and W. Y. Wang," Precise patterning of diamond films for MEMS application," Journal of Materials Processing Technology, 127, Issue 2, (2002), pp.230-233
【4.20】G. M. R. Sirineni, H. A. Naseem, A. P. Malshe and W. D. Brown,” Reactive ion etching of diamond as a means of enhancing chemically-assisted mechanical polishing efficiency,” Diamond and Related Materials, 6, Issue 8, (1997), pp.952-958
【4.21】A. Schütze, J.Y. Jeong, S.E. Babayan, J. Park, G.S. Selwyn, and R.F. Hicks,” The atmospheric-pressure plasma jet: a review and comparison to other plasma sources”, IEEE Transactions on plasma science, 26, no.6, (1998) pp.1685-1694.
【4.22】M.C. Kim, S.H. Yang, J.H. Boo, and J.G. Han, ”Surface treatment of metals using an atmospheric pressure plasma jet and their surface characteristics”, Surface and coatings technology 174-175 (2003) pp.839-844.
【4.23】Kim M.C., Song D.K., Shin H.S., Baeg S.-H., Kim G.S., Boo J.-H., Han J.G., and Yang S.H., ”Surface modification for hydrophilic property of stainless steel treated by atmospheric-pressure plasma jet”, Surface and coatings technology 171 (2003) pp.312-316.
【4.24】J.K. Lee, M.W. Anderson, F.A. Gray, P. John, J.Y. Lee, Y.J. Baik, and K.Y. Eun, ”Oxidation of CVD diamond powders,” Diamond and Related Materials 13 (2004) pp.1070-1074.
【4.25】S.P. McGeoch, F. Placido, Z. Gou, C.J.H. Wort, and J.A. Savage,” Coatings for the protection of diamond in high-temperature environments,” Diamond and Related Materials 8 (1999) pp.916-919.
【5.1】Yong Chen, Anne Pepin, “Nanofabrication: conventional and nonconventional methods,” Electrophoresis, 22, (2001), pp.187-207.
【5.2】S.Y. Chou, R.K. Peter, J.R. Preston, “Imprint of Sub-25 vias and trenches in polymers,” Appl. Phys. Lett., 67, 21, (1995), pp.3114-3116.
【5.3】S.Y. Chou, R.K. Peter, J.R. Preston, “Nanoimprint lithography,” J. Vac. Sci. Technol. B, 14, 6, (1996), pp.4129-4133.
【5.4】S.Y. Chou and Z. Lei, “Lithography induced self-assembly of periodic polymer micropillar arrays,” J. Vac. Sci. Technol., 17, 6, (1999), pp.3197-3202.
【5.5】K. Pfeiffer, “Polymer stamps for nanoimprint,” Microelectronic Engineering, 61-62, (2002), pp.393-398.
【5.6】F. Gottschalch, “Polymer issue in nanoimprinting technique,” Solid-state Electronics, 43, (1999), pp.1079-1083.
【5.7】Y. Xia, G.M. Whitesides, “Soft lithography,” Angew. Chem. Int. Ed., 37, (1998), pp.551-575.
【5.8】Q. Xia, C. Keimei, H. Ge, Z. Yu, W. Wu and S.Y. Chou,”Ultrafast patterning of nanostructures in polymers using laser assisted nanoimprint lithography,” Appl. Phys. Lett., 83, 21, (2003), pp.4417-4419.
【5.9】L. Jay Guo,” Recent progress in nanoimprint technology and its applications”, J. Appl. Phys. 37 (2004) R123-RR141
【5.10】S. Zankovych, T. Hoffmann, J. Seekamp, J-U Bruch and C.M. Sotomayor Torres, “Nanoimprint lithography: challenges and prospects,” Nanotechnology 12, 2001, 91-95
【5.11】鄭瑞庭,”簡介紫外光硬化奈米轉印技術”, 機械工業雜誌,257期,2004,pp.163-174.
論文全文使用權限
校內
紙本論文於授權書繳交後2年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後2年公開
校外
同意授權
校外電子論文於授權書繳交後2年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信