§ 瀏覽學位論文書目資料
系統識別號 U0002-1609201914084800
DOI 10.6846/TKU.2019.00464
論文名稱(中文) 乙酸甲酯溶劑進行靜電紡絲聚乳酸纖維之研究
論文名稱(英文) Electrospinning of poly (lactic acid) by using methyl acetate solvents
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 107
學期 2
出版年 108
研究生(中文) 趙潁鈁
研究生(英文) Ying-Fang Chao
學號 606400546
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2019-07-18
論文頁數 78頁
口試委員 指導教授 - 張朝欽
委員 - 鄭廖平
委員 - 張旭賢
關鍵字(中) 聚乳酸
靜電紡絲
奈米纖維
乙酸甲酯
環境友善
孔洞
疏水性
關鍵字(英) poly (lactic acid)
electrospinning
ethyl acetate
microfibers
environmentally friendly
porous
Hydrophobic
第三語言關鍵字
學科別分類
中文摘要
此研究主要以溶劑乙酸甲酯溶解聚乳酸(2002D)製備疏水型高分子靜電紡絲奈米纖維薄膜。過程也提及其他酯類的使用以及成果的分析。有別於傳統多選擇在二氯甲烷、己烷、二甲基甲醯胺等環保局列管毒化物溶劑,主要利用不同環境友善非列管型之酯類溶劑配置聚乳酸溶液。最佳的聚乳酸溶液條件透過靜電紡絲,可收集到約的7微米的纖維,對水的接觸角約123。,具高疏水性,並可以維持長達一段時間不滲水或被溶解扭曲。所得到的纖維表面有孔洞的結構,平均直徑約為200奈米的大小。靜電紡絲纖維膜使用DSC、FTIR-ATR、XRD探討加工前與加工後的結晶度和官能基影響。
英文摘要
Hydrophobic polymer electrospun nanofiber film was prepared from pure solvent methyl acetate and polylactic acid (2002D) in this study. The process also mentions the use of other esters and the analysis of results. Different from dichloromethane, hexane, dimethylformamide and other environmental protection bureaus to toxic solvent, we used different environmentally friendly ester solvents to configure polylactic acid solution. The optimum polylactic acid solution conditions through electrospinning can collect about 7 microns of fiber with a contact angle of about 123 with distilled water. It is highly hydrophobic and can be maintained for a period of time without seeping or being dissolved and distorted. Fiber surface has a hollow structure with an average diameter of about 200 nm in result. The electrospun fiber membranes were examined for crystallinity and functional group by using DSC, FTIR-ATR, and XRD for the effects before and after processing.
第三語言摘要
論文目次
目錄
目錄	IV
圖目錄	VI
表目錄	VIII
第一章 前言	1
第二章 文獻回顧	4
2-1靜電紡絲參數影響	5
2.1.1 溶液物性(solvent parameters)	6
2.1.2 操作變因(process parameters)	8
2.1.3 環境因素(environmental conditions)	10
2-2 靜電紡絲溶劑選擇	11
2-4靜電紡絲纖維表面孔洞生成	13
第三章 實驗	15
3.1 實驗材料	15
3.2 儀器及設備	17
3.3 實驗步驟	19
第四章 結果與討論	20
4-1 PLA溶解性及溶液性質	20
4-2 溶液濃度和黏度	25
4-3 操作變因	30
4.3.1 改變電壓	30
4.3.2 幫浦流速	34
4.3.3 工作距離	38
4.3.4 針內徑	42
4-5 聚乳酸纖維性質分析	46
4.5.1 FTIR & XRD分析	46
4.5.2 TGA分析	48
4.5.3 DSC分析	49
4-6 聚乳酸纖維後處理	54
第五章 結論	59
第六章 文獻回顧	60
附錄A	64
附錄B	68
附錄C	78

 
圖目錄
圖1-1 靜電紡絲製程與設備	1
圖2-1 PLA 溶於(DMF/DCM)之不同濃度下entanglement number分析	6
圖2-2 不同電壓下靜電紡絲的噴頭型態	8
圖2-4 靜電紡絲得到多孔高分子纖維之SEM圖	13
圖3-1 聚乳酸靜電紡絲實驗流程	19
圖4-1 PLA溶於MAc溶液的外觀變化	21
圖4-2 於60 °C攪拌不同天於室溫測得的黏度變化	22
圖4-3 第三天之不同黏度對濃度變化 (25°C)	23
圖4-4 不同濃度下表面張力和導電度變化 (25 °C)	24
圖4-5 PLA(2002D)溶於MAc溶液之ne值計算	25
圖4-6黏度及比黏度對濃度之對數作圖	25
圖4-7 不同PLA溶液濃度電紡得到的纖維型態	27
圖4-8 不同濃度得到的PLA纖維表面孔洞大小	28
圖4-9 PLA纖維直徑分布以及平均直徑比較	29
圖4-10 靜電紡絲調整電壓為8kV SEM纖維圖與直徑纖維分布	31
圖4-11 靜電紡絲調整電壓為12kV之SEM纖維圖與直徑纖維分布	32
圖4-12 不同電壓下之16wt% PLA纖維表面孔洞大小	33
圖4-13 靜電紡絲流速為0.05 mL/min SEM纖維圖與直徑纖維分布	35
圖4-14 靜電紡絲流速為1.0 mL/min SEM纖維圖與直徑纖維分布	36
圖4-15 不同流速下之16wt% PLA纖維表面孔洞大小	37
圖4-16 靜電紡絲工作距離為10 cm SEM纖維圖與直徑纖維分布	39
圖4-17 靜電紡絲工作距離為20 cm SEM纖維圖與直徑纖維分布	40
圖4-18 不同工作距離下之16wt% PLA纖維表面孔洞大小	41
圖4-19 靜電紡絲針徑18G (0.96mm) SEM纖維圖與直徑纖維分布	43
圖4-20 靜電紡絲針徑22G (0.42mm) SEM纖維圖與直徑纖維分布	44
圖4-21 不同針徑下之16wt% PLA纖維表面孔洞大小	45
圖4-22 純PLA、PLA塗膜與PLA靜電紡絲膜之FTIR-ATR 光譜圖	46
圖4-23 PLA (2002D)與PLA纖維薄膜TGA熱分析圖	48
圖4-24 純PLA (2002D) DSC熱分析圖	50
圖4-25 PLA 纖維薄膜 DSC熱分析圖	51
圖4-26 不同電壓下之PLA靜電紡絲膜之一次升溫DSC熱分析圖	53
圖4-27 PLA紡絲膜加熱溫度與時間不同下之一次升溫DSC熱分析圖	54
圖4-28 純PLA與加熱後處理PLA靜電紡絲膜之XRD光譜圖	56
圖4-29 烘箱加熱60°C持續10分鐘之9kV PLA纖維膜SEM纖維圖	57
圖4-30 烘箱加熱110°C持續10分鐘之9kV PLA纖維膜SEM纖維圖	58
圖A-1 乙酸甲酯配置之聚乳酸溶液	64
圖A-2 18 wt% Shear stress-Shear rate黏度數據圖	64
圖A-3 PLA溶於MAc黏度與比黏度對濃度對數作圖	65
圖B-1 靜電紡絲調整電壓為8.5kV SEM纖維圖與直徑纖維分布	68
圖B-2 靜電紡絲調整電壓為9.5kV SEM纖維圖與直徑纖維分布	69
圖B-3 靜電紡絲調整電壓為10kV SEM纖維圖與直徑纖維分布	70
圖B-4 靜電紡絲調整電壓為11kV SEM纖維圖與直徑纖維分布	71
圖B-5 靜電紡絲流速為0.1 mL/min SEM纖維圖與直徑纖維分布	72
圖B-6 靜電紡絲流速為0.5 mL/min SEM纖維圖與直徑纖維分布	73
圖B-7 靜電紡絲流速為0.8 mL/min SEM纖維圖與直徑纖維分布	74
圖B-8 靜電紡絲工作距離為12cm SEM纖維圖與直徑纖維分布	75
圖B-9 靜電紡絲工作距離為18 cm SEM纖維圖與直徑纖維分布	76
圖B-10 靜電紡絲針徑20G (0.60mm) SEM纖維圖與直徑纖維分布	77
圖C-1 純PLA與不同電壓之PLA靜電紡絲膜XRD光譜圖	78

 
表目錄
表1-1 Nature WorksTM不同PLA型號之應用	3
表2-1 影響靜電紡絲直徑變因	5
表2-2 有機溶劑Hansen溶解度參數	11
表2-3 使用不同溶劑之纖維情況	12
表3-1 溶劑物性	16
表4-1 聚乳酸(2002D)在不同溶劑中的溶解情況	20
表4-2 聚乳酸(8300D)在不同溶劑中的溶解情況	20
表4-3 待測溶液的環境溫度 (25 °C)	22
表4-4 溶液之表面張力和導電度數值 (25 °C)	24
表4-5 不同濃度下之直徑粗細	26
表4-6 不同電壓之直徑粗細	30
表4-7 16wt%下不同流速之直徑粗細	34
表4-8 不同工作距離之直徑粗細	38
表4-9 不同針內徑之直徑粗細	42
表4-10 純PLA、PLA塗膜與PLA靜電紡絲膜之FTIR-ATR	47
表4-11 純PLA (2002D)與PLA纖維薄膜DSC分析	52
表4-12 不同電壓下PLA靜電紡絲膜一次 DSC熱分析	53
表4-13 PLA紡絲膜加熱溫度與時間不同下之一次 DSC熱分析	55
參考文獻
[1]	J. Doshi and D. H. Reneker, "Electrospinning process and applications of electrospun fibers." Journal of Electrostatics, vol. 35, no. 2-3, pp.151-160, 1995.
[2]	D. Li and Y. Xia, "Electrospinning of nanofibers: reinventing the wheel?." Advanced Materials, vol. 16, no. 14, pp. 1151-1170, 2004.
[3]	F. E. Ahmed, B. S. Lalia, and R. Hashaikeh, "A review on electrospinning for membrane fabrication: challenges and applications." Desalination, vol. 356, pp. 15-30, 2015.
[4]	M. Bognitzki, W. Czado, T. Frese, A. Schaper, M. Hellwig, M. Steinhart, A. Greiner, and J. Wendorff, "Nanostructured fibers via electrospinning." Advanced Materials, vol. 13, no. 1, pp. 70-72. 2001.
[5]	K. H. Lee, H. Y. Kim, H. J. Bang, Y. H. Jung, and S. G. Lee, "The change of bead morphology formed on electrospun polystyrene fibers." Polymer, vol. 44, no. 14, pp. 4029-4034, 2003.
[6]	許銘軒,「靜電紡絲奈米纖維技術探討及其應用」,國立台北科技大學化學工程學系研究所,碩士學位論文,2014年
[7]	X. Yan, M. Gevelber, J. Yu, and G. Rutledge, "Characterization of electrospinning fiber diameter distributions and process dynamics for development of real-time control." MRS Proceedings, vol. 948, pp. 02-07. 2006.
[8]	J. Oliveira, G. Brichi, J. Marconcini, L. Mattoso, G. Glenn, and E. Medeiros, "Effect of solvent on the physical and morphological properties of poly(lactic acid) nanofibers obtained by solution blow spinning." Journal of Engineered Fibers and Fabrics, vol. 9, no. 4, pp. 117-125, 2014.
[9]	Q. Liu, Q. Yang, Y. Zhou, M. Zhao, Y. Shen, F. Zhou, R. H. Gong, B, Deng, "A facile method of preparing highly porous polylactide microfibers." Journal of Applied Polymer Science, vol. 135, no. 7, pp. 4586-4592, 2018.
[10]	R. S. Kurusu and N. R. Demarquette, "Surface modification to control the water wettability of electrospun mats." International Materials Reviews, vol. 64, no. 5, pp. 249-287, 2018.
[11]	X. Li, K. Teng, J. Shi, W. Wang, Z. Xu, H. Deng, H. Lv, F. Li, "Electrospun preparation of polylactic acid nanoporous fiber membranes via thermal-nonsolvent induced phase separation." Journal of the Taiwan Institute of Chemical Engineers, vol. 60, pp. 636-642, 2016.
[12]	H. Karakaş, " Electrospinning of nanofibers and their applications." 2BFuntex MDT ‘Electrospinning’, no. 65, 2000.
[13]	丁嘉展,「電紡成形條件對紡絲之形貌與直徑之影響」,國立交通大學機械工程學系,碩士論文,2010年
[14]	Z.-M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, "A review on polymer nanofibers by electrospinning and their applications in nanocomposites." Composites Science and Technology, vol. 63, no. 15, pp. 2223-2253, 2003.
[15]	E. T. H. Vink, K. R. Rábago, D. A. Glassner, and P. R. Gruber, "Applications of life cycle assessment to NatureWorks™ polylactide (PLA) production." Polymer Degradation and Stability, vol. 80, no. 3, pp. 403-419, 2003.

[16]	M. Razavi and S.-Q. Wang, "Why is crystalline poly(lactic acid) brittle at room temperature?" Macromolecules, vol. 52, no. 14, pp. 5429-5441, 2019.
[17]	W. H. Carothers, and J. A. Arvin, "Polylactic acid: synthesis, properties and applications." Book of Monomers, Polymers and Composites from Renewable Resources, pp.433-450, 2008.
[18]	W. H. Carothers, and J. A. Arvin, "Studys on polymerization and ring formation. II. poly-ester." Journal of the American Chemical Society, vol. 51, no. 8, pp.2560-2570, 1929.
[19]	K. Jamshidi, S. Hyon, and Y. Ikada, "Thermal characterization of polylactides." Polymer, vol.29, no.12, pp.2229-2234, 1988.
[20]	黃瑞斌,「改質聚乳酸與聚己內酯合膠之結構物性分析」,東海大學化學工程與材料工程研究所,碩士學位論文,2012年
[21]	D. Cam, S. H. Hyon, and Y. Ikada, "Degradation of high molecular weight poly(l-lactide) in alkaline medium." Biomaterials, vol. 16, no.11, pp.833-843, 1995.
[22]	X. Zong, K. Kim, D. Fang, S. Ran, B. Hsiao and B. Chu, "Structure and process relationship of electrospun bioabsorbable nanofiber membranes." Polymer, vol. 43, no.16, pp.4403-4412, 2002.
[23]	H. Tsuji, I. Fukui, H. Daimon, and K. Fujie, "Poly(l-lactide) XI. lactide formation by thermal depolymerisation of poly(l-lactide) in a closed system." Polymer Degradation and Stability, vol. 81, no. 3, pp. 501-509, 2003.
[24]	H.-S. Chien and C. Wang, "Morphology, microstructure, and electrical properties of poly(D,L-lactic acid)/carbon nanocapsule composite nanofibers." Journal of Applied Polymer Science, vol. 128, no. 2, pp. 958-969, 2013.
[25]	A. Magoń and M. Pyda, "Study of crystalline and amorphous phases of biodegradable poly(lactic acid) by advanced thermal analysis." Polymer, vol. 50, no. 16, pp. 3967-3973, 2009.
[26]	F. Carrasco, P. Pagès, J. Gámez-Pérez, O. O. Santana, and M. L. Maspoch, "Processing of poly(lactic acid): characterization of chemical structure, thermal stability and mechanical properties." Polymer Degradation and Stability, vol. 95, no. 2, pp. 116-125, 2010.
[27]	J. Zeng, H. Haoqing, A. Schaper, J. Wendorff, and A. Greiner, "Poly-L-lactide nanofibers by electrospinning – Influence of solution viscosity and electrical conductivity on fiber diameter and fiber morphology." e-Polymers, vol. 3, no.1, pp. 1-6, 2003.
[28]	E. Rezabeigi, M. Sta, M. Swain, J. McDonald, N. Demarquette, R. Drew, P. W. Adams, "Electrospinning of porous polylactic acid fibers during nonsolvent induced phase separation." Journal of Applied Polymer Science, vol. 134, no. 20, 2017.
[29]	J. E. Oliveira, L. H. C. Mattoso, W. J. Orts, and E. S. Medeiros, "Structural and morphological characterization of micro and nanofibers produced by electrospinning and solution blow spinning: A comparative study." Advances in Materials Science and Engineering, vol. 2013, pp. 1-14, 2013.
[30]	R. Casasola, N. L. Thomas, A. Trybala, and S. Georgiadou, "Electrospun poly lactic acid (PLA) fibres: effect of different solvent systems on fiber morphology and diameter." Polymer, vol. 55, no. 18, pp. 4728-4737, 2014.
[31]	行政院環境保護署,「列管汙染源資料」,2019年
[32]	L. Rayleigh, "Lord rayleigh on the equilibrium of liquld." Science, vol. ns-4, no.82, pp.161-163, 1884.

[33]	G. Cooper, D. Johnston, J. Foster, L. Galbraith, A. Neukermans, R. Ormond, "A review of some experimental spray methods for marine cloud brightening." International Journal of Geosciences, vol. 04, no. 01, pp. 78-97, 2013.
[34]	J. Zeleny, "Instability of electrified liquid surfaces." Physical Review, vol.10, no.1, pp.1-6, 1917.
[35]	N. Bhardwaj and S. C. Kundu, "Electrospinning: a fascinating fiber fabrication technique." Biotechnol Adv, vol. 28, no. 3, pp. 325-47, 2010.
[36]	A. Formhals, "Method and apparatus for the production of fibers." US patent 2,116,942, 1934.
[37]	A. Formhals, "Method and apparatus for spinning." US patent 2,160,962, 1934.
[38]	A. Formhals, "Method and apparatus for spinning." US patent 2,349,950, 1934.
[39]	P. Baumgarten, "Electrostatic spinning of acrylic microfibers." Journal of Colloid and Interface Science, vol. 36, no.1, pp.71-79, 1971.
[40]	D. H. Reneker, and I. Chun, "Nanometre diameter fibres of polymer, produced by electrospinning." Nanotechnology, vol.7, no. 3, pp.216-223, 1996.
[41]	H. Fong, I. Chun, and D. H. Reneker, "Beaded nanofibers formed during electrospinning." Polymer, vol. 40, no. 16, pp.4585-4592, 1999.
[42]	S.-Y. Gu and J. Ren, "Process optimization and empirical modeling for electrospun poly (D,L-lactide) fibers using response surface methodology." Macromolecular Materials and Engineering, vol. 290, no. 11, pp. 1097-1105, 2005.
[43]	S. L. Shenoy, W. D. Bates, H. L. Frisch and G. E. Wnek, "Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer–polymer interaction limit." Polymer, vol. 46, no. 10, pp. 3372-3384, 2005.
[44]	M. McKee, G. Wilkes, R. Colby and T. Long, "Correlations of solution rheology with electrospun fiber formation of linear and branched polyesters." Macromolecules, vol. 37, no. 5, pp. 1760-1767, 2004.
[45]	P. Gupta, C. Elkins, T. E. Long, and G. L. Wilkes, "Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent," Polymer, vol. 46, no. 13, pp. 4799-4810, 2005.
[46]	S. V. Fridrikh, J. H. Yu, M. P. Brenner, and G. C. Rutledge, "Controlling the fiber diameter during electrospinning." Phys Rev Lett, vol. 90, no. 14, pp. 144502, Apr 11 2003.
[47]	L. Wannatong, A. Sirivat, and P. Supaphol, "Effects of solvents on electrospun polymeric fibers: preliminary study on polystyrene." Polymer International, vol. 53, no. 11, pp. 1851-1859, 2004.
[48]	A. Jaworek and A. Krupa, " Main modes of electrohydrodynamic spraying of liquids." Polish Academy of Sciences, vol. 621, pp. 944-952, 1998.
[49]	A. Jaworek and A. T. Sobczyk, "Electrospraying route to nanotechnology: An overview." Journal of Electrostatics, vol. 66, no. 3-4, pp. 197-219, 2008.
[50]	J. Zheng, K. Zhang, J. Jiang, X. Wang, W. Li, Y. Liu, "Jet behaviors and ejection mode recognition of electrohydrodynamic direct-write." AIP Advances, vol. 8, no. 1, 2018.
[51]	S. Megelski, J. Stephens, D. Chase and J. Rabolt, "Micro- and nanostructured surface morphology on electrospun polymer fibers."Macromolecules, vol. 35, no. 22, pp. 8456-8466, 2002.
[52]	M. Yu, R. H. Dong, X. Yan, G. F. Yu, M. H. You, X. Ning, Y. Z. Long, "Recent advances in needleless electrospinning of ultrathin fibers: from academia to industrial production." Macromolecular Materials and Engineering, vol. 302, no. 7, 2017.
[53]	L. Van der Schueren, B. De Schoenmaker, Ö. I. Kalaoglu, and K. De Clerck, "An alternative solvent system for the steady state electrospinning of polycaprolactone." European Polymer Journal, vol. 47, no. 6, pp. 1256-1263, 2011.
[54]	T. Jarusuwannapoom, W. Hongrojjanawiwat, S. Jitjaicham, L. Wannatong, M. Nithitanakul, C. Pattamaprom, "Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers." European Polymer Journal, vol. 41, no. 3, pp. 409-421, 2005.
[55]	S. Sato, D. Gondo, T. Wada, S. Kanehashi, and K. Nagai, "Effects of various liquid organic solvents on solvent-induced crystallization of amorphous poly(lactic acid) film." Journal of Applied Polymer Science, vol. 129, no. 3, pp. 1607-1617, 2013.
[56]	C. L. Casper, J. S. Stephens, N. G. Tassi, D. B. Chase and J. F. Rabolt, "Controlling surface morphology of electrospun polystyrene fibers: Effect of humidity and molecular weight in the electrospinning process." Macromolecules, vol. 37, no. 2, pp.573-578, 2004.
[57]	NatureWorks, "NatureWorks® PLA Polymer 2002D."
[58]	R. Naejus, C. Damas, D. Lemordant, R. Coudert, and P. Willmann, "Excess thermodynamic properties of the ethylene carbonate–trifluoroethyl methyl carbonate and propylene carbonate–trifluoroethyl methyl carbonate systems at T= (298.15 or 315.15) K." The Journal of Chemical Thermodynamics, vol. 34, no. 6, pp. 795-806, 2002.
[59]	H. Chen, J. Fergus and B. Jang, "The effect of ethylene carbonate and salt concentration on the conductivity of propylene carbonate lithium perchlorate electrolytes."Journal of The Electrochemical Society, vol. 147, no. 2, pp. 399-406, 2000.
[60]	M. Ue, "Mobility and ionic association of lithium and quaternary ammonium salts in propylene carbonate and γ-butyrolactone." Journal of The Electrochemical Society, vol. 141, no. 12, pp. 3336-3342, 1994. 
[61]	E. W. Fischer, H. J. Sterzel and G. Wegner, "Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions." Kolloid-Zeitschrift und Zeitschrift für Polymere, vol. 251, no. 11, pp. 980-990, 1973.
[62]	S. Li and S. McCarthy, "Influence of crystallinity and stereochemistry on the enzymatic degradation of poly (lactide)s." Macromolecules, vol. 32, no. 13, pp. 4454-4456, 1999.
[63]	M. Vestena, I. P. Gross, C. M. O. Müller, and A. T. N. Pires, "Nanocomposite of Poly(Lactic Acid)/Cellulose Nanocrystals: Effect of CNC Content on the Polymer Crystallization Kinetics." Journal of the Brazilian Chemical Society, vol. 27, no. 5, pp. 905-911, 2015.
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信