§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1608201213294400
DOI 10.6846/TKU.2012.00669
論文名稱(中文) 可撓拍翼之三維軌跡與二維流場探索
論文名稱(英文) The 3D trajectory of a flexible flapping wing and its 2D flow field investigation
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 機械與機電工程學系碩士班
系所名稱(英文) Department of Mechanical and Electro-Mechanical Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 100
學期 2
出版年 101
研究生(中文) 葉星志
研究生(英文) Hsing-Chih Yeh
學號 699370598
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2012-07-13
論文頁數 98頁
口試委員 指導教授 - 楊龍杰(ljyang@mail.tku.edu.tw)
委員 - 戴慶良(cldai@dragon.nchu.edu.tw)
委員 - 李其源(cylee@saturn.yzu.edu.tw)
關鍵字(中) 拍翼
Kwon3D
三維軌跡
二維流場
關鍵字(英) Flapping
Kwon3D
3D trajectory
2D flow field
第三語言關鍵字
學科別分類
中文摘要
本研究透過MEMS製程技術與表面黏貼技術結合LED標記,以及夜光漆塗佈標記,使翼展20 cm之拍翼膜撓動顯像,再以運動分析軟體結合立體影像處理,擷取其翼膜撓動的三維軌跡座標,搭配結合於計算流體力學,進行二維拍翼流場的模擬分析。
  本研究以Kwon3D擷取翼膜撓動軌跡座標,並利用光學式動作捕捉設備,經KwonCC數位化比例尺,計算出誤差值為0.19 cm。拍翼最高頻率為14Hz,每拍翼週期可擷取72-86張立體軌跡座標。金探子微飛行器之傾斜8字拍翼,在此被確認。文中也有加以論述LED與夜光漆標記點之伏劣。
  續以Matlab及Surfer軟體比較翼面之變化及擷取剖面軌跡座標。最後利用Gambit建模讀入Fluent,進行微飛行器拍翼1/4翼展剖面在定常流場狀態下之CFD模擬,創新獲得分析實際拍翼軌跡的二維流場與升、阻力。結果顯示模擬計算出之升力數據與實際風洞升力數據定性相似,咸信為可撓拍翼研究之一項創見。
英文摘要
This study, through MEMS processing and surface mount technology (SMT), links up with LED and with the luminous paint on the wing surface to get the 3D trajectory coordinates of a flapping wing. Moreover the author used motion analysis software and computational fluid dynamics (CFD) solver to simulate the 2D flow field under the quasi-steady assumption.
  By the stereo-photography using 2 high speed CCDs and the Kwon3D software, the time history of a flapping wing motion were obtained. The wingspan is 20 cm and the highest flapping frequency is 14Hz. There are 70-90 3D pictures for a full cycle of a flapping . Through KwonCC digital scale a margin error is estimated as 0.19 cm. An oblique figure-of-8 flapping of micro-air-vehicle Golden Snitch is confirmed herein. The pros and cons of using LED markers and the luminous paint are addressed as well.
  A 2D flow simulation of a flapping wing with the wing boundary data fed from stereo-photography measurement is firstly conducted in this thesis. Matlab, Surfer, and Gambit softwares were used to slice the quarter span cross section from the previous 3D trajectory as the 2D solid boundary for the quasi-steady CFD simulation by Fluent. The time-varying outputs include the 2D flow fields and the corresponding lift and drag coefficients. The one cycle history of lift coefficient subject to 14Hz flapping is qualitatively similar to the experimental data from prior wind tunnel testing.
第三語言摘要
論文目次
目錄
第一章 緒論............................................................................................. 1 
1-1 研究背景 ........................................................................................... 1 
1-2 文獻回顧 ........................................................................................... 2 
1-3 研究目的及論文架構 ........................................................................... 7 
第二章 微飛行器與材料特性 ...................................................................... 10
2-1 拍翼式微飛行器概述 ........................................................................... 10
2-2 全塑膠拍翼式微飛行器設計 ................................................................. 10
2-2-1 翼膜設計 ......................................................................................... 12 
2-2-2 機身與尾翼 ..................................................................................... 12 
2-3 翼膜材料特性 ..................................................................................... 14 
第三章 實驗翼膜之製程 ............................................................................ 16 
3-1 軟性電路東概況 .................................................................................. 16 
3-2 實驗儀器與設備 .................................................................................. 19 
3-2-1 聚對二甲苯材料與製程機台 ............................................................... 20 
3-2-2 LED晶粒 ......................................................................................... 24
3-2-3 異方性導電膠 .................................................................................. 26 
3-3 PET導電翼膜製程 ............................................................................... 28
3-3-1 翼膜清潔及parylene鍍膜 ................................................................... 29 
3-3-2 光罩設計 ......................................................................................... 30 
3-3-3 光罩製作 ......................................................................................... 31 
3-3-4 PET翼膜微影與蝕刻製程 .................................................................. 32 
3-4 夜光漆應用於可撓性翼膜 ..................................................................... 36
3-5 小結 .................................................................................................. 39 
第四章 軌跡擷取實驗 ............................................................................... 40 
4-1 影像擷取攝影系統 .............................................................................. 40 
4-2 實驗架設與流程 ................................................................................. 45 
4-3 Kwon3D座標點擷取 ............................................................................ 47 
4-4 標誌亮點 XYZ軌跡座標 ....................................................................... 50 
4-5 小結 ................................................................................................. 51 
第五章 翼面數值模擬 ............................................................................... 52 
5-1 計算流體力學 .................................................................................... 52 
5-2 分析模擬軟體介紹 .............................................................................. 53 
5-3 實驗流程與架構 ................................................................................. 57 
5-4 拍翼計算流體力學 .............................................................................. 59 
5-5 小結 .................................................................................................. 89 
第六章 結論與未來工作 ............................................................................ 91 
6-1 結論 .................................................................................................. 91 
6-2 未來方向 ........................................................................................... 91 
參考文獻 ................................................................................................. 93 

圖目錄 
圖1- 1蝴蝶等比例撲翼式微飛行器 ............................................................... 5 
圖1- 2閃頻觀測儀拍攝起飛姿態 .................................................................. 5 
圖1- 3翼前緣向下拍擊應力分佈 .................................................................. 6 
圖1- 4本研究三角框架 ............................................................................... 8 
圖1- 5架構流程圖 ...................................................................................... 9 
圖2- 1 Caltech的拍翼式飛行器Micro Bat .....................................................10 
圖2- 2減速齒輪傳動機構塑膠套件;(a)正視圖;(b)側視圖 ............................. 11 
圖2- 3本研究拍翼式飛行器之翼膜形狀示意圖 ...............................................12 
圖2- 4保力龍機身 ......................................................................................13 
圖2- 5尾翼設計成可垂直站立的金探子 ........................................................13 
圖2- 6水帄向尾翼工程視圖 .........................................................................14 
圖2- 7垂直向尾翼工程視圖 .........................................................................14 
圖2- 8 PET聚對苯二甲酸乙二醇酯 ..............................................................15 
圖3- 1軟性電路東 ......................................................................................17 
圖3- 2電鍍法 ............................................................................................18 
圖3- 3塗層法 ............................................................................................18 
圖3- 4壓合法 ............................................................................................19 
圖3- 5 parylene-C顆粒 ...............................................................................21 
圖3- 6三種parylene 之分子式 .....................................................................21 
圖3- 7 parylene 沉積過程化學結構(SCS website) .........................................22 
圖3- 8聚對二甲苯鍍膜機(LH300) .................................................................23 
圖3- 9 Dominant 公司 LED 2.0mm×1.25mm×1.1mm ....................................24 
圖3- 10 LED 三視工程圖 ............................................................................25 
圖3- 11異方性導電示意圖 ..........................................................................26 
圖3- 12電阻與線路長度關係圖:(a) 85°C、3 min;(b) 25°C、2 hr...................27 
圖3- 13(a)本實驗導電薄膜使用之光罩;(b)以往導電薄膜使用之光罩 ...............31
圖3- 14使用以往光罩製程之翼膜 .................................................................31 
圖3- 15光罩比較圖;(a)鉻膜光罩;(b)膠片光罩 ............................................32 
圖3- 16可撓性導電膜製程圖 .......................................................................34 
圖3- 17雙面真空曝光機 ..............................................................................35 
圖3- 18可撓性導電翼膜 ..............................................................................35 
圖3- 19夜光水性凝膠 .................................................................................36 
圖3- 20紫外燈管 .......................................................................................37 
圖3- 21標誌點貼附於翼膜 ..........................................................................37 
圖3- 22將翼膜裝於拍翼式微飛行器 .............................................................38 
圖3- 23使用高速攝影機拍攝夜光凝膠翼膜 ....................................................38 
圖4- 1 Trouble Shooter HR .........................................................................41 
圖4- 2 Phantom V4.2 ................................................................................42 
圖4- 3 PR8363型電源供應器 ......................................................................42 
圖4- 4 Kwon3D軟體圖 ...............................................................................43 
圖4- 5 Kwon3D拍攝示意 ............................................................................43 
圖4- 6不同方位之高速攝影機軌跡擷取 .........................................................44 
圖4- 7拍攝系統架設 ...................................................................................46 
圖4- 8實驗拍攝主體 ...................................................................................46 
圖4- 9實驗實際拍攝狀況 ............................................................................47 
圖4- 10光學式動作捕捉設備 .......................................................................47 
圖4- 11裝置反射用反光球 ..........................................................................48 
圖4- 12光學式捕捉系統測定之框架軌跡 .......................................................49 
圖4- 13 KwonCC空間座標化誤差值0.19 cm .................................................49 
圖5- 1 Gambit 網格建立圖 .........................................................................53 
圖5- 2 Fluent模擬翼面線段 .........................................................................54 
圖5- 3 Matlab拍翼行程模擬 ........................................................................55 
圖5- 4 Surfer 模擬飛行時翼表面動態 ...........................................................56 
圖5- 5拍翼機1/4翼展剖面示意圖 .................................................................58 
圖5- 6實驗架構圖 ......................................................................................58 
圖5- 7 Zongxian Liang 等模擬昆蟲拍翼渦流之顯現 .......................................60 
圖5- 8本實驗之流程圖 ...............................................................................60 
圖5- 9驅動電壓0.3 V無翼肋拍翼軌跡圖 .......................................................62 
圖5- 10驅動電壓0.3 V具30度翼肋拍翼軌跡圖 ..............................................63 
圖5- 11驅動電壓3.7 V無翼肋拍翼軌跡圖 .....................................................64 
圖5- 12驅動電壓3.7 V具30度翼肋拍翼軌跡圖 ...............................................65 
圖5- 13蜂鳥懸停時之拍翼軌跡 ....................................................................66 
圖5- 14驅動電壓0.3 V拍翼軌跡圖 ...............................................................68 
圖5- 15驅動電壓3.7 V拍翼軌跡圖 ...............................................................69 
圖5- 16翼面軌跡等高線圖 ..........................................................................70 
圖5- 17 0.3 V翼面等高線圖 ........................................................................71 
圖5- 18 3.7 V翼面等高線圖 ........................................................................72 
圖5- 19翼膜等高線帄面圖 ..........................................................................73 
圖5- 20拍翼式微飛行器翼面 1/2線段;(a)剖面圖;(b)側視圖 .........................73 
圖5- 21電壓0.3 V上行程及下行程軌跡圖 .....................................................74 
圖5- 22電壓3.7 V上行程及下行程軌跡圖 .....................................................74 
圖5- 23電壓3.7 V標誌點翼膜上行程及下行程軌跡圖 .....................................75 
圖5- 24電壓0.3 V之拍翼軌跡剖面並列 .........................................................76 
圖5- 25電壓3.7 V拍翼軌跡剖面並列 ............................................................77 
圖5- 26本實驗使用之四方形網格 ................................................................78 
圖5- 27電壓0.3 V之壓力場變化 ..................................................................80 
圖5- 28電壓3.7 V之壓力場變化 ..................................................................82 
圖5- 29電壓0.3 V之速度場變化 ..................................................................84 
圖5- 30電壓3.7 V之速度場變化 ..................................................................86 
圖5- 31兩種電壓下之一週期升力係數 ..........................................................87 
圖5- 32兩種電壓下之一週期阻力係數 ..........................................................88 
圖5- 33微飛行器風洞測詴訊號截取半自動化電壓 3.7 V之升力圖 ....................89 
圖5- 34本實驗模擬之電壓3.7 V之升力圖 .....................................................89 
圖6- 1 (a)苗志銘教授等NACA0012動態網格 ;(b)動態網格結合Fluent ............92

表目錄 
表2- 1本研究團隊開發之拍翼式微飛行器演進 .............................................. 11 
表3- 1 parylene 的材料性質(SCS website) ...................................................22 
表3- 2 LED 特性表 ....................................................................................25 
表3- 3異方性導電膠規格表 .........................................................................28 
表3- 4異方性導電膠物理性質表 ..................................................................28 
表4- 1 Trouble Shooter HR規格表 ...............................................................41 
表4- 2 Phantom V4.2 規格表 ......................................................................41
參考文獻
參考文獻
[1]http://en.wikipedia.org/wiki/Ornithopter
[2]L. Zeng, Q. Hao, K. Kawachi, “A scanning projected line method for measuring a beating bumblebee wing,” Optics Communications, Vol.183, pp.37–43, 2000.
[3]Z. J. Wang, “Vortex shedding and frequency selection in flapping flight,” Journal of Fluid Mechanics, Vol. 410, pp. 323-341, 2000.
[4]S. Sunada, C.P. Ellington, “A new method for explaining the generation of aerodynamic forces in flapping fight,” Mathematical Methods in the Applied Sciences, vol.24, pp.1377–1386, 2001.
[5]M. Liger, N.P. Sirirak, Y.C. Tai, “Large-area electrostatic valved skins for adaptive flow control on ornithopter wings,” Solid-State Sensor, Actuator and Microsystems Workshop Hilton Head Island, South Carolina, June 2-6, 2002.
[6]R.B. Srygley, A.L.R. Thomas, “Unconventional lift-generating mechanisms in free-flying butterflies,” Nature, Vol. 420, pp660-664, 2002.
[7]Z.J. Wang, “The role of drag in insect hovering,” Journal of Experimental Biology, vol. 207, pp. 4147-4155, 2004.
[8]A. Hedenstrom, “A general law for animal locomotion,” Trends in Ecology and Evolution, vol. 19 (5), pp. 217-219, 2004
[9]N. Vandenberghe, J. Zhang, S. Childress, “Symmetry breaking leads to forward flapping flight,” Journal of Fluid Mech, Vol.506, pp.147-155, 2004.
[10]R. Żbikowski, C. Galiński, C.B. Pedersen, “Four-bar linkage mechanism for insectlike flapping wings in hover: concept and an outline of its realization,” Journal of Mechanical Design, Transactions of the ASME, vol. 127 (4), pp. 817-824, 2005.
[11]S.K. Banala, S.K. Agrawal, “Design and optimization of a mechanism for out-of-plane insect winglike motion with twist,” Journal of Mechanical Design, Transactions of the ASME, vol. 127 (4), pp.841-844, 2005.
[12]H. Tanaka, K. Hoshino, K. Matsumoto, I. Shimoyama, “Flight dynamics of a butterfly-type ornithopter,” Intelligent Robots and Systems, (IROS) IEEE/RSJ International Conference,  pp. 310-315, 02-06 Aug ; 2005.
[13]S. Alben, M. Shelley, “Coherent locomotion as an attracting state for a free flapping body,” Proceedings of the National Academy of Sciences of the U.S.A., Vol.102, No.32, pp.11163-11166, 2005
[14]C.S. Lin, C. Hwu, W.B. Young, “The thrust and lift of an ornithopter’s membrane wings with simple flapping motion,” Aerospace Science and Technology, vol. 10 (2), pp.111-119, 2006.
[15]S.H. McIntosh, S.K. Agrawal, Z. Khan, “Design of a mechanism for biaxial rotation of a wing for a hovering vehicle,” IEEE/ASME Transactions on Mechatronics, vol. 11 (2), pp.145-153, 2006.
[16]T. Fujikawa, K. Hirakawa, T. Udagawa, S. Okuma K. Kikuchi,“Development of a small flapping robot -motion analysis during takeoff by numerical simulation and experiment,”  2nd International Conference, Mechatronic Systems and Materials: MSM2006, pp. 21-23, Cracow, Poland, August, 2006.
[17]Artificial hummingbird 
http://www.avinc.com/nano
[18]SmartBird
http://www.festo.com/cms/en_corp/11369.htm
[19]徐振貴,“拍翼式微飛行器之設計、製造與測試整合”,博士論文,機械與機電工程學系,淡江大學,台北,2008。
[20]L. J. Yang,“The micro-air-vehicle Golden Snitch and its figure-of-8 flapping,” Journal of Applied Science and Engineering, vol. 15 , no.3 , pp. 197-212, 2012.
[21]黃奕澄,“微飛行器拍翼軌跡即時測定之研究”,碩士論文,機械與機電工程學系,淡江大學,台北,2009。
[22]陳泓嘉,“微飛行器風洞測試訊號截取半自動化之研究”,碩士論文,機械與機電工程學系,淡江大學,台北,2010。
[23]T. N. Pornsin Sirirak, parylene MEMS Technology for Adaptive Flow Control of  Flapping Flight, Ph. D. Dissertation, California Institute of Technology, 2002.
[24]何仁揚,“拍撲式微飛行器之製作及其現地升力之量測研究” ,碩士論文,機械與機電工程學系,淡江大學,台北,2005。 
[25]施宏明,“結合PVDF  現地量測之拍撲式微飛行器製作” ,碩士論文,機械與機電工程學系,淡江大學,台北,2007。
[26]L. J. Yang, C. K. Hsu, J. Y. Ho, C. K. Feng, “Flapping wings with PVDF sensors to modify the aerodynamics forces of a micro aerical vehicle,” Sensors and Actuators A, vol. 139, pp. 95-103, 2007. 
[27]L. J. Yang, C. K. Feng, C. K. Hsu, J. Y. Ho, G. H. Feng, H. M. Shih and Y. K. Sheng, “A flapping MAV with PVDF-parylene composite skin,” Journal of Aeronautics, Astronautics and Aviation, Series A, vol. 39, pp. 195-202, 2007. 
[28]「金探子」Golden Snitch之飛行姿態:
 http://tw.youtube.com/watch?v=YkEoxyWGl_k
[29]高崇瑜、楊龍杰、李建邦、沈永康,“利用精密射出成型於微飛行器塑膠零件的設計與製作”,第二屆塑膠材料應用及加工技術論文競賽,2008。
[30]高崇瑜,“應用精密模造技術於微飛行器套件組之設計與製造”碩士論文,機械與機電工程學系,淡江大學,台北,2009。
[31]許政慶,“拍翼式微飛行器之拍翼行程角對氣動力影響”,碩士論文,機械與機電工程學系,淡江大學,台北,2009。
[32]MatWeb. 
http://www.matweb.com/reference/tensilestrength.aspx
[33]Wikipedia: PET 
http://en.wikipedia.org/wiki/Polyethylene_terephthalate
[34]軟性電路板:
http://img338.imageshack.us/i/97417794.png/
[35]林振華,林振富,高密度軟性電路板入門,全華科技圖書股份有限公司, pp.1-1~3-32, 2000
[36]L. J. Yang, A. F. Kuo, C. K. Hsu, “wing stiffness on light flapping micro aerial vehicles, ” Journal of Aicraft, vol. 49, no. 2, pp. 423-431, 2012.
[37]T. N. Pornsin Sirirak, Y. C. Tai, H. Nassef, C. M. Ho, “Flexible parylene actuator for micro adaptive flow control,” Proceedings of the IEEE MEMS conferance, pp. 511-514, 2000.
[38]V&P SCIENTIFIC, INC. 
http://www.vp-scientific.com/parylene_properties.htm
[39]0805 Package Chip LED Technical Data Sheet. 
http://www.everlight.com/upload/product_pdf/17-21-BHC-AN1P2-3T_1079.pdf
[40]冠品化學股份有限公司
http://www.teamchem.com.tw/products_show.php?queryrecno=22287&sup_no=129573
[41]Anisotropic Conductive Adhesive, ACA. Data Sheet. http://www.teamchem.bysources.com.tw/ 
[42]Digital High Speed Image Capturing System, TroubleShootting HR. 
http://www.visionresearch.com/uploads/docs/Discontinued/V4/DS_v4x.pdf
[43]PhantomV4.2
http://www.highspeedimaging.com/pdf/TroubleShooter%20Datasheet.pdf 
[44]Kwon3D 
http://www.kwon3d.com/
[45]Accuratus: 
http://www.accuratus.com.tw/new/view.php?prodid=832
[46]You-Shang Techenical CORP:
http://www.you-shang.com.tw/edu/index.htm
[47]Wikipedia: CFD
http://en.wikipedia.org/wiki/CFD
[48]Wikipedia: MATLAB
http://en.wikipedia.org/wiki/MATLAB
[49]全傑科技
http://surfer.softhome.com.tw/?page_id=311
[50]L.J. Yang, I.C. Huang, Y.S. Chen, W.T. Tang, A.B. Wang, “A parylene-LED wingbeating indicator for visual remote sensing,” Technical Digest of the 16th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers '11), Beijing, China, pp. 422-425, June 5-9, 2011. ,
[51]Z. J. Wang, “Two dimensional mechanism for insect hovering,” Physical Review Letters, Vol. 85, No.10, pp. 2216-2219, 2000. 
[52]D. R. Warrick, B. W. Tobalske, D. R. Powers, “Aerodynamics of the hovering hummingbird,” Nature, Vol. 435, pp.1095-1097, 2005.
[53]Z. Liang, H. Dong, M. Wei, “Unsteady aerodynamics and wing kinematics effect in hovering insect flight, ” AIAA-2009-1299
[54]何明輝、苗志銘、戴昌賢,“振翅八字形拍撲飛行特性之數值研究,” Journal of  CCIT , vol. 34 , no. 2, May, 2006
[55]J. M, M. W.H. Sun, C.H. Tai, “Numerical analysis on aerodynamic force generation of biplane counter-flapping flexible airfoils,” Journal of Aircraft, vol. 46 no. 5, pp. 1785-1794, 2009
[56]紫外燈管
http://science.bowenwang.com.cn/black-light2.htm
 
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信