淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1608201219480000
中文論文名稱 基於人眼視覺配合YCbCr色彩模型特性與亮度變化之飽和度調整模型
英文論文名稱 Saturation Adjustment Model Based on Human Vision with YCbCr Color Model Characteristics and Luminance Changes
校院名稱 淡江大學
系所名稱(中) 電機工程學系碩士班
系所名稱(英) Department of Electrical Engineering
學年度 100
學期 2
出版年 101
研究生中文姓名 彭浩維
研究生英文姓名 Hao-Wei Peng
學號 600450018
學位類別 碩士
語文別 中文
口試日期 2012-06-22
論文頁數 60頁
口試委員 指導教授-江正雄
委員-呂學坤
委員-許明華
委員-余繁
委員-夏至賢
中文關鍵字 色彩調整  人眼視覺  彩色影像處理  色彩模型  YCbCr  過飽和 
英文關鍵字 color adjustment  human vision  color image processing  YCbCr  over-saturation 
學科別分類 學科別應用科學電機及電子
中文摘要 隨著科技日益的進步,影像已經邁向數位化與高品質的年代。為因應未來人們對於高品質與鮮豔色彩的需求,色彩調整的方式將會愈來愈被重視。調整色彩主要的因素為: 1.消費者的需求;2.人眼視覺特性;3.色彩模型特性。因為其調整後的色彩是由人眼所觀看,所以色
彩調整不僅要符合理論也要符合人眼所觀察的結果。傳統的色彩調整
方式大部份只是調整或增強色彩的對比度與飽和度以達到更鮮豔的色彩與更清晰的影像,但是在過程中往往會發生過飽和的情況。其過飽和會使得飽和度增加,同時也使影像觀看起來不太自然。再加上為了顯示色彩須要對過飽和做再修正的動作,會使得色彩的資訊量流失,使得預期達到的結果將會產生變化。所以本論文提出了一飽和度調整模型來解決此問題。

本文提出一飽和度調整模型基於人眼視覺配合YCbCr色彩模型特性與亮度變化。過去大多數人在做色彩調整時,大都是以分別將亮度與飽和度調整到最好為主要方法,但是經常會發生過飽和的情形發生,使得影像變得較不自然。本文利用曝光補償來模擬當明亮度變化時亮度、飽和度與色相三者之間的關係。根據模擬發現飽和度會隨著亮度變化所改變,也發現其色彩移動模式與YCbCr模型有相呼應的關係。最後,再加上人眼視覺特性來做修正,以達到更好的效果。根據實驗結果可以發現影像色彩的明亮度、對比度與鮮豔度都有所提升,且不會有過飽和的情況發生,影像也較為自然。
英文摘要 This thesis proposes a saturation adjustment method based on human vision with YCbCr color model characteristics and luminance changes. In the traditional color adjustment approach, people tried to separately adjust the luminance and saturation. However, this approach makes the color over-saturate very easily and makes the image look unnatural. In this work we try to use the concept of exposure compensation to simulate the brightness changes and to find the relationship among luminance, saturation, and hue. The simulation indicates that saturation changes with the change of luminance and the simulation also shows there are certain relationships between color variation model and YCbCr color model. Together with all these symptoms, we also include the human vision characteristics to propose a new saturation method to enhance the vision effect of an image. The experimental results show that the proposed approach can make the image have better vivid and contrast. Most important of all, unlike the over-saturation caused by the conventional approach, our approach prevents over-saturation and further makes the adjusted image look natural.
論文目次 中文摘
要........................... I
英文摘
要................................... II
內文目錄.............................III
圖表目錄...............................V

第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究主題與目標 4
1.3 論文架構 5

第二章 人眼視覺與色彩模型 6
2.1 人眼視覺 6
2.1.1 人眼特性 6
2.1.2 色彩體系 11
2.1.2.1 孟塞爾色彩體系 11
2.1.2.2 NCS色彩體系 14
2.1.2.3 PCCS色彩體系 16
2.2 色彩模型 17
2.2.1 HSV 18
2.2.2 YUV 20
2.2.3 YCbCr 22
第三章 利用曝光補償模擬明亮度變化 26
第四章 飽和度調整模型 31
4.1 建立色彩調整模型 31
4.2 根據人眼視覺特性修正切面三角形模型37
4.3 利用切面三角形做飽和度調整 40
第五章 實驗結果 43
第六章 結論 56
參考文獻 57














圖目錄

圖1.1過飽合範例 2
圖2.1人眼構造 7
圖2.2錐狀體(Cone)與桿狀體(Rod) 8
圖2.3錐狀體與桿狀體對於亮度強度相對感光反應的特性曲線圖 10
圖2.4亮度與色彩對比度在空間中的敏感度特性曲線圖 10
圖2.5 孟塞爾色立體 12
圖2.6孟塞爾色相環、明度軸與彩度軸 13
圖2.7 NCS色立體 15
圖2.8 NCS色相環 15
圖2.9 PCCS色立體 17
圖2.10 HSV色彩空間 19
圖2.11 YUV色彩空間 21
圖2.12 YCbCr色彩空間 23
圖2.13 Cb-Cr投影平面 25
圖2.14 Cb-Cr平面 25
圖4.1對YCbCr色彩模型根據色相做切割之示意圖 32
圖4.2演算法範例圖 41
圖5.1實驗結果A 46
圖5.2實驗結果B 48
圖5.3實驗結果C 50
圖5.4細微觀察圖5.1 53
圖5.5細微觀察圖5.2 55



表目錄

表3.1 曝光補償模擬結果 29
表4.1六個特徵三角形及其頂點位址 36
表4.2 修正後的特徵三角形及其頂點位址 39

參考文獻 [1] Capra, A., Castrorina, A., Corchs, S., Gasparini, F., Schettini, R., "Dynamic range optimization by local contrast correction and histogram image analysis," International Conference on Consumer Electronics, pp.309-310, 7-11 Jan. 2006
[2] Yadong Wu, Zhiqin Liu, Yongguo Han, Hongying Zhang, "An image illumination correction algorithm based on tone mapping," International Congress on Image and Signal Processing, vol.2, pp.645-648, 16-18 Oct. 2010
[3] Sungmok Lee, Homin Kwon, Hagyong Han, Gidong Lee, Bongsoon Kang, "A Space-Variant Luminance Map based Color Image Enhancement," IEEE Transactions on Consumer Electronic, vol.56, no.4, pp.2636-2643, November 2010
[4] Xinghao Ding, Xinxin Wang, Quan Xiao, "Color image enhancement with a human visual system based adaptive filter," International Conference on Image Analysis and Signal Processing, pp.79-82, 9-11 April 2010
[5] Yihua Shi, Jinfeng Yang, Renbiao Wu, "Reducing Illumination Based on Nonlinear Gamma Correction," IEEE International Conference on Image Processing, vol.1, pp.I-529-I-532, Sept. 16 2007-Oct. 19 2007
[6] Yihua Shi, "Adaptive Illumination Correction Considering Ordinal Characteristics," International Conference on Wireless Communications Networking and Mobile Computing, pp.1-4, 23-25 Sept. 2010
[7] Chao-Chee Ku, Tsung-Ming Wang, "Luminance-based adaptive color saturation adjustment," IEEE Transactions on Consumer Electronics, vol.51, no.3, pp. 939- 946, Aug. 2005
[8] Yi-Chong Zeng, Liao, H.-Y.M., "Video enhancement based on saturation adjustment and contrast enhancement," IEEE International Symposium on Circuits and Systems, pp.3550-3553, 18-21 May 2008
[9] http://www.retina.org.hk/eye.htm
[10] Mark D. Fairchild, Color Appearance Models, 2nd Edition, John
Wiley & Sons, Inc., NY, November 2004
[11] http://www.wikipedia.org/ [12]http://www.ncscolour.co.za/index.php/about/the_natural_colour_syst
em/how_the_system_works
[13] http://www.daicolor.co.jp/english/color_e/color_e01.html
[14] http://www.couleur.org/index.php?page=transformations
[15] 賴岱佑,數位影像分析之智慧型監控系統,文魁資訊股份有限公司,2008。
[16] 陳鴻興,顯示色彩工程學第二版,全華圖書股份有限公司,2011。
[17] 大田登著,陳鴻興與陳詩涵譯,色彩工程學:理論與應用,全華圖書股份有限公司,2007。
[18] Safonov, I.V., Rychagov, M.N., Kimin Kang, Sang Ho Kim, "Automatic correction of exposure problems in photo printer," IEEE Tenth International Symposium on Consumer Electronics, pp.1-6, 2006
[19] Xu, Z., Wu, H.R., Yu, X., Qiu, B., "Colour image enhancement by virtual histogram approach," IEEE Transactions on Consumer Electronics, , vol.56, no.2, pp.704-712, May 2010
[20] Ho-Hyoung Choi, Hyun Deok Kim, Kil-Houm Park, Byoung-Ju Yun, "Color correction for mobile device camera image using a modified image formation model," IEEE International Conference on Consumer Electronics, pp.97-98, 9-12 Jan. 2011
[21] Yong Huang, Hui, L., Goh, K.H., "Hue-based color saturation compensation," IEEE International Symposium on Consumer Electronics, pp. 160- 164, Sept. 1-3, 2004
[22] Buciu, I., "Efficiency analysis of illumination correction methods for face recognition performance," IEEE International Conference on Intelligent Computer Communication and Processing, pp.211-216, 26-28 Aug. 2010
[23] Ji Won Lee, Rae-Hong Park, Soonkeun Chang, "Tone mapping using color correction function and image decomposition in high dynamic range imaging," IEEE Transactions on Consumer Electronics, vol.56, no.4, pp.2772-2780, November 2010
[24] Naccari, F., Battiato, S., Bruna, A., Capra, A., Castorina, A., "Natural scenes classification for color enhancement," IEEE Transactions on Consumer Electronics, vol.51, no.1, pp. 234- 239, Feb. 2005
[25] Kumar, P., Sengupta, K., Lee, A., "A comparative study of different color spaces for foreground and shadow detection for traffic monitoring system," IEEE International Conference on Intelligent Transportation Systems, pp. 100- 105, 2002
[26] Ghimire, D., Joonwhoan Lee, "Color Image Enhancement in HSV Space Using Nonlinear Transfer Function and Neighborhood Dependent Approach with Preserving Details," Pacific-Rim Symposium on Image and Video Technology, pp.422-426, 14-17 Nov. 2010
[27] Ju-Yeon You, Sung-Il Chien, "Saturation enhancement of blue sky for increasing preference of scenery images," IEEE Transactions on Consumer Electronics, vol.54, no.2, pp.762-768, May 2008
[28] Trussell, H.J., Saber, E., Vrhel, M., "Color image processing [basics and special issue overview]," IEEE Signal Processing Magazine, vol.22, no.1, pp. 14- 22, Jan. 2005
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2012-08-21公開。
  • 同意授權瀏覽/列印電子全文服務,於2012-08-21起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信