§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1609202114282200
DOI 10.6846/TKU.2021.00365
論文名稱(中文) 被動光網路的光放大器保護和故障監視方案
論文名稱(英文) Optical Amplifier Protection and Fault Monitoring Schemes for Passive Optical Networks
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系博士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 109
學期 2
出版年 110
研究生(中文) 李鴻興
研究生(英文) Hong-Sing Lee
學號 800440090
學位類別 博士
語言別 繁體中文
第二語言別
口試日期 2021-07-12
論文頁數 61頁
口試委員 指導教授 - 楊淳良(clyang@mail.tku.edu.tw)
共同指導教授 - 李三良(sllee@mail.ntust.edu.tw)
委員 - 周肇基(jjjou@nkust.edu.tw)
委員 - 李揚漢(yhlee@ee.tku.edu.tw)
委員 - 洪鴻文(hwhung@mail.tnu.edu.tw)
委員 - 洪勇智(yungjr@mail.nsysu.edu.tw)
關鍵字(中) 光網路保護
故障監視
光放大器
被動光網路
智慧電錶
分波多工被動光網路
關鍵字(英) Protection in Optical Networks
Fault Monitoring
Optical Amplifier
PON
Smart Meter
WDM-PON
第三語言關鍵字
學科別分類
中文摘要
有鑑於被動光網路(Passive Optical Networks, PON)對於5G/B5G的重要性以及支援未來多樣性AIoT的應用,本論文提出了PON的光放大器保護和故障監視方案,在被動光網路中扮演很重要的角色,並提供重要的光放大器保護機制、故障監視和智慧電錶數據傳輸等特性。
首先展示了一種基於可重組光放大器(Reconfigurable Optical Amplifiers, ROAs)的分波多工被動光網路(Wavelength-Division-Multiplexed PON, WDM-PON)方案。此外,詳細探討了ROA的運行狀態,並模擬WDM-PON方案中用於光放大器保護的ROA簡易設計。所提出具有ROA的WDM-PON可以滿足上下行光放大器的保護需求,並且能夠顯著地減少所需的佈建成本和空間。
最後,我們提出了一種融合式光接取網路系統,可為通訊數據和能源管理數據提供可靠的傳輸。所謂的融合是透過PON系統中的新型多功能和低成本故障監視方案來實現。此方案可以監視分佈光纖(Distribution Fibers)的損壞、識別光網路單元(Optical Network Units, ONUs)的狀態、定位光纖損壞位置,並藉由故障監視通道傳輸智慧電錶數據。使用簡單的音頻檢測技術可以幫助識別分佈光纖中的光纖斷裂並啟動智慧電錶數據的傳輸。並且展示透過故障監視通道以10Mb/s數據速率傳輸智慧電錶數據。音頻檢測和上行智慧電錶數據傳輸都有相對較大的損耗預算,並不會影響既有的光接取網路設計。
英文摘要
This thesis proposes optical amplifier protection and fault monitoring schemes for passive optical networks (PON), which play a critical role in PON and provide important optical amplifier protection mechanisms, fault monitoring, smart meter data transmission, etc.
The first demonstrates a wavelength-division-multiplexed passive optical network (WDM-PON) scheme based on reconfigurable optical amplifiers (ROAs). In addition, the operation states of ROAs are discussed in detail and a simple design for ROAs in the WDM-PON scheme for optical amplifier protection is simulated. The proposed WDM-PON with ROAs can meet the protection requirements of upstream and downstream optical amplifiers. Also, the required deployment cost and space are significantly reduced.
Finally, we propose a converged optical access network system to provide reliable transmission for both communication data and energy management data. The convergence is carried out by a novel multifunction and low-cost fault-monitoring scheme in passive optical network systems. The scheme enables monitoring the occurrence of damages to distribution fibers, identifying the statuses of ONUs, localizing damaged fibers, and transferring smart meter data over the fault monitoring channel. The use of a simple tone detection technique can help the recognition of a fiber break among distribution fibers and activation of the smart meter data transmission. Transmission of smart metering data over the fault monitoring channel with a 10 Mb/s data rate is demonstrated. Both the added tone detection and upstream smart meter data transmission have a relatively large loss budget and will not affect the design of the original optical access networks.
第三語言摘要
論文目次
第一章	簡介  1
1.1	前言  1
1.2	研究動機  3
1.3	論文架構  5
第二章	光放大器保護方案	6
2.1	簡介  6
2.2	方案架構與操作原理  8
2.2.1 關鍵元件特性  13
2.2.2 雙向EDFA的設計  17
2.2.3 多通道雙向EDFA模擬結果  25
2.3	結論  35
第三章	融合式故障監視技術  36
3.1 簡介  36
3.2 方案架構與操作原理  39
3.3 方案設置與實驗結果  44
3.4 結論  51
第四章 總結與未來展望  52
4.1 總結  52
4.2未來展望  53
參考文獻  55
 
圖目錄
圖2.1 一個簡單的WDM-PON包括三種可能的光放大器應用  7
圖2.2 基於ROAs的WDM-PON保護方案  8
圖2.3 ROAs的方塊圖: (a) ROA1, (b) ROA2, (c) ROA3  10
圖2.4 ROA1的保護狀態  11
圖2.5 ROA2的保護狀態  12
圖2.6 自製4埠可逆式OC響應時間的量測架構  14
圖2.7 4埠可逆式OC響應時間量測結果: (a)順時針至逆時針,(b)逆時針至順時針  15
圖2.8 4埠可逆式OC的動態功能測試架構  16
圖2.9 4埠可逆式OC的動態功能測試結果  16
圖2.10 下行ROA1備用光放大器的模擬設置: (a)詳細設置,(b)簡化設置  18
圖2.11 在不同泵激功率值下的EDF長度與NF、Pout的關係曲線  20
圖2.12 上行ROA2備用光放大器的模擬設置: (a)詳細設置,(b)簡化設置  21
圖2.13 在不同泵激光功率值下的EDF長度與NF、 Gain 的關係曲線  22
圖2.14 ROA3中EDFA的實驗設置: 曲線(a)後向泵激配置,曲線(b)前向泵激配置  23
圖2.15 ROA3中EDFA的實驗結果: 曲線(a)後向泵激配置,曲線(b)前向泵激配置  24
圖2.16 下行ROA1保護狀態模擬設置: (a)詳細設置,(b)簡化設置  26
圖2.17 ROA3中後置EDFA的增益平坦度(∆G)  27
圖2.18 CH1 (190.8 THz)的BER曲線  28
圖2.19 CH20 (192.7 THz)的BER曲線  28
圖2.20 CH40 (194.7 THz)的BER曲線  29
圖2.21 上行ROA2保護狀態模擬設置: (a)詳細設置,(b)簡化設置  30
圖2.22 ROA3中前置EDFA的增益平坦度(∆G)  30
圖2.23 CH1(190.8 THz)的BER曲線  31
圖2.24 CH20(192.7 THz)的BER曲線  32
圖2.25 CH40(194.7 THz)的BER曲線  32
圖3.1 融合網路結構示意圖  38
圖3.2 故障監視和智慧電錶數據傳輸架構  39
圖3.3 故障監視/智慧電錶單元的示意圖  41
圖3.4 TDSM示意圖  42
圖3.5 實驗架構與結果:(a)實驗架構,(b)無光纖斷裂的結果,(c)有光纖斷裂的結果  44
圖3.6 不等距光纖故障的OTDR軌跡  45
圖3.7 不同光纖端面的OTDR軌跡差異  46
圖3.8 等距光纖故障的OTDR軌跡  47
圖3.9 通道1的智慧電錶數據  49
圖4.1 用於5G前傳網路的WDM-PON系統  53
圖4.2 用於5G 前傳網路的TDM-PON系統  54
 
表目錄
表1.1 故障率和修復時間  3
表2.1 ROA3中關鍵元件的插入損耗(Insertion Loss)  14
表2.2 VPI中速率方程EDFA模型的基本參數  17
表2.3 ROA3中EDFA的參數  22
表2.4 ROA1保護方案的系統餘裕  34
表2.5 ROA2保護方案的系統餘裕  34
參考文獻
[1]	C.-H. Lee, W. V. Sorin, and B. Y. Kim, “Fiber to the home using a PON infrastructure,” J. Lightwave Technol., vol. 24, no. 12, pp. 4568–4583, Dec. 2006.
[2]	S.-J. Park, C.-H. Lee, K.-T. Jeong, H.-J. Park, J.-G. Ahn, and K.-H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightwave Technol., vol. 22, no. 11, pp. 2582–2591, Nov. 2004.
[3]	H.-W. Hung, Y.-L. Lee, C.-W. Sung, C.-H. Hsu, and S.-L. Lee, “10-Gb/S Bidirectional WDM-PON Transmission Using Spectrum-Sliced ASE Light Sources,” Journal of the Chinese Institute of Engineers, vol. 40, no. 1, pp. 93-99, Jan. 2017.
[4]	M. H. Eiselt, J. Zou, M. Lawin, and C. Wagner, “Optical Transceivers for Mobile Front-Haul and PON Applications,” 2017 European Conference on Optical Communication (ECOC), Sept. 17-21, 2017
[5]	C. DeSanti, L. Du, C. Lam, and J. Jiang, “Super-PON: Scale Fully Passive Optical Access Networks to Longer Reaches and to a Significantly Higher Number of Subscribers,” Retrieved from https://www.ieee802.org/3/ad_hoc/ngrates/.../desanti_nea_01a_0118.pdf, 2018.
[6]	J. Zhang and B. Mukheriee, “A review of fault management in WDM mesh networks: basic concepts and research challenges,” IEEE Network, vol. 18, no. 2, pp. 41-48, Mar./Apr. 2004.
[7]	Y. M. Kim, T. H. Kim, J. H. Bae, B. W. Kim, and H. S. Park, “A novel protection architecture for WDM-PON,” in Conference on Optical Internet, pp. 61-64, Jul. 2006.
[8]	C.-H. Yeh, C.-M. Luo, Y.-R. Xie, C.-W. Chow, Y.-W. Chen and T.-A. Hsu, "Survivable and reliable WDM-PON system with self-protected mechanism against fiber fault", IEEE Access, vol. 7, pp. 165088-165092, 2019.
[9]	K. Honda, H. Nakamura, K. Sone, G. Nakagawa, Y. Hirose, T. Hoshida, and J. Terada, “Wavelength-shifted protection for WDM-PON with AMCC scheme for 5G mobile fronthaul,” Proc. of OFC, 2019, paper W3J.6
[10]	B. D. Mulder, W. Chen, J. Bauwelinck, J. Vandewege, and X. Z. Qiu, “Nonintrusive fiber monitoring of TDM optical networks,” J. Lightw. Technol. , vol. 25, no. 1, pp. 305-317, Jan. 2007.
[11]	A. Yu, H. Yang, Q. Yao, Y. Li, H. Guo,T. Peng, H. Li, and J. Zhang, “Accurate Fault Location Using Deep Belief Network for Optical Fronthaul Networks in 5G and Beyond,” IEEE Access 2019, 7, 77932–77943.
[12]	(Summary of FiberMon) Chen. Retrieved from https://www.elis.ugent.be/
db/firw/dr/oude_dr_docs/samenvatting/Chen_summary.pdf.
[13]	Finisar Corporation, “Introduction to optical amplifiers,” White Paper, Jun. 2010.
[14]	G. Keiser, Optical Fiber Communications, 4th ed. New York: McGraw-Hill, 2011, pp. 429-431.
[15]	EDFA Optical Amplifiers Datasheet, MRV Communications Inc., Chelmsford, MA, 2012.
[16]	A. K. Dutta, N. K. Dutta, and M. Fujiwara, WDM Technologies: Passive Optical Components, 1st ed. San Diego, CA: Academic Press, 2003, pp. 321-324.
[17]	C.-H. Yeh, C.-W. Chow, S.-P. Huang, J.-Y. Sung, Y.-L. Liu, and C.-L. Pan, “Ring-based WDM access network providing both Rayleigh backscattering noise mitigation and fiber-fault protection,” J. Lightwave Technol., vol. 30, no. 20, pp. 3211–3217, Oct. 2012.
[18]	M. Zhu, W.-D. Zhong, and S. Xiao, “A survivable colorless wavelength division multiplexed passive optical network with centrally controlled intelligent protection scheme,” J. Opt. Commun. Netw., vol. 4, no. 10, pp. 741-748, Oct. 2012.
[19]	J. Chen, L. Wosinska, M. N. Chughtai, and M. Forzati, “Scalable passive optical network architecture for reliable service delivery,” J. Opt. Commun. Netw., vol. 3, no. 9, pp. 667-673, Sep. 2011.
[20]	Y. Qiu, Z. Liu, and C.-K. Chan, “A centrally controlled survivable WDM-PON based on optical carrier suppression technique,” IEEE Photonics Technology Letters, vol. 23, no. 6, pp. 386-388, Mar. 2011.
[21]	Y. M. Kim, T. H. Kim, J. H. Bae, B. W. Kim, and H. S. Park, “A novel protection architecture for WDM-PON,” in Conference on Optical Internet, pp. 61-64, Jul. 2006.
[22]	P. Shukla, and K. P. Kaur, “Performance analysis of EDFA for different pumping configurations at high data rate,” International Journal of Engineering and Advanced Technology (IJEAT), vol. 2, no. 5, pp. 487-490, Jun. 2013.
[23]	C.-L. Yang, D.-Z. Hsu, S.-L. Lee, and J.-T. Hong, “Reconfigurable optical amplifier, reversible optical circulator, and optical signal transmission system,” U.S. Patent 8077385, Dec. 13, 2011.
[24]	洪健庭, “磁光元件之延伸設計及其應用,” 碩士論文, 淡江大學電機工程學研究所, 民國97年.
[25]	G. Ivanovs, V. Bobrovs, S. Olonkins, A. Alsevska, L. Gegere, R. Parts, P. Gavars, and G. Lauks, “Application of the erbium-doped fiber amplifier (EDFA) in wavelength division multiplexing transmission systems,” International Journal of Physical Sciences, vol. 9, no. 5, pp. 91-101, Mar. 2014.
[26]	S. Semmalar and S. Malarkkan, “Output Signal Power Analysis in Erbium-Doped Fiber Amplifier with Pump Power and Length Variation Using Various Pumping Techniques,” ISRN Electronics, ID 312707, 2013.
[27]	M. Kim, “Design of Communication Network Architecture for the Smart Grid”, Ph.D. dissertation, The Pennsylvania State University, 2011.
[28]	M. Kuzlu, M. Pipattanasomporn, and S. Rahman, “Communication network requirements for major smart grid applications in HAN, NAN and WAN,” Computer Networks, vol. 67, pp. 74-88, Jul. 2014.
[29]	R. Kanase and S. S. Shivdas, “Survey of Monitoring Techniques of Optical Networks,” IPASJ International Journal of Electronics & Communication (IIJEC), vol. 2, pp. 22-26, Jul. 2014.
[30]	A. Bari, J. Jiang, W. Saad, and A. Jaekel, “Challenges in the smart grid applications: an overview,” INT J DISTRIB SENS N, vol. 2014, 2014.
[31]	M. A. Esmail, and H. Fathallah, “Physical layer monitoring techniques for TDM-passive optical networks: A survey. Communications Surveys & Tutorials,” IEEE Commun. Surv. Tutor., vol. 15, no. 2, pp. 943-958, Second Quarter 2013.
[32]	T. Geernaert, G. Luyckx, E. Voet, T. Nasilowski, K. Chah, M. Becker, H. Bartelt, W. Urbanczyk, J. Wojcik, W. De Waele, J. Degrieck, H. Terryn, F. Berghmans, and H. Thienpont, “Transversal Load Sensing With Fiber Bragg Gratings in Microstructured Optical Fibers,” IEEE Photon. Technol. Lett., vol.21, no.1, pp.6-8, Jan. 1, 2009.
[33]	A. Wang, N. Wang, Y. Yang, B. Wang, M. Zhang, and Y. Wang, “Precise fault location in WDM-PON by utilizing wavelength tunable chaotic laser,” J. Lightw. Technol. , vol. 30, no. 21, pp. 3420-3426, Nov. 1, 2012.
[34]	M. H. Al-Mansoori, M.A. Mahdi, and M. Premaratne, “Novel multiwavelength L-band Brillouin–erbium fiber laser utilizing double-pass Brillouin pump preamplified technique,” IEEE J. Sel. Topics Quantum Electron, vol. 15, no. 2, pp. 415-421, Mar.-Apr. 2009.
[35]	E. Shivaleela, A. Selvarajan, and T. Srinivas, “Two-dimensional optical orthogonal codes for fiber-optic CDMA networks,” J. Lightw. Technol., vol. 23, no. 2, pp. 647-654, Feb. 2005.
[36]	M. Thollabandi, X. Cheng, and Y. K. Yeo, “Encoded Probing Technique for Detection of the Faulty Branch in TDM-PON,” IEEE Photon. Technol. Lett., vol. 24, no. 18, pp. 1610-1613, Sept. 15, 2012.
[37]	G. Baskaran and R. Seethalakshmi, “Intelligent Fault Detecting System in an Optical Fibre,” J. Theor. Appl. Inf. Technol., vol. 39, no. 2, pp. 178-187, May 15, 2012.
[38]	W. Chen, B. De Mulder, J. Vandewege, X. Z. Qiu, J. Bauwelinck, and B. Baekelandt, “A Novel Technique for Low-Cost Embedded Non-intrusive Fiber Monitoring of P2MP Optical Access Networks,” Optical Fiber Communication and the National Fiber Optic Engineers Conference 2007 (OFC/NFOEC 2007), Mar. 25-29, 2007. 
[39]	W. Chen, B. De Mulder, J. Vandewege, and X. Z. Qiu, “Embedded OTDR monitoring of the fiber plant behind the PON power splitter,” in Proceedings Symposium IEEE/LEOS, Benelux Chapter, Eindhoven. 2006.
[40]	R. Kanase and S. S. Shivdas, “Survey of Monitoring Techniques of Optical Networks,” IPASJ International Journal of Electronics & Communication (IIJEC), vol. 2, pp. 22-26, Jul. 2014.
[41]	(Smart City) Retrieved from https://en.wikipedia.org/wiki/Smart_city.
[42]	A. Umar, Mobile computing and wireless communications. nge solutions, inc, 2004, pp. 44-48.
[43]	K. Yuksel, V. Moeyaert, M. Wuilpart, and P. Mégret. “Optical layer monitoring in passive optical networks (PONs): a review,” In Proceedings of 10th Anniversary International Conference on Transparent Optical Networks (ICTON 2008), Athens, Greece, pp. 92-98. 2008.
[44]	J. C. Palais, Fiber Optic Communications, 5th ed., chap. 12, Pearson Prentice Hall, 2005.
[45]	X. Wu, D. Zhang, Z. Ye, H. Lin and X. Liu, "Real-time demonstration of 20 × 25 Gb/s WDM-PON for 5G fronthual with embedded OAM and type-B protection", Proc. 2019 24th OptoElectronics Commun. Conf. (OECC) and 2019 Int. Conf. Photonics Switching Comput. (PSC), 2019.
[46]	S. Zhou, X. Liu, F. Effenberger and J. Chao, "Low-Latency High-Efficiency Mobile Fronthaul With TDM-PON (Mobile-PON)", Journal of Optical Communications and Networking, vol. 10, no. 1, pp. A20-A26, 2018.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信