§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1608202120551300
DOI 10.6846/TKU.2021.00364
論文名稱(中文) 二氧化碳吸收於雙件式平板型薄膜模組之效率提升研究
論文名稱(英文) Theoretical and Experimental Studies of Carbon Dioxide Absorption in Double-Unit Flat-Plate Membrane Contactors
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 109
學期 2
出版年 110
研究生(中文) 邱崇寶
研究生(英文) Chung-Pao Chiou
學號 608400106
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2021-07-17
論文頁數 127頁
口試委員 指導教授 - 何啟東
委員 - 涂志偉
委員 - 陳俊成
關鍵字(中) CO2吸收
3D紊流促進器
雙件式平板型薄膜系統
吸收通量
吸收率
關鍵字(英) CO2 absorption
3D printed turbulence promoter
Double-unit flat-plate Membrane module
Absorption flux
Absorption efficiency
第三語言關鍵字
學科別分類
中文摘要
本研究主要是通過實驗和理論針對薄膜氣體吸收系統進行分析,以胺溶液吸收CO2於雙件式平板型膜組之順流和逆流操作,利用一維理論模型描述系統中氣體溶質於氣、液兩相內之濃度分佈式,並利用四階Runge-Kutta方法進行數值分析,實驗的操作參數以改變不同胺溶液之吸收劑流率、進氣CO2濃度,及崁入3D紊流促進器等進行討論及實驗模擬。同時也可獲得平均謝塢數的回歸經驗式,吸收速率的結果,可用於計算雙件式平板型薄膜模組中CO2吸收的質傳係數。
以本論文所推導之理論為基礎,以醇胺對二氧化碳之化學吸收作廣泛討論,結果發現,增加液體的流率或以逆流的形式進行實驗皆能增加二氧化碳之吸收效率。
本研究的目的是(1)探討崁入不同3D紊流促進器及排列形狀對於吸收效率的增益;(2)建立一維數學模型,提出一種預測雙件式平板型薄膜模組CO2吸收效率的回歸經驗式;(3)探討各種參數對CO2吸收通量和吸收率改善的影響。
英文摘要
A Double-Unit Flat-Plate gas-liquid membrane contactor with inserting the 3D printed turbulent promoters was explored to effectively enhance the CO2 absorption by aqueous amine solutions (MEA).  In this study, both the theoretical model and ex-perimental work were performed to predict and to optimize the CO2 absorption efficiency under concurrent- and countercur-rent-flow operations for various operating and channel design conditions.  The effect of mass transfer coefficients on the ab-sorption efficiency, average Sherwood number, and CO2 concentration distribution, were explored with the absorbent MEA flow rate, CO2 gas feed flow rate and inlet CO2 concentration as parameters. The theoretical predictions of the CO2 absorption effi-ciency enhancement by inserting turbulence promoters was calculated and validated by experimental data. CO2 absorption effi-ciency enhancement was achieved in the channel with inserting the 3D printed turbulence promoters as compared to that of the device without inserting turbulence promoters (empty channel). The purposes of this study are (1) to study the effects of various operation parameters on the CO2 absorption efficiency improvement.; (2) to develop a one-dimensional mathematical model and propose a general numerical method for predicting the CO2 absorption efficiency in gas-liquid membrane contactor with in-serting the 3D printed turbulence promoter in the flow channel; (3) to develop a one-dimensional mathematical model and pro-pose a general numerical method for predicting the CO2 absorption efficiency in double-unit flat-plate membrane contactors.
第三語言摘要
論文目次
中文摘要	I
英文摘要	II
目錄	III
圖目錄	VI
表目錄	X
第一章 緒論	1
1-1前言	1
1-2氣體薄膜分離原理	3
1-2-1氣體吸收原理與種類	5
1-2-2氣體分離吸收方法	7
1-2-3二氧化碳吸收於醇胺水溶液性質	9
1-3薄膜吸收接觸器系統簡介	11
1-4 3D列印簡介	12
1-5研究動機、目的與方向	14
第二章 文獻回顧	16
2-1文獻回顧	16
第三章 理論分析	20
3-1雙件式平板型薄膜氣體吸收系統模組之質量傳送機制	20
3-1-1薄膜吸收系統模組質傳機制之理論分析	22
3-1-2雙件式平板型薄膜吸收系統模組之理論分析	29
3-1-3濃度極化現象與濃度極化係數	31
3-2 3D紊流因子之謝塢數經驗公式建立與模型	32
3-3雙件式平板型薄膜吸收系統模組一維理論模型之建立	35
3-3-1雙件式平板型薄膜吸收系統模組一維理論模型	37
3-3-2理論數據取得與計算分析流程-朗吉庫塔數值解析	41
3-3-3實驗數據之取得與分析計算過程	44
3-4水力耗損	49
3-5數學模擬參數之設定	51
第四章 實驗分析	55
4-1雙件式崁入3D紊流促進器平板型薄膜吸收系統	55
4-1-1實驗裝置	58
4-1-2藥品	60
4-2雙件式崁入3D紊流促進器平板型薄膜吸收模組	61
4-3實驗步驟	67
4-3-1順流型式氣體吸收實驗	67
4-3-2逆流型式氣體吸收實驗	68
第五章 結果與討論	69
5-1新型3D紊流增益因子之謝塢數經驗公式回歸分析	69
5-2空通道平板型薄膜吸收系統模組	72
5-2-1系統操作變因對莫耳吸收通量與吸收速率之影響	72
5-2-2濃度分佈與濃度極化現象	72
5-3崁入3D紊流促進器之平板型薄膜吸收系統模組系統	80
5-3-1 3D紊流促進器對於莫耳吸收通量與吸收速率之影響	80
5-4模組設計參數對於吸收速率與水力耗損之影響	103
5-4-1莫耳吸收速率增益程度與水力耗損提升程度	103
第六章 結論	115
6-1新型紊流增益因子之謝塢數經驗公式	116
6-2空通道平板型薄膜吸收系統	116
6-3崁入3D紊流促進器之平板型薄膜吸收系統	116
6-4模組設計對於吸收速率及水力耗損之影響	117
符號說明	118
參考文獻	121
 
圖目錄
圖1-5-1 雙件式崁入3D紊流促進器於平板二氧化碳吸收薄膜模組之研究架構圖	15
圖3-1-2 薄膜氣體吸收系統質量傳送機制示意圖	22
圖3-1-2薄膜吸收於薄膜內部之質量傳送阻力模式	26
圖3-1-4質量傳送阻力示意圖	29
圖3-1-5質量傳送阻力串聯模式	29
圖3-3-1順流操作之雙件式平板型薄膜吸收系統示意圖	38
圖3-3-2逆流操作之雙件式平板型薄膜吸收系統示意圖	40
圖3-3-3朗吉庫塔法求解聯立方程組之計算示意圖(a)順流(b)逆流	44
圖3-3-5雙件式平板型薄膜吸收系統運算流程圖(順流操作)	47
圖3-3-6雙件式平板型薄膜吸收系統運算流程圖(逆流操作)	48
圖3-3-7 3D列印圓形紊流促進器寬度 (W1)計算示意圖	53
圖3-3-8 3D列印矩形紊流促進器寬度 (W1)計算示意圖	54
圖4-1-1二氧化碳吸收於雙件式平板型薄膜模組系統簡圖(順流)	56
圖4-1-2二氧化碳吸收於雙件式平板型薄膜模組系統簡圖(逆流)	56
圖4-1-3雙件式崁入3D紊流促進器平板型薄膜吸收系統之實驗設備圖(a)實際圖(b)示意圖	57
圖4-1-4氣體質量控制器	58
圖4-1-5氣相層析儀	59
圖4-2-1 3D紊流促進器於雙件式薄膜吸收模組分解圖	61
圖4-2-2尼龍纖維支撐層示意圖	62
圖4-2-3 3D列印機圖	64
圖4-2-4 3D紊流促進器成品圖	65
圖4-2-5 3D紊流促進器示意圖	66
圖4-2-5 3D紊流促進器實際模組圖	66
圖5-2-2 Empty chanel於不同參數下對莫耳通量之影響(順流操作)	75
圖5-2-3 Empty chanel於不同參數下對莫耳通量之影響(逆流操作)	75
圖5-2-4 Empty chanel於不同參數下對吸收速率之影響(順流操作)	76
圖5-2-5 Empty chanel於不同參數下對吸收速率之影響(逆流操作)	76
圖5-3-1 Circle Type A於不同參數下對莫耳通量之影響(順流操作)	81
圖5-3-2 Circle Type A於不同參數下對莫耳通量之影響(逆流操作)	81
圖5-3-3 Circle Type A於不同參數下對吸收速率之影響(順流操作)	82
圖5-3-4 Circle Type A於不同參數下對吸收速率之影響(逆流操作)	82
圖5-3-5 Circle Type B於不同參數下對莫耳通量之影響(順流操作)	83
圖5-3-6 Circle Type B於不同參數下對莫耳通量之影響(逆流操作)	83
圖5-3-7 Circle Type B於不同參數下對吸收速率之影響(順流操作)	84
圖5-3-8 Circle Type B於不同參數下對吸收速率之影響(逆流操作)	84
圖5-3-9 Square Type A於不同參數下對莫耳通量之影響(順流操作)	85
圖5-3-10 Square Type A於不同參數下對莫耳通量之影響(逆流操作)	85
圖5-3-11 Square Type A於不同參數下對吸收速率之影響(順流操作)	86
圖5-3-12 Square Type A於不同參數下對吸收速率之影響(逆流操作)	86
圖5-3-13 Square Type B於不同參數下對莫耳通量之影響(順流操作)	87
圖5-3-14 Square Type B於不同參數下對莫耳通量之影響(逆流操作)	87
圖5-3-15 Square Type B於不同參數下對吸收速率之影響(順流操作)	88
圖5-3-16 Square Type B於不同參數下對吸收速率之影響(逆流操作)	88
圖5-3-17 不同3D紊流促進器於操作參數下對莫耳通量之影響-CO2=30%(順流操作)	89
圖5-3-18 不同3D紊流促進器於操作參數下對莫耳通量之影響-CO2=30%(逆流操作)	89
圖5-3-19 不同3D紊流促進器於操作參數下對莫耳通量之影響-CO2=35%(順流操作)	90
圖5-3-20 不同3D紊流促進器於操作參數下對莫耳通量之影響-CO2=35%(逆流操作)	90
圖5-3-21 不同3D紊流促進器於操作參數下對莫耳通量之影響-CO2=40%(順流操作)	91
圖5-3-22 不同3D紊流促進器於操作參數下對莫耳通量之影響-CO2=40%(逆流操作)	91
圖5-3-23 不同3D紊流促進器於操作參數下對吸收速率之影響-CO2=30%(順流操作)	92
圖5-3-24 不同3D紊流促進器於操作參數下對吸收速率之影響-CO2=30%(逆流操作)	92
圖5-3-25 不同3D紊流促進器於操作參數下對吸收速率之影響-CO2=35%(順流操作)	93
圖5-3-26 不同3D紊流促進器於操作參數下對吸收速率之影響-CO2=35%(逆流操作)	93
圖5-3-27 不同3D紊流促進器於操作參數下對吸收速率之影響-CO2=40%(順流操作)	94
圖5-3-28 不同3D紊流促進器於操作參數下對吸收速率之影響-CO2=40%(逆流操作)	94
 
表目錄
表1-2-1 常見輸送現象方程式	4
表1-2-2常用醇胺類種類	10
表3-2-1謝塢數經驗式參數	33
表3-5-1 薄膜吸收模組系統相關參數	51
表3-5-2 疏水性薄膜(聚四氟乙烯+聚丙烯複合膜)相關參數	51
表3-5-3流體相關參數	52
表3-5-4 3D列印圓形紊流促進器寬度 (W1)值	53
表3-5-5 氣體端質傳係數	54
表3-5-6 液體端質傳係數	54
表4-1 PTFE/PP 複合膜之薄膜性質	63
表4-2 3D列印機設定參數表	64
表5-1-1 謝塢數經驗公式所需實驗數據之操作變因表	70
表5-2-1 順、逆流操作下空通道平板型薄膜吸收模組系統莫耳通量實驗值與理論值之相對誤差表	77
表5-2-2 順、逆流操作下空通道平板型薄膜吸收模組吸收速率實驗值與理論值之相對誤差表	78
表5-2-3 不同操作參數於空通道平板型薄膜吸收系統之平均濃度極化係數影響比較表	79
表5-3-1 順、逆流操作下崁入3D紊流促進器(Circle Type A)平板型薄膜吸收模組系統莫耳通量實驗值與理論值之相對誤差表	95
表5-3-2 順、逆流操作下崁入3D紊流促進器(Circle Type B)平板型薄膜吸收模組系統莫耳通量實驗值與理論值之相對誤差表	96
表5-3-3 順、逆流操作下崁入3D紊流促進器(Square Type A)平板型薄膜吸收模組系統莫耳通量實驗值與理論值之相對誤差表	97
表5-3-4 順、逆流操作下崁入3D紊流促進器(Square Type B)平板型薄膜吸收模組系統莫耳通量實驗值與理論值之相對誤差表	98
表5-3-5 順、逆流操作下崁入3D紊流促進器(Circle Type A)平板型薄膜吸收模組系統吸收速率實驗值與理論值之相對誤差表	99
表5-3-6 順、逆流操作下崁入3D紊流促進器(Circle Type B)平板型薄膜吸收模組系統吸收速率實驗值與理論值之相對誤差表	100
表5-3-7 順、逆流操作下崁入3D紊流促進器(Square Type A)平板型薄膜吸收模組系統吸收速率實驗值與理論值之相對誤差表	101
表5-3-8 順、逆流操作下崁入3D紊流促進器(Square Type B)平板型薄膜吸收模組系統吸收速率實驗值與理論值之相對誤差表	102
表5-4-1 順流操作下空通道與3D紊流促進器吸收系統模組,不同排列下理論吸收速率增益比例表	105
表5-4-2 順流操作下空通道與3D紊流促進器吸收系統模組,不同排列下理論吸收速率增益比例表	106
表5-4-3 逆流操作下空通道與3D紊流促進器吸收系統模組,不同排列下理論吸收速率增益比例表	107
表5-4-4 逆流操作下空通道與3D紊流促進器吸收系統模組,不同排列下理論吸收速率增益比例表	108
表5-4-5 崁入不同3D紊流促進器之水力耗損提升程度比較表	109
表5-4-6 崁入不同3D紊流促進器之水力耗損提升程度比較表	110
表5-4-7 不同操作參數於Circle type A薄膜吸收系統之平均濃度極化係數影響比較表	111
表5-4-8 不同操作參數於Circle type B薄膜吸收系統之平均濃度極化係數影響比較表	112
表5-4-9 不同操作參數於Square type A薄膜吸收系統之平均濃度極化係數影響比較表	113
表5-4-10 不同操作參數於Square type A薄膜吸收系統之平均濃度極化係數影響比較表	114
參考文獻
1. 粘愷峻(2005)。科學發展,台北市,財團法人台灣產業服務基金會,p.1-2。
2. 徐恆文(2007)。科學發展,台北市,財團法人國家實驗研究院科技政策研究與資訊中心,413期, p.24-27。
3. W. K. Wang, 2001, Membrane Separations in Biotechnology, New York: M. Dekker.
4. A. E. Fouda, 1989, Membrane Separations in Chemical Engi-neering, New York : American Institute of Chemical Engineers.
5. H. M. Yeh, Y. Y. Peng ,Y. K. Chen, 1999, Solvent Extraction through a Double-pass Parallel-plate Membrane Channel with Recycle, J. Membr. Sci., 163, 177.
6. S. H. Lin, K. L. Tung, H. W. Chang, K. R. Lee, 2009, Influence of fluorocarbon flat-membrane hydrophobicity on carbon dioxide recovery, Chemosphere., 75, 1410-1416.
7. J. You, L. Tian, C. Zhang, H. Yao, W. Dou, B. Fan, S. Hu, 2016, Adsorption Behavior of Carbon Dioxide and Methane in Bitumi-nous Coal: A Molecular Simulation Study, Chin. J. Chem. Eng., 24, 1275-1282.
8. L. E. Applegate, 1984, Membrane Separation Processes, Chem. Eng., 91, 64.
9. P. M. Bungay, H. K. Lonsdale , M. N. De Pinho, 1986, Synthetic Membrane: Science, Engineering and Applications, D. Redel Pub-lishing Company, Holland.
10. P. S. Kumar, J. A. Hogendoorn, P. H. M. Feron, G. F. Versteeg, 2002, New Absorption Liquids for the Removal of CO2 from Di-lute Gas Streams Using Membrane Contactors, Chem. Eng. Sci., 57, 1639.
11. H. M. Yeh, Y. S. Shu, 1999, Analysis of Membrane Extraction Through Rectangular Mass Exchangers, Chem. Eng. Sci., 54, 897.
12. J. J. Guo, C. D. Ho, H. M. Yeh, 2007, Mass-Transfer Efficiency of Membrane Extraction in Laminar Flow between Parallel-Plate Channels: Theoretical and Experimental Studies, Ind. Eng. Chem. Res., 46, 7788-7801.
13. J. J. Guo, C. D. Ho, 2009, Theoretical and experimental studies of membrane extraction of Cu2+ with D2EHPA through rectangular conduits. Chem. Eng. Process., 48, 111–119.
14. G. Sartori, D. W. Savage, 1983, Sterically hindered amines for carbon dioxide removal from gases, Ind. Eng. Chem. Fundam., 22, 239-249.
15. T. Chakravarty, U. K. Phukan, R. H. Weiland, 1985, Reaction of Acid Gases with Mixtures of Amine. Chem. Eng. Prog., 81, 32-36.
16. Arthur L Kohl , Richard Nielsen, 1997, Gas Purification, 5th edi-tion. Gulf, Houston, TX.
17. William E. F.,2014, Metal Additive Manufacturing: A Review, J.Materials Engineering and Performance,23,6,1971-28
18. Bikas. H., Stavropoulos.P., Chryssolouris.G.,2015, Additive manufacturing methods and modelling approaches: a critical re-view,The International Journal of Advanced Manufacturing Technology,83.1-4.389-405
19. C.D. Ho, Luke Chen, Li Chen, Jing-Wei Liou , Li-Yang Jen, 2018, Theoretical and experimental studies of CO2 absorption by the amine solvent system in parallel-plate membrane contactors, Sep. Purif. Technol., 198, 128-136.
20. E. J. Davis, 1973, Exact Solutions for a Class of Heat and Mass Transfer Problems, Can. J. Chem. Eng., 51, 562
21. H. M. Yeh, T.W. Chang , S. W. Tsai, 1986, A Study of the Graetz Problems in Concentric-Tube Continuous-Contact Countercurrent Separation Process with Recycles at Both Ends, Sep. Sci. Technol., 21, 403.
22. C. D. Ho, H. M. Yeh, W. S. Sheu, 1998, An analytical study of heat and mass transfer through a parallel-plate channel with recy-cle, Int. J. Heat Mass Transfer., 44, 2589.
23. C. D. Ho, Jr-Wei Tu, 2007, "Mass Transfer Enhancement of Conjugated Graetz Problems in Multi-Pass Parallel-Plate Mass Exchangers with External Recycle," Chem. Eng. Commun., 194(1), 69-84.
24. Qi. Zhang, E. L. Cussler, 1985, Microporous Hollow Fibers for Gas Absorption I. Mass Transfer in the Liquid, J. Membr. Sci., 23, 321.
25. Qi. Zhang, E. L. Cussler, 1985, Microporous Hollow Fibers for Gas Absorption II. Mass Transfer Across the Membrane, J. Membr. Sci., 23, 333.
26. H. Kreulen, G. F. Versteeg, C. A. Smolders, W. P. M. van Swaaij, 1992, Selective Removal of H2S from Sour Gas with Mi-croporous Membranes. Part I. Application in a Gas-Liquid Sys-tem, Sep. Purif. Technol., 73, 2-3.
27. H. Kreulen, C. A. Smolders, G. F. Versteeg, W. P. M. van Swaaij, 1993, Microporous Hollow Fiber Membrane Modules as Gas-Liquid Contactors. Part 1. Physical Mass Transfer Process. A specific application: Mass Transfer in Highly Viscous Liquids, J. Membr. Sci., 78, 197.
28. H. Kreulen, C. A. Smolders, G. F. Versteeg, W. P. M. van Swaaij, 1993, Microporous Hollow Fiber Membrane Modules as Gas-Liquid Contactors. Part 2. Mass Transfer with Chemical Re-action, J. Membr. Sci., 78, 217.
29. H. Kreulen, C. A. Smolders, G. F. Versteeg, W. P. M. van Swaaij, 1993, Determination of Mass Transfer Rates in Wetted and Non-Wetted Microporous Membranes, Chem. Eng. Sci., 48, 2093.
30. Y. S. Kim, S. M. Yang, 2000, Absorption of Carbon Dioxide Through Hollow Fiber Membrane Using Various Aqueous Ab-sorbent, Sep. Purif. Technol., 21, 101-109.
31. Y. Lee, R. D. Noble, B. Y. Yeom, Y. I. Park , K. H. Lee, 2001, Analysis of CO2 removal by Hollow Fiber Membrane Contactors, J. Membr. Sci., 194, 57-67.
32. J. Phattaranawik, R. Jiraratananon, 2001, Direct contact mem-brane distillation : effect of mass transfer on heat transfer., J. Membr. Sci., 188, 137-143.
33. J. Phattaranawik, R. Jiraratananon, A.G Fane. 2003, Effect of net-type spacers on heat and mass transfer in direct contact membrane distillation and comparison with ultrafiltration studies, J. Membr. Sci., 217, 193-206.
34. S. H. Lin, K. L. Tung, H. W. Chang, K. R. Lee, 2009, Influence of fluorocarbon flat-membrane hydrophobicity on carbon dioxide recovery, Chemosphere, 75, 1410.
35. L. Martínez-Díez, M.I. Vázquez-González, 1998, Effects of polari-zation on mass transport through hydrophobic porous mem-branes, Ind. Eng. Chem. Res., 37, 4128-4135.
36. V.A. Bui, L.T.T. Vu, M.H. Nguyen, 2010, Modelling the simulta-neous heat and mass transfer of direct contact membrane distilla-tion in hollow fibre modules, J. Membr. Sci., 353, 85-93.
37. S. Srisurichan, R. Jiraratananon, A.G. Fane, 2006, Mass transfer mechanisms and transport resistances in direct contact membrane distillation process, J. Membr. Sci., 227, 186-194.
38. K.W. Lawson, D.R. Lloyd, 1996, Membrane distillation. II. Direct contact MD, J. Membr. Sci., 120, 123.
39. Z. Ding, L. Liu, R. Ma , 2003, Study on the effect of flow maldis-tribution on the performance of the hollow fiber modules used in membrane distillation, J. Membr. Sci., 215, 11-23.
40. C. H. Yu, C. H. Huang, C. S. Tan, 2012, A Review of CO2 Cap-ture by Absorption and Adsorption, Aerosol Air Qual. Res., 12, 745-769.
41. R. Sakwattanapong, A. Aroonwilas, A. Veawab, 2005, Beahavior of Reboiler Heat Duty for CO2 Capture Plants Using Regenerable Single and Blended Alkanolamines, Ind. Eng. Chem. Fundls., 44, 4465.
42. C. D. Ho, L. C, L. C, J. W. Liou and L. Y. Jen, Theoretical And Experimental Studies Of CO2 Absorption By The Amine Solvent System In Parallel-Plate Membrane Contactors. Sep. Purif. Tech-nol., Available online
43. S. Bhattacharya, S.T Hwang, 1997, Concentration polarization, separation factor, and Peclet number in membrane processes, J. Membr. Sci., 32, 73-90.
44. N. Haimour , O.C. Sandall, 1984, Absorption of Carbon Dioxide Into Aqueous Methyldiethanolamine. Chem. Eng. Sci., 39, 1791.
45. T. C. Tsai, J. J. Ko, H. M. Wang, C. Y. Lin, M. H. Li, 2000, Solu-bility of Nitrous Oxide in Alkanolamine Aqueous Solutions, J. Chem. Eng. Data., 45, 341.
46. H. Li, J. Chen, 2014, Thermodynamic modeling and process sim-ulation for CO2 absorption into aqueous monoethanolamine so-lution, CIESC J., 65, 47-54.
47. K. R. Putta, H. F. Svendsen, H. K. Knuutila, 2017, CO2 absorp-tion into loaded aqueous MEA solutions: Impact of different model parameter correlations and thermodynamic models on the absorption rate model predictions, Chemical Engineering Journal, 327, 868-880.
48. Q. Zheng, L. Dong, J. Chen, G. Gao, W. Fei, 2010, Absorption solubility calculation and process simulation for CO2 capture, CIESC J., 61 1740-1746.
49. K.W Lawson., D.R. Lloyd, 1997, Membrane distillation, J. Membr. Sci., 124, 1-25.
50. R.W. Schofield, A.G. Fane, C.J.D. Fell, 1987, Heat and mass transfer in membrane distillation, J. Membr. Sci., 33, 299–313.
51. Z. Ding, R. Ma, A.G. Fane, 2003, A new model for mass transfer in direct contact membrane distillation, Desalination, 151(3), 217-227.
52. F.A. Banat, J. Simandl, 1998, Desalination by membrane distilla-tion : a parametric study, Sci. Techol., 33, 201-226.
53. D. Zou, X. Chen, M. Qiu, E. Drioli, Y. Fan, 2019, Flux-enhanced α-alumina tight ultrafiltration membranes for effective treatment of dye/salt wastewater at high temperatures, Sep. Purif. Technol., 215, 143-154.
54. E.N. Fuller, P.D. Schettler and J.C. Giddings, 1966, New method for prediction of binary gas-phase diffusion coefficients. Ind. Eng. Chem., 58, 18-27.
55. J. Phattaranawik, R. Jiraratananon, A.G. Fane, C. Halim, 2001, Mass flux enhancement using spacer filled channels in direct con-tact membrane distillation, J. Membr. Sci., 187, 193-201.
56. T.C. Chen, C.D. Ho, H.M. Yeh, 2009, Theoretical modeling and experimental analysis of direct contact membrane distillation, J. Mem. Sci., 330, 279-287.
57. J.R. Welty, C.E. Wick, R.E. Wilson, 1984, Fundamentals of Mo-mentum, Heat, and Mass Transfer, third ed. John Wiley & Sons, New York.
58. S.G. Kandlikar, D. Schmitt. , 2005, Characterization of surface roughness effects on pressure drop in single-phase flow in mini-channels, PHYSICS OF FLUIDS, 17, 100606.
59. R.B. Bird, W.E. Stewart, Lightfoot E.N. , 2007, Transport Phe-nomena, second ed., John Wiley & Sons, New York
論文全文使用權限
校內
校內紙本論文延後至2023-09-01公開
同意電子論文全文授權校園內公開
校內電子論文延後至2023-09-01公開
校內書目立即公開
校外
同意授權
校外電子論文延後至2023-09-01公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信