§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1608200510590300
DOI 10.6846/TKU.2005.00324
論文名稱(中文) 雙亞胺配位銅(I)、銀(I)及釕錯合物之合成與性質
論文名稱(英文) Syntheses and Characterizations of Copper(I), Ag(I) and Ru Complexes with α-diimine ligands
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學學系碩士班
系所名稱(英文) Department of Chemistry
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 93
學期 2
出版年 94
研究生(中文) 林建合
研究生(英文) Chien-Ho Lin
學號 692170383
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2005-06-17
論文頁數 118頁
口試委員 指導教授 - 王文竹
委員 - 張一知
委員 - 陳秋炳
關鍵字(中) 雙亞胺配位子
關鍵字(英) α-diimine
第三語言關鍵字
學科別分類
中文摘要
近幾年來,含有雙亞胺基的配位子在光化學及超分子自我組裝領域已經被廣泛地研究,因此在此論文中,藉由L1配位子( 3,5-di(2’-pyridyl)-4-amino-1,2,4-triazole )及L3配位子( 3,5-di(2’-pyridyl)-1,2,4-oxadiazole )經由縮合反應而合成一系列具有五圓環架橋基的配位子,隨後部份的配位子分別與釕、銅(I)及銀(I)金屬合成出四個系列的錯合物,如[Ru(L)(bpy)2](PF6)2、 [Ag(L)(PPh3)2](ClO4) 、[Cu(L)(PPh3)I]及[Ag(L)]n(ClO4)n。

    在[Ru(L)(bpy)2](PF6)2系列中,利用吸收光譜得知在可見光區約445nm左右處為MLCT的吸收峰,而發射光譜顯示在長波長約600 ~660nm間為磷光放射的放射峰,在[Ru(L3)(bpy)2](PF6)2循環伏安光譜中,從氧化還原電位得知RuII / RuIII位於E= +1.345V,bpy / bpy-位於E= +1.345、-1.235V,而L / L-位於-1.865及-2.16V,最後藉由吸收光譜及循環伏安光譜的探討,推得由bpy佔據最低π*軌域能階。

    在[Cu(L)(PPh3)I]系列中,從吸收光譜得知在可見光區約350 ~ 545nm間為MLCT的吸收峰,而發射光譜顯示在長波長約600 ~640nm間為磷光放射的放射峰,最後在[Cu(L1)(PPh3)I]循環伏安光譜得知CuI / CuII及CuI / Cu0的氧化還原分別位於E= +0.685及-0.545V,而這樣數據是符合典型銅(I)錯合物在電化學上的表現。

    在[Ag(L)(PPh3)2] ](ClO4) 及[Ag(L)]n(ClO4)n系列中,藉由吸收光譜得知在可見光區並沒有任何的MLCT吸收峰,而發射光譜顯示錯合物的發光性質與配位子相同。

    在[Ag(L)]n(ClO4)n系列中,藉由X-ray晶體繞射法解出的晶體結構顯示,錯合物是由配位子與銀(I)離子在1:1比例情況下形成一維結構的聚合物,並且銀跟銀離子間沒有交互作用力,至於在兩面角數據得知Ag(I)金屬中心為扭曲的幾何圖形,而晶體推疊數據顯示分子內有弱的π-π作用力存在,最後這一類的聚合物在超分子排列分類為拉鏈型(zipper)的結構。
英文摘要
The use of the diimine moiety as a part of ligand systems has gained considerable attention in recent years. This is mainly because of the fact that these ligands have the good characteristics of conjugat π electronic system and lowπ* orbital. Further, the investigations on the chemical and physical behavior of ruthenium(II) complexes with the polydendate chelating ligands have attracted much attention. As a consequence of their unique combination of ground- and excited-state properties, this class of coordination complexes has played an important role in the devolpment of chemistry, such as photochemistry, photophysical, photocatalysis, electrochemistry, chemiluminescence, electrochemiluminescence, and supramolecular photochemistry. The main purpose of this study is to synthesze and characterize a series of novel diimine ligands, and their Ru(II), Ag(I) and Cu(I) complexes, [Ru(L)(bpy)2](PF6)2, [Ag(L)(PPh3)2] (ClO4), [Cu(L)(PPh3)I] and [Ag(L)]n(ClO4)n .

    The absorption spectra of the Ru(II) series complexes show intense ligand-centered(LC) bands in the UV region and broad metal-to-ligand charge-transfer(MLCT) bands at lower bands, about 445nm. All the Ru(II) complexes exhibit intense photoluminescence, which has been attributed to MLCT triplet emission. The maximum emission wavelengths at room temperature in the range of 600 ~660 nm. The cyclic voltammetry was measured, showing a metal-centered RuII / RuIII oxidation with potentials at 1.345 V, as well as two reversible reduction waves with potentials at -1.235 V and -2.16 V, attributed to bpy / bpy- and L / L- respectively. According to the result above, presuming the lowestπ* orbital is occupied by bpy .

    In the series complexes of Cu(I), the The absorption spectra show MLCT bands ranging from 350 nm to 545 nm, and the maximum emission wavelengths at room temperature in the range of 600 ~640 nm. The cyclic voltammetry show the CuI / CuII oxidation and CuI / Cu0 reduction with the potentials at 0.685 V and –0.545 V respectively. The electrochemistry behavior correspond with the typical Cu(I) property of the literature .

    In the complexes of [Ag(L)(PPh3)2] ](ClO4) and [Ag(L)]n(ClO4)n, all the photophysical properties are similar to their ligands’ . 

    The complex, [Ag(L)]n(ClO4)n is prepared in a 1:1 ligand-to-metal molar ratio and structurally characterized by single-crystal X-ray analysis, showing one-dimensional coordination polymers. The Ag(I) centers exhibit a distorted tetrahedral configuration, there are not obvious interactions with the adjacent Ag(I) units, but exist weak π•••π stacking interactions in the crystal packing. The coordination polymers are characterized as zipper structure .
第三語言摘要
論文目次
目 錄
中文摘要
英文摘要

一、 緒論
1-1 雙亞胺配位子..........................................1
  1-1-2 雙亞胺配位子之特性................................1
  1-1-3 Triazole及oxadiazole架橋基之特性..................2
  1-1-4 雙亞胺配位子之回顧................................3
1-2 多吡啶釕錯合物........................................6
  1-2-1 多吡啶釕錯合物之性質..............................6
  1-2-2 多吡定釕錯合物之回顧..............................7
1-3 銅(I)及銀(I)錯合物....................................9
  1-3-1 銅(I)及銀(I)錯合物之結構性質......................9
  1-3-2 銅(I)及銀(I)錯合物之光化學.......................11
  1-3-3 銅(I)及銀(I)錯合物之回顧.........................14
1-4 研究動機.............................................17

二、 實驗部份
2-1 藥品.................................................18
2-2 合成部份.............................................19
2-2-1 配位子合成流程及步驟...............................20
2-2-1-1 配位子合成流程及代號.............................19
2-2-1-2 配位子合成步驟...................................21
2-2-2 錯合物合成流程及步驟...............................29
2-2-2-1 [Ru(L)(bpy)2](PF6)2合成流程及代號................29
     2-2-2-2 [Ru(L)(bpy)2](PF6)2合成步驟.................29
2-2-2-3 [Cu(L)(PPh3)I]合成流程及代號.....................32
     2-2-2-4 [Cu(L)(PPh3)I]合成步驟......................32
2-2-2-5 [Ag(L)(PPh3)2](ClO4)合成流程及代號...............35
     2-2-2-6 [Ag(L)(PPh3)2](ClO4)合成步驟................35
2-2-2-7 [Ag(L)]n(ClO4)n合成流程及代號....................37
2-2-2-8 [Ag(L)]n(ClO4)n合成步驟..........................37
2-3 物理測定方法.........................................40

三、 結果與討論
3-1 晶體結構.............................................42
  3-1-1 L4及L5配位子晶體結構.............................42
  3-1-2 [Cu(L1)(PPh3)I] 、[Cu(4)(PPh3)I] 和[Cu(L5)(PPh3)I] 晶體結構.................................................46
  3-1-3 [Ag(L1)(PPh3)2](ClO4)晶體結構....................54
  3-1-4 [Ag(L3)]n(ClO4)n和[Ag(L6)]n(ClO4)n晶體結構.......57
3-2 核磁共振光譜.........................................65
  3-2-1 L1配位子.........................................65
3-2-2 [Ru(L3)(bpy)2](PF6)2...............................66
3-2-3 [Cu(L1)(PPh3)I]....................................68
3-2-4 [Ag(L1)(PPh3)2](ClO4)..............................69
3-2-5 [Ag(L1)]n(ClO4)n...................................69
3-3 [Ru(L)(bpy)2](PF6)2 光譜研究.........................71
  3-3-1 循環伏安光譜.....................................71
     3-3-1-1 循環伏安光譜原理............................71
     3-3-1-2 釕金屬錯合物循環伏安光譜研究................72
     3-3-1-3 釕金屬錯合物的電化學比較....................80
  3-3-2 電子吸收光譜.....................................83
     3-3-2-1 釕金屬錯合物電子吸收光譜研究................83
  3-3-3 發射光譜.........................................86
     3-3-3-1 發射光譜原理................................86
     3-3-3-2 釕金屬錯合物發射光譜研究....................88
     3-3-3-3 釕金屬錯合物電子性質比較....................93
3-4 [Cu(L)(PPh3)I]光譜研究...............................95
  3-4-1 電子吸收光譜.....................................95
     3-4-1-1 電子吸收光譜原理............................95
3-4-1-2 銅(I)金屬錯合物電子吸收光譜研究..................96
  3-4-2 發射光譜........................................100
3-4-2-1 銅(I)金屬錯合物發射光譜研究.....................100
  3-4-3 循環伏安光譜....................................103
3-4-3-1 銅(I)金屬錯合物循環伏安光譜研究.................103

四、 結論...............................................111

五、參考文獻............................................113




圖目錄

Fig 1-1. Diagram of ligand structure......................1
Fig 1-2. Diagram of diimine ligand structure..............2
Fig 1-3. Structure of bpt, bpoa, Ph2BPT,  {[CuII(Ph2PBPT)(bpy)](ClO4)2. 2DMF}∞ and [Cu(L1)(NO3)2]8................3
Fig 1-4. Complexes structure described in text............4
Fig 1-5. Structure of [Ru(bpt)(bpy)2]+ and [Ru2(bpt)(bpy)4]3+........................................................5
Fig 1-6. Complexes structure described in text............7
Fig 1-7. Structure of [Ru(L2N2N22-)(tpy)] and [Ru(L2N2N42-)(tpy)]....................................................8
Fig 1-8. Shape of various structure described in text....10
Fig 1-9. Synthesis and three possible conformations of bpt and some hypothetical supramolecular isomers [CuI(bpt)]x.14
Fig 1-10. Four ORTEP drawing of [CuI(bpt)]x..............15
Fig 1-11. Molecular structures of CuI complexes..........16
Fig 1-12. Four ligand structure described in text........16
Fig 1-13. Diimine ligand structure described in text.....17
Fig 3-1-1. Crystal structure of L4.......................43
Fig 3-1-2. Crystal structure of L5.......................43
Fig 3-1-3. Crystal structure of [Cu(L1)(PPh3)I]..........47
Fig 3-1-4. Crystal structure of [Cu(L4)(PPh3)I]..........49
Fig 3-1-5. Crystal structure of [Cu(L5)(PPh3)I]..........51
Fig 3-1-6. Crystal structure of [Ag(L1)(PPh3)2](ClO4)....55
Fig 3-1-7. Crystal structure of [Ag(L3)]n(ClO4)n.........58
Fig 3-1-8. Crystal structure of [Ag(L6)]n(ClO4)n.........61
Fig 3-1-9. One-dimension zipper chain structure of [Ag(L3)]n(ClO4)n and [Ag(L6)]n(ClO4)n............................63
Fig 3-2-1. 1H-NMR spectrum of L1 in D6-DMSO and CD3CN....65
Fig 3-2-2. 1H-NMR spectrum of [Ru(L3)(bpy)2](PF6)2 in D6-DMSO.....................................................67
Fig 3-2-3. 2D COSY-NMR spectrum of [Ru(L3)(bpy)2](PF6)2 in D6-DMSO..................................................67
Fig 3-2-4. 1H-NMR spectrum of L1 and [Cu(L1)(PPh3)I] in CD3CN....................................................68
Fig 3-2-5. 1H-NMR spectrum of L1 and [Ag(L1)(PPh3)2](ClO4) in D6-DMSO...............................................69
Fig 3-2-6. 1H-NMR spectrum of L1 and [Ag(L1)]n(ClO4)n in D6-DMSO..................................................70
Fig 3-3-1-1. Cyclic voltammogram for a solution that is 6.0mM in K3Fe(CN)6 and 1.0M in KNO3......................72
Fig 3-3-1-2. Cyclic voltammograms of [Ru(L3)(bpy)2](PF6)2 in CH3CN solution (0.01M TBAPF6, Glassy carbon electrode, 100mV/s scan rate, Current Range 100uμA).................73
Fig 3-3-1-3. Cyclic voltammograms of [Ru(L3)(bpy)2](PF6)2 in CH3CN solution (0.01M TBAPF6, Glassy carbon electrode, 100mV/s scan rate, Current Range 100uμA).................73
Fig 3-3-1-4. Cyclic voltammograms of [Ru(L3)(bpy)2](PF6)2 in CH3CN solution (0.01M TBAPF6, Glassy carbon electrode, 100mV/s scan rate, Current Range 100uμA).................75
Fig 3-3-1-5. Cyclic voltammograms of [Ru(L3)(bpy)2](PF6)2 in CH3CN solution (0.01M TBAPF6, Glassy carbon electrode, 100mV/s scan rate, Current Range 100uμA).................76
Fig 3-3-1-6. Cyclic voltammograms of [Ru(L3)(bpy)2](PF6)2 in CH3CN solution (0.01M TBAPF6, Glassy carbon electrode, 100mV/s scan rate, Current Range 100uμA).................77
Fig 3-3-2-1. UV/Vis spectrum of [Ru(L3)(bpy)2](PF6)2 (dashed line) and L3 (solid line) in CH3CN...............83
Fig 3-3-2-2. UV/Vis spectrum of [Ru(L5)(bpy)2](PF6)2 (solid line) and L5 (dashed line) in CH3CN...............85
Fig 3-3-3-1. Jablonski’ diagram.........................86
Fig 3-3-3-2. Emission (solid line) and exctiation (dashed line) spectrum of [Ru(L3)(bpy)2](PF6)2 in CH3CN (Band pass 800nm, detector’s voltage 700 volts)....................88
Fig 3-3-3-3. Emission (solid line) and exctiation (dashed line) spectrum of [Ru(L3)(bpy)2](PF6)2 in CH3CN (Band pass 800nm, detector’s voltage 700 volts)....................90
Fig 3-4-1-1. UV/Vis spectrum of [Cu(L4)(PPh3)I] (dashed line) and L4 (solid line) in CH2Cl2......................96
Fig 3-4-1-2. UV/Vis spectrum of [Cu(L4)(PPh3)I] (dashed line) and L4 (solid line) in CH3CN.......................99
Fig 3-4-2-1. Emission (dashed line) and exctiation (solid line) spectrum of [Cu(L4)(PPh3)I] in CH2Cl2 (Band pass 800nm, detector’s voltage 700 volts)...................100
Fig 3-4-2-2. Emission (dashed line) and exctiation (solid line) spectrum of [Cu(L5)(PPh3)I] in CH2Cl2 (Band pass 800nm, detector’s voltage 700 volts)...................102
Fig 3-4-3-1. Cyclic voltammograms of L1 in CH3CN solution (0.01M TBAPF6, Glassy carbon electrode, 100mV/s scan rate, Current Range 100uμA)...................................103
Fig 3-4-3-2. Cyclic voltammograms of [Cu(L1)(PPh3)I] in CH3CN solution (0.01M TBAPF6, Glassy carbon electrode, 100mV/s scan rate, Current Range 100uμA)................105
Fig 3-4-3-3. Cyclic voltammograms of [Cu(L1)(PPh3)I] in CH3CN solution (0.01M TBAPF6, Glassy carbon electrode, 100mV/s scan rate, Current Range 100uμA)................107
Fig 3-4-3-4. Cyclic voltammograms of [Cu(L1)(PPh3)I] in CH3CN solution (0.01M TBAPF6, Glassy carbon electrode, 100mV/s scan rate, Current Range 100uμA)................109

表目錄

Table 1-1. Geometry structure and coordination number of Ag(I).......................................................9
Table 3-1-1. Crystal data and structure refinement for L4.......................................................44
Table 3-1-2. Crystal data and structure refinement for L5.......................................................45
Table 3-1-3. Crystal data and structure refinement for [Cu(L1) (PPh3)I]............................................48
Table 3-1-4. Crystal data and structure refinement for [Cu(L4) (PPh3)I]............................................50
Table 3-1-5. Crystal data and structure refinement for [Cu(L5) (PPh3)I]............................................52
Table 3-1-6. Selected Bond Lengths (A) and Angles (deg) for Cu(I) complexes described in text....................53
Table 3-1-7. Selected Bond Lengths (A) and Angles (deg) for Ag(I) complexes described in text....................54
Table 3-1-8. Crystal data and structure refinement for [Ag(L1)(PPh3)2] (ClO4)......................................56
Table 3-1-9. Crystal data and structure refinement for [Ag(L3)]n (ClO4)n...........................................59
Table 3-1-10. Crystal data and structure refinement for [Ag(L6)]n (ClO4)n...........................................62
Table 3-1-11. Selected Bond Lengths (A) and Angles (deg) for Ag(I) complexes described in text....................64
Table 3-3-1-1. Redox data for complexes decribed in text.80
Table 3-3-2-1. Electronic data for L and Ru complexes described in text........................................85
Table 3-3-3-1. Emission data for L3 and [Ru(L3)(bpy)2](PF6)2 described in text......................................91
Table 3-3-3-2. Emission data for L5 and [Ru(L5)(bpy)2](PF6)2 described in text......................................92
Table 3-3-3-3. Absorption and Emission data for complexes described in text........................................93
Table 3-4-1-1. Electronic data for ligand and complexes described in text........................................98
Table 3-4-2-1. Absorption and Emission data for complexes described in text.......................................102



Scheme

Scheme 2-2-1-1  配位子合成流程圖.........................19
Scheme 2-2-1-2  配位子合成流程圖.........................20
Scheme 2-2-2-1  [Ru(L)(bpy)2](PF6)2合成流程圖............29
Scheme 2-2-2-2  [Cu(L1)(PPh3)I]合成流程圖................32
Scheme 2-2-2-3  [Ag(L)(PPh3)2](ClO4)合成流程圖...........35
Scheme 2-2-2-4  [Ag(L)]n(ClO4)n合成流程圖................37
Scheme 3-3-1-1  Redox process of [Ru(L3)(bpy)2](PF6)2....79
Scheme 3-4-3-1  Redox process of [Cu(L1)(PPh3)I]........110
參考文獻
1.Creutz, C. Inrog. Chem. 1982, 1, 293
2.Sutin, N.;Creutz, C. Pure Appl. Chem. 1980, 52, 2727
3.Ogawa, S.; Yamaguchi, T.; Gotoh, N. J. Chem. Soc. Perkin Trans, I, 1974, 976
4.Marco H. Klingele, Sally Brooker, Coord. Chem. Rev. 241, 2003, 119
5.Jaap G. Haasnoot, Coord. Chem. Rev. 200-202, 2000, 131
6.Marco H. Klingele, Sally Brooker, Inorg. Chim. Acta. 357, 2004, 1598
7.Xian-He Bu, He Liu, Miao Du, Lei Zhang, and Ya-Mei Guo, Inorg. Chem. 2002, 41, 1855
8.Johannes G. Vos, Stefano Fanni, Tia E. Keyes, Christine M. O’Connor, Helen Hughes, Renyi Wang, Coord. Chem. Rev. 208, 2000,77
9.Johannes G. Vos, Karen F. Mongey, Brian D. MacCraith, Colette M. McDonagh., Coord. Chem. Rev., 185-186, 1999, 417
10.Johannes G. Vos, Wesley R. Browne, Christine M. O’Connor, Helen P. Hughes, Ronald Hage, Olaf Walter, Manfred Doering, John F. Gallagher, J. Chem. Soc., Dalton Trans., 2002, 4048
11.Johannes G. Vos, Wesley R. Browne, Noel M. O’Boyle, William Henry, Adrian L. Guckian, Sabine Horn, Thomas Fett, Christine M. O’Connor, Marco Duati, Luisa De Cola, Colin G. Coates, Kate L. Ronayne, John J. McGarvey., J. Am. Chem. Soc., 2005, 127, 1229
12.Johannes G. Vos, Cinzia Di Pietro, Scolastica Serroni, Sebastiano Campagna, Maria Teresa Gandolfi, Roberto Ballardini, Stefano Fanni, Wesly R. Browne., Inorg. Chem., 2002, 41, 2871
13.Johannes G. Vos, Anthea C. Lees, Cornelis J. Keverlaan, Carlo. A. Bigozzi., Inorg. Chem., 2001, 40, 5343
14.Francesco Barigelletti, Luisa De Cola, Vincenzo Balzani, Ronald Hage, Jaap G. Haasnoot, Jan Reedijk, Johannes G. Vos., Inorg. Chem. 1989, 28, 4344
15.Johannes G. Vos, Colin G. Coates, Tia E. Keyes, Helen P. Hughes, Pradeep M. Jayaweera, John J. McGarvey., J. Phys. Chem. A., 1998, 102, 5013
16.D. Paul Rillema, Kinsler B. Mack., Inorg. Chem., 1982, 21, 3849
17.A. Juris, V. Balzani, M. Venturi, S. Campagna, S. Serroni, Chem. Rev. 96, 1996, 759
18.F. H. Burstall, J. Am. Chem. Soc., 1936, 173
19.Johannes G. Vos, Stefano Fanni, Tia E. Keyes, Sebastiano Campagna, Inorg. Chem., 1998, 37, 5933
20.Johannes G. Vos, Anthea C. Lees, Cornelis J. Kleverlaan, Carlo. A. Bignozzi., Inorg. Chem., 2001, 40, 5345
21.P. Belser, L. De Cola., Coord. Chem. Rev., 1998, 177, 301
22.E. A. Seddon , K. R. Seddon, The Chemistry of Ruthenium, Elsevier, Amsterdam, 1984, ch. 15
23.M.-J. Blanco, M. C. Jimenez, J.-C. Chambron, V. Heitz, M. Linke, J.-P. Sauvage, Chem. Soc. Rev., 1999, 28, 293
24.Johannes G. Vos, Luisa De Cola, Francesco Barigelletti, Vincenzo Balzani, Ronald Hage, Japp G. Haasnoot, Jan Reedijk, Chem. Phys.Lett. 178, 1991, 5-6, 491
25.Sebastiano Campagna, Gaetano Giuffrida, Giuseppe Calogero, Vittorio Ricevuto, Inorg. Chem., 1995, 34, 1957
26.Sebastiano Campagna, Gaetano Giuffrida, Giuseppe Calogero, Vittorio Ricevuto, Giovanni Guglielmo, Mauro Ciano, Inorg. Chem., 1993, 32, 1179
27.S. Campagna, G. Di Marco, M. Lanza, A. Mamo, I. Stefio, C. Di Pietro, G. Romeo., Anal. Chem. 70, 1998, 5019
28.Francesco Barigelletti, Christine Goze, Jean-Claude Chambronm Valerie Heitz, Didier Pomeranc, Xavier J. Salom-Roig, Jean-Pierre Sauvage, Angeles Farran Morales., Eur. J. Inorg. Chem. 2003. 3752
29.Carlo Alberto Bignozzi, Roberto Argazzi, Neyde Yukie Murakami Iha, Herve Zabri, Fabrice Odobel, Coord. Chem. Rev., 248, 2004, 1299
30.Johannes G. Vos, Marco Duati, Stefania Tasca, Fiona C. Lynch, Holger Bohlen, Inorg. Chem. 2003, 42, 8377
31.Maestri, M.; Armaroli, N.; Balzani, V.; Constahle, E. C.; Cargill Thompson, A. M. W. Inorg. Chem. 1995, 34, 2759
32.Jardine, F. H. Adv. Inorg. Chem. Rodiochem., 1975, 17, 115
33.Garder, G. B.; Venkataraman, D.;Moore, J. S.; Lee, S. Nature, 1995, 374, 792
34.Garder, G. B.;Kiang, Y.-H.; Lee, S.; Asgaonkar, A.; Venkataraman, D. J. Am. Chem. Soc. 1996, 118, 6946
35.Xiao-Ming Chen, Jie-Peng Zhang, Yan-Yong Lin, Xiao-Chun Huang.; Chem. Commun.; 2005, 1258
36.B.Moulton, M. J. Zaworotko, Chem. Rev., 2001, 101, 1629
37.G. F. Swiegers. T. J. Malefetse, Chem. Rev., 2000, 100, 3483
38.G. F. Swiegers. T. J. Malefetse, Coord. Chem. Rev., 2002, 225, 91
39.Edwin C. Constable, Catherine E. Housecroft, Markus Neuburger, Sebastien Reymann, Sylvia Schaffner., Chem. Commun., 2004, 1056
40.Yu-Bin Dong, Jian-Ping Ma, Ru-Qi Huang., Inorg. Chem. 2003, 42, 294
41.Edwin C. Constable, Catherine E. Housecroft, Benson M. Kariuki, Natalie Kelly, Christopher B. Smith., Inorg. Chem. Commun. 5, 2002, 199
42.Marie-Therese Youinou, Noureddine Rahmouni, Jean Fischer, John A. Osborn., Angew. Chem. Int. Ed. Engl. 31, 1992, 6, 733
43.Edwin C. Constable, Catherine E. Housecroft, Benson M. Kariuki, Markus Neuburger, Christopher B. Smith., Aust. J. Chem. 2003, 56, 653
44.Edwin C. Constable, Catherine E. Housecroft, Benson M. Kariuki, Natalie Kelly, Christopher B. Smith., C. R. Chimie. 5, 2002, 425
45.Kim R. Dunbar., Cristian S. Campos-Fernandez, Rodo;phe Clerac., Angew. Chem. Int. Ed. 1999, 38, 23, 3477
46.Xiao-Ming Chen, Jie-Peng Zhang, Yan-Yong Lin, Xiao-Chun Huang, J. Am. Chem. Soc. 2005, 127, 5495
47.Yu-Bin Dong, Hai-Ying Wang, Jian-Ping Ma, Da-Zhong Shen, Ru-Qi Huang, Inorg. Chem, 44, 13, 2005, 4679
48.Crosby, G. A. Acc. Chem. Res. 1975, 8, 231
49.Demas, J. N. J. Chem. Educ. 1976, 53, 657
50.Sutin, N.; Creutz, C. Advan. Chem. Ser. 1984, 1, 168
51.Ford, P. C. Coord. Chem. Rev. 1994, 132, 129
52.McMillin, D. R.; Kirchhoff, J. R.; Goodwin, K. V. Coord. Chem. Rev. 1985, 64, 83
53.Kyle, K. R.; Palke, W. E.; Ford, P. C. Coord. Chem. Rev. 1990. 97,35
54.Suning Wang, Wen Li Jia, Qin-De Liu, Wen-Li Jia., Inorg. Chem. 2005, 44, 1132
55.Richard J. Puddephatt, John D. Scott., Organometallics, 5, 1986, 2522
56.B. Ronald. F. Ziolo, S. Lipton, and Z. Dori, Chem. Commun, 1970, 1124
57.A. Vogler, H. Kunkely, Chem. Phy. Lett., 158, 1989, 74
58.Taro Tsubomura, Shinya Enoto, Shinya Endo, Tsuyoshi Tamane, Kenji Matsumoto, Toshiaki Tsukuda, Inorg. Chem. 2005. Article
59.David R. McMillin, Richard A. Walton, Douglas G. Cuttell, Shan- Ming Kuang, Phillip E. Fanwick, J. Am. Chem. Soc. 124, 1, 2002, 6
60.Wolfgang Kaim, Markus Glockle, Klaus Hubler, Hans-Jurgen Kummerer, Gert Denninger, Inorg. Chem. 2001, 40, 2263
61.Suning Wang, Wen Li Jia, Theresa McCormick, Ye Tao, Jian-Ping Lu, Inorg. Chem. 2005, 44, 5706
62.Wolfgang Kaim, Monika Sieger, Conny Vogler, Axel Klein, Axel Knodler, Matthias Wanner, Jan Fiedler, Stanislav Zalis, Theo L. Snoeck, Inorg. Chem. 2005, 44, 4637
63.Wolfgang Kaim, Manuela Schwach, Hans-Dieter Hausen, Inorg. Chem. 1999, 38, 2242
64.Wolfgang Kaim, Anne-Laure Barra, Louis-Claude Brunel, Frank Baumann, Manuela Schwach, Michael Moscherosch, J. Chem. Soc., Dalton Trans., 1999, 3855
65.D. J. McMillin, A. K. Ichinaga, J. R. Kirchhoff, Inorg. Chem. 1987, 26, 4290
66.D. R. McMillin, G. A. Crosby, Acc. Chem. Res., 8, 1975, 231
67.David R. McMillin, Dominick J. Casadonte, Inorg. Chem. 1987, 26, 3950
68.Arned Vogler, Horst Kunkely, Coord. Chem. Rev. 230, 2002, 243
69.Wang, L. Zhang, Q.; Zhou, Q.; Cheng, Y.; Ma, D.; Jing, X.; Wang, F. Adv. Mater. 2004, 16, 432
70.McMillin, D. R.; Kuang, S. M. Cuttell, D. G., Fanwick, P. E., Walton, R. A. Inorg. Chem. 2002, 41, 3313
71.Si-Chang Shao, Dun-Ru Zhu, Xu-Hui Zhu, Kiao-Zeng You, S. Shanmuga Sundara Raj and Hoong-Kun, Acta Cryst. 1999. C55, 1412-1413
72.張順隆,淡江大學化學系碩士論文;3,6-(2’-吡啶)-  阱配位四核銅錯合物之合成、分子結構、電化學及光化學,1996
73.林憲宗,淡江大學化學系碩士論文;雙亞配位子銀(I)錯合物的分子結構光化學及電化學,1995
74.P. T. Kissinger., W. H. Heinman., J.Chem.Educ., 1983, 60, 720
75.Johannes G. Vos, Paolo Passaniti, Wesley R. Browne, Donal Hughes, J. Chem. Soc., Dalton Trans., 2002, 1740-1746
76.Crosby, G.A.; Highland, R. G.; Truesdell, K. A. Coord. Chem. Rev. 1985, 64, 41~52
77.Datong Song, Wen Li Jia, Gang, Wu and Suning Wang, Dalton Trans., 2005, 3, 433
78.Dietrich-Buchecker, C.; Sauvage, J. P.; Kern, J. P. J. Am. Chem. Soc. 1989, 111 7791
79.Vogler, C.; Hausen, H.-D.; Kaim, W.; Kohlmann, S.; Kramer, H. E. A.; Rieker, J. Angew, Chem., Int. Ed. Engl. 1989, 28, 1659
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信