淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1607202013445400
中文論文名稱 非恆溫浸漬沉澱法製備聚偏二氟乙烯複合膜及其應用於海水淡化之研究
英文論文名稱 Preparation of PVDF composite membrane via non-isothermal immersion precipitation method for seawater desalination
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 108
學期 2
出版年 109
研究生中文姓名 楊涴婷
研究生英文姓名 Wan-Tyng Yang
學號 606400157
學位類別 碩士
語文別 中文
口試日期 2020-06-23
論文頁數 98頁
口試委員 指導教授-鄭東文
委員-鄭廖平
委員-童國倫
中文關鍵字 間隙式薄膜蒸餾  直接接觸式薄膜蒸餾  聚偏二氟乙烯  平板薄膜 
英文關鍵字 gap membrane distillation  direct contact membrane distillation  Poly(vinylidene fluoride)(PVDF)  flat-sheet membrane 
學科別分類
中文摘要 論文提要內容:
本研究以非恆溫浸漬沉澱法製備薄膜應用於薄膜蒸餾中,首先以聚偏二氟乙烯(PVDF)、磷酸三乙酯(TEP)以及純水製作薄膜,並在相圖上找到一個特殊的製膜液組成,讓製膜液內的溶劑與非溶劑比例,和所使用的沉澱槽中溶劑與非溶劑之比例相同,讓沉澱槽可以重複使用,使用之沉澱槽中溫度為5°C、15°C與25°C,藉由改變沉澱槽溫度的方式來改善平板薄膜表面結構。從SEM結果得知,隨著沉澱槽中溫度的上升,其薄膜表面孔徑、孔洞數、孔隙度與接觸角皆有增加的趨勢,會使薄膜表面的緻密皮層不易形成,並探討其薄膜結構對蒸餾操作之影響。
在實驗操作,探討不同的參數對薄膜蒸餾之滲透通量及鹽阻隔率之影響,以AGMD、WGMD以及DCMD於不同進料溫度(50~80°C)、流速(0.6、0.7、0.8 L/min)與間隙高度(0、1、3 mm)進行性能探討,以及對薄膜進行回復性與耐久性之測試。最後將WGMD與DCMD進行滲透通量與產出比率(GOR)之比較,探討不同薄膜蒸餾之優缺點。
從實驗結果得出,隨著進料溫度與流速的增加、間隙高度的降低,皆可使滲透通量上升,並且WGMD的通量皆比AGMD高,而當薄膜M25使用在WGMD進料溫度為80 °C、流速0.8 L/min、間隙高度為0 mm時,可得到最高的滲透通量51.7 L/ hr。
在薄膜回復性測試中,當進料濃度為3.5 wt%和15 wt%的NaCl三種薄膜皆有良好的回復性,且在連續48小時的WGMD操作中,薄膜M25保持著穩定的滲透通量與99.99%以上的阻隔率,證明此薄膜在長時間操作下有良好的穩定性。最後在WGMD與DCMD的性能比較中,雖然DCMD的滲透通量皆高於WGMD,不過WGMD的GOR皆高於DCMD,代表WGMD在熱能的使用效率較DCMD好,因此WGMD仍具有優勢。

英文摘要 This work studied the preparation of the flat-sheet polyvinylidene fluoride (PVDF) membrane by non-isothermal immersion precipitation for applying in membrane distillation. The casting dope comprise PVDF, triethyl phosphate and water. In this experiment, we found a special dope composition in the phase diagram such that the solvent/non-solvent ratio in the dope was equal to that in the precipitation. As a result, the composition of the bath could be used repeatedly. In this work, the coagulation bath temperature was selected as 5°C,15°C, and 25°C. The results indicated that the pore size, porosity and contact angle of membrane became larger and the thickness of skin layer smaller as increase in coagulation bath temperature.
The second part was studied the performance of air gap membrane distillation (AGMD) , water gap membrane distillation (WGMD) and direct contact membrane distillation (DCMD) for seawater desalination. The effect of operation parameters, such as feed temperature (50-80°C), flow rate (0.6-0.8 L/min) and gap height (0, 1, 3 mm) was investigated. Finally, the advantages and the disadvantages between DCMD and WGMD was investigated by permeate flux and gained output ratio (GOR).
The results show that the flux of membrane distillation increased as the decrease in the gap height and increase the feed temperature and flow rate. The water has higher thermal conductivity than air, so the flux of WGMD is higher than AGMD. The highest flux of WGMD is 51.7 L/m2hr, when the feed temperature is 80°C, flow rate is 0.8 L/min and the gap height is 0 mm.
In the recovery experiment, both membrane have good recovery when the solution concentration of 3.5 wt% and 15 wt% NaCl. The results of long-term operation show that the flux of the M25 membrane have good stability. In the performance comparison between WGMD and DCMD, although the flux of DCMD is higher than WGMD, the GOR of WGMD is higher than DCMD, which means that WGMD is better than DCMD in energy efficiency
論文目次 目錄
中文摘要 I
英文摘要 II
目錄 IV
圖目錄 VIII
表目錄 XII
第一章 緒論 1
1.1 前言 1
1.2 薄膜分離程序 3
1.3 薄膜的應用 5
1.4 薄膜蒸餾技術 6
1.5 研究動機與目的 8
第二章 文獻回顧 11
2.1 薄膜蒸餾原理與歷史發展 11
2.2 高分子薄膜製備 18
2.3 成膜理論:熱力學 19
2.4 薄膜之孔隙結構及性質 20
2.5 影響滲透通量的因素 22
2.5.1 薄膜材料 22
2.5.2 薄膜兩側蒸氣壓差 22
2.5.3 進料濃度 23
2.5.4 流速的影響 23
2.5.5 間隙的影響 24
第三章 實驗裝置與方法 26
3.1 實驗藥品 26
3.2 實驗設備 27
3.3 PVDF薄膜製備 29
3.3.1 PVDF製膜液配置 29
3.3.2 PVDF鑄膜方式 29
3.3.3 薄膜編號 29
3.4 薄膜性質分析 34
3.4.1 薄膜性質分析儀器 34
3.4.2 薄膜結構與表面孔洞分析 35
3.4.3 薄膜膜厚與孔隙度量測 35
3.4.4 薄膜接觸角量測 36
3.4.5 薄膜機械強度測試 36
3.4.6 薄膜晶體結構特性測試 36
3.5 薄膜蒸餾裝置 37
3.5.1 直接接觸式薄膜蒸餾實驗模組 37
3.5.2 間隙式薄膜蒸餾實驗模組 37
3.6 薄膜蒸餾實驗 44
3.6.1 直接接觸式薄膜蒸餾操作條件 44
3.6.2 間隙式薄膜蒸餾操作條件 44
3.6.3 薄膜蒸餾實驗步驟 45
3.7 薄膜蒸餾結果分析 48
3.7.1 滲透通量分析與計算 48
3.7.2 薄膜蒸餾產出比率分析 48
3.7.3 鹽類含量之分析方法與阻隔率計算 48
3.7.4 流量計校正 50
第四章 結果與討論 52
4.1 薄膜結構與性質分析 52
4.1.1 薄膜SEM結構分析 52
4.1.2 薄膜孔徑與孔隙度分析 57
4.1.3 薄膜接觸角分析 58
4.1.4 薄膜機械強度分析 58
4.1.5 薄膜晶體結構分析 58
4.2 間隙式薄膜蒸餾 63
4.2.1 AGMD與WGMD之滲透通量比較 63
4.2.2 薄膜於WGMD中不同操作條件探討 67
4.2.3 各薄膜於不同進料濃度之回復性探討 74
4.2.4 薄膜於長時間操作中之結果 79
4.3 直接接觸式薄膜蒸餾 81
4.4 DCMD與WGMD性能分析 84
第五章 結論 88
參考文獻 90

圖目錄
圖1-1 PVDF化學結構示意圖 9
圖1-2薄膜蒸餾物流動示意圖[15] 9
圖1-3不同操作程序之驅動力分類[4] 10
圖1-4 薄膜分離程序之分類[5] 10
圖2-1 DCMD、AGMD與PGMD之蒸氣傳輸機制圖[7] 16
圖2-2 AGMD與WGMD之薄膜蒸餾模組圖[35] 16
圖2-3 DCMD與AGMD之薄膜蒸餾模組圖 17
圖2-4 WGMD之薄膜蒸餾模組圖 17
圖2-5沉澱槽與製膜液之組成 25
圖2-6 高分子-溶劑-非溶劑之三相圖[61] 25
圖3-1 親水支撐層之SEM圖 30
圖3-2 親水支撐層示意圖[Precise公司] 30
圖3-3 PVDF製膜流程示意圖 31
圖3-4 DCMD模組示意圖 39
圖3-5 DCMD 壓克力模組示意圖(進料與滲透側) 40
圖3-6 AGMD與WGMD模組示意圖 41
圖3-7 AGMD與WGMD進料側壓克力模組示意圖 42
圖3-8 AGMD與WGMD冷卻側壓克力模組示意圖 43
圖3-9 直接接觸式薄膜蒸餾裝置示意圖 47
圖3-10 間隙式薄膜蒸餾裝置示意圖 47
圖3-11 氯化鈉水溶液檢量線 49
圖3-12進料側流量計校正曲線 50
圖3-13冷卻水側流量計校正曲線 51
圖4-1 5000倍薄膜上表面SEM圖 54
圖4-2 10000倍薄膜上表面SEM圖 55
圖4-3 30000倍薄膜上表面SEM圖 55
圖4-4 10000倍薄膜橫截面SEM圖 56
圖4-5 30000倍薄膜橫截面SEM圖 56
圖4-6 比較三種PVDF結晶相之XRD [59] 61
圖4-7製備不同沉澱槽溫度之PVDF薄膜XRD 62
圖4-8 薄膜於AGMD中不同間隙高度之滲透通量圖 65
圖4-9 薄膜於WGMD中不同間隙高度之滲透通量圖 66
圖4-10 M25薄膜於AGMD與WGMD之滲透通量比較圖 66
圖4-11 M25薄膜於60 oC下不同進料流量與間隙高度之通量圖 69
圖4-12 薄膜於60 oC下不同進料流量與間隙高度0 mm之通量圖 69
圖4-13 薄膜於60 oC下不同進料流量與間隙高度1 mm之通量圖 70
圖4-14 薄膜於60 oC下不同進料流量與間隙高度3 mm之通量圖 70
圖4-15 M25薄膜於間隙高度0 mm中不同進料溫度與流量之通量圖 71
圖4-17 薄膜於間隙高度0 mm以及60 oC下不同進料流量之通量圖 72
圖4-19 薄膜於間隙高度0 mm以及80 oC下不同進料流量之通量圖 73
圖4-20 薄膜於WGMD中進料3.5 wt%鹽水前後之純水通量圖 76
圖4-21 薄膜於WGMD中進料15 wt%鹽水前後之純水通量圖 77
圖4-22 M25薄膜於WGMD中不同進料鹽水前後之純水通量圖 77
圖4-23 薄膜於DCMD中進料3.5 wt%鹽水前後之純水通量圖 78
圖4-24 薄膜於DCMD中進料15 wt%鹽水前後之純水通量圖 78
圖4-25 M25薄膜於DCMD中不同進料鹽水前後之純水通量圖 79
圖4-26 M25薄膜於WGMD中操作48小時之滲透通量與導電度圖 80
圖4-27薄膜於60 oC下不同進料流量之通量圖 83
圖4-28薄膜於固定流速0.6 L/min不同進料溫度之通量圖 83
圖4-29 DCMD與WGMD於50 oC不同薄膜下的滲透通量與GOR比較圖 85
圖4-30 DCMD與WGMD於60oC不同薄膜下的滲透通量與GOR比較圖 86
圖4-31 DCMD與WGMD於70oC不同薄膜下的滲透通量與GOR比較圖 86
圖4-32 DCMD與WGMD於80oC不同薄膜下的滲透通量與GOR比較圖 87



表目錄
表3-1 親水支撐層性質表 32
表3-2 薄膜製備條件表 32
表3-3 薄膜編號表 33
表4-1 薄膜性質分析表 60
表4-2 薄膜拉伸強度分析表 60
表4-3 薄膜於DCMD及WGMD不同溫度下之GOR 87

參考文獻 [1] Huang, Y.-C. & Lee, C.-M., Designing an optimal water supply portfolio for Taiwan under the impact of climate change: Case study of the Penghu area, Journal of Hydrology, 573, 235 (2019).
[2] Hanshik, C., Jeong, H., Jeong, K.-W., Choi, S.-H., Improved productivity of the MSF (multi-stage flashing) desalination plant by increasing the TBT (top brine temperature), Energy, 107, 683-692 (2016).
[3] Al-hotmani, O. M. A., Al-Obaidi, M. A., Patel, R., Mujtaba, I. M., Performance analysis of a hybrid system of multi effect distillation and permeate reprocessing reverse osmosis processes for seawater desalination, Desalination , 470, 114066 (2019).
[4] Khayet M, Matsuura T., Membrane distillation: principles and applications, Membrane Distillation, 1-16 (2011).
[5] Pileggi, V., Investigation of the Performance of an Anaerobic Membrane Bioreactor in the Treatment of Mixed Municipal Sludge Under Ambient, Mesophilic and Thermophilic Operating Conditions, (2016).
[6] Iulianelli, A., Drioli, E., Membrane engineering: Latest advancements in gas separation and pre-treatment processes, petrochemical industry and refinery, and future perspectives in emerging applications, Fuel Processing Technology, 206, 106464 (2020).
[7] Eykens L, Reyns T, De Sitter K, Dotremont C, Pinoy L., How to select a membrane distillation configuration? Process conditions and membrane influence unraveled, Desalination , 399, 105-115 (2016).
[8] Gryta, M., Barancewicz, M., Influence of morphology of PVDF capillary membranes on the performance of direct contact membrane distillation, Journal of Membrane Science , 358, 158-167 (2010).
[9] Phattaranawik, J., Jiraratananon, R., Fane, A. G., Effect of pore size distribution and air flux on mass transport in direct contact membrane distillation, Journal of Membrane Science, 215, 75-85 (2003).
[10] Huo, R., Gu, Z., Zuo, K., Zhao, G., Preparation and properties of PVDF-fabric composite membrane for membrane distillation, Desalination, 249, 910-913 (2009).
[11] Zheng, L., Wang J., Preparation, evaluation and modification of PVDF-CTFE hydrophobic membrane for MD desalination application, Desalination, 402, 162-172 (2017).
[12] Leaper, S., Abdel-Karim, A., Gad-Allah, T. A., Gorgojo, P. ,Air-gap membrane distillation as a one-step process for textile wastewater treatment, Chemical Engineering Journal, 360, 1330-1340 (2019).
[13] Hou, D., Wang J., Fan H., Luan Z., Boron removal and desalination from seawater by PVDF flat-sheet membrane through direct contact membrane distillation, Desalination, 326, 115-124 (2013).
[14] El-Zanati, E., El-Khatib, K. M., Integrated membrane –based desalination system, Desalination, 205, 15-25 (2007).
[15] Susanto, H., Towards practical implementations of membrane distillation, Chemical Engineering and Processing: Process Intensification, 50, 139-150 (2011).
[16] Bodell B.R., Silicone rubber vapor diffusion in saline water distillation, United States Patent Serial (1963).
[17] Findley M.E., Vaporization through Porous Membranes, Industrial & Engineering Chemistry Process Design and Development, 6, 226-230 (1967).
[18] Schofield, R. W., Fane, A. G., Fell, C. J. D. , Heat and mass transfer in membrane distillation, Journal of Membrane Science, 33, 299-313 (1987).
[19] Smolders, K. & Franken, A. C. M., Terminology for Membrane Distillation, Desalination, 72, 249-262 (1989).
[20] Kamide, K., Thermodynamics of polymer solutions phase equilibria and critical phenomena, Elsevier, (1990).
[21] Lawson K.W., Lloyd D.R., Membrane distillation, Journal of Membrane Science, 124, 1-25 (1997).
[22] Izquierdo-Gil, M. A., Jonsson, G., Factors affecting flux and ethanol separation performance in vacuum membrane distillation (VMD), Journal of Membrane Science, 214, 113-130 (2003).
[23] Ugrozov, V. V., Elkina, I. B., Nikulin, V. N., Kataeva, L. I., Theoretical and experimental research of liquid-gap membrane distillation process in membrane module, Desalination, 157, 325-331 (2003).
[24] Cath, T. Y., Adams, V. D., Childress, A. E., Experimental study of desalination using direct contact membrane distillation: a new approach to flux enhancement, Journal of Membrane Science, 228, 5-16 (2004).
[25] Chouikh, R., Bouguecha, S., Dhahbi, M., Modelling of a modified air gap distillation membrane for the desalination of seawater, Desalination, 181, 257-265 (2005).
[26] Cerneaux, S., Strużyńska, I., Kujawski, W. M., Persin, M., Larbot, A., Comparison of various membrane distillation methods for desalination using hydrophobic ceramic membranes, Journal of Membrane Science, 337, 55-60 (2009).
[27] Winter, D., Koschikowski, J., Wieghaus, M., Desalination using membrane distillation: Experimental studies on full scale spiral wound modules, Journal of Membrane Science, 375, 104-112 (2011).
[28] Francis, L., Ghaffour, N., Alsaadi, A. A., Amy, G. L., Material gap membrane distillation: A new design for water vapor flux enhancement, Journal of Membrane Science, 448, 240-247 (2013).
[29] Khalifa, A. E., Water and air gap membrane distillation for water desalination – An experimental comparative study, Separation and Purification Technology, 141, 276-284 (2015).
[30] Gao, L., Zhang, J., Gray, S., Li, J.-D., Experimental study of hollow fiber permeate gap membrane distillation and its performance comparison with DCMD and SGMD, Separation and Purification Technology, 188, 11-23 (2017).
[31] Gao, L., Zhang, J., Gray, S., Li, J.-D., Modelling mass and heat transfers of Permeate Gap Membrane Distillation using hollow fibre membrane, Desalination, 467, 196-209 (2019).
[32] Khalifa, A. E. & Alawad, S. M., Air gap and water gap multistage membrane distillation for water desalination, Desalination, 437, 175-183 (2018).
[33] Amaya-Vías, D., Nebot, E., López-Ramírez, J. A., Comparative studies of different membrane distillation configurations and membranes for potential use on board cruise vessels, Desalination, 429, 44-51 (2018).
[34] Amaya-Vías, D., Tataru, L., Herce-Sesa, B., López-López, J. A. & López-Ramírez, J. A., Metals removal from acid mine drainage (Tinto River, SW Spain) by water gap and air gap membrane distillation, Journal of Membrane Science, 582, 20-29 (2019).
[35] Khalifa, A. E., Flux enhanced water gap membrane distillation process-circulation of gap water, Separation and Purification Technology, 231, 115938 (2020).
[36] Mulder M., Basic principles of membrane technology, Second, Kluwer Academic Pub, (1996).
[37] Zhao, J., Chong, J. Y., Shi, L., Wang, R., Explorations of combined nonsolvent and thermally induced phase separation (N-TIPS) method for fabricating novel PVDF hollow fiber membranes using mixed diluents, Journal of Membrane Science, 572, 210-222 (2019).
[38] Wang, H. H., Jung, J. T., Kim J., Lee Y. M., A novel green solvent alternative for polymeric membrane preparation via nonsolvent-induced phase separation (NIPS), Journal of Membrane Science, 574, 44-54 (2019).
[39] Alexowsky, C., Bojarska, M., Ulbricht, M., Porous poly(vinylidene fluoride) membranes with tailored properties by fast and scalable non-solvent vapor induced phase separation, Journal of Membrane Science, 577, 69-78 (2019).
[40] Boom, R. M., van den Boomgaard, T., Smolders, C., Mass transfer and thermodynamics during immersion precipitation for a two-polymer system: Evaluation with the system PES—PVP—NMP—water, Journal of Membrane Science, 90, 231-249 (1994).
[41] Altena, F. W, Smolders, C. A., Calculation of liquid-liquid phase separation in a ternary system of a polymer in a mixture of solvent and a nonsolvent, Macromolecules, 15, (1941).
[42] Zeman, L, Tkacik, G., Thermodynamic analysis of a membrane-forming system water/n-methyl-2-pyrrolidone/polysulfone, Journal of Membrane Science, 36, 119-140 (1988).
[43] Tompa, H. Polymer solutions. Butterworths.
[44] Kam‐Wa D. Lee , Philip K. Chan , Xianshe Feng., A Computational Study into Thermally Induced Phase Separation in Polymer Solutions under a Temperature Gradient, Macromol. Theory Simul, 11, 996–1005 (2002).
[45] Gerard T. Caneba, David S., Polymer Membrane Formation through the Thermal-Inversion Process. 2. Mathematical Modeling of Membrane Structure Formation, Macromolecules, 18, 2545-2555 (1985).
[46] Tang, Y., Lin, H., Liu, T., Matsuyama, H., Wang, X. l., Multiscale simulation on the membrane formation process via thermally induced phase separation accompanied with heat transfer, Journal of Membrane Science, 515, 258-267 (2016).
[47] Mino, Y., Ishigami, T., Kagawa, Y. & Matsuyama, H., Three-dimensional phase-field simulations of membrane porous structure formation by thermally induced phase separation in polymer solutions, Journal of Membrane Science, 483, 104-111 (2015).
[48] Lin, D. J., Chang, C. L., Chen, T. C. & Cheng, L. P., Microporous PVDF membrane formation by immersion precipitation from water/TEP/PVDF system, Desalination, 145, 25-29 (2002).
[49] 吳昱璇, 以非恆溫浸漬沉澱法製備多孔型高分子薄膜, 淡江大學化學工程與材料工程學系碩士班, 2014.
[50] Bonyadi, S. & Chung, T. S., Flux enhancement in membrane distillation by fabrication of dual layer hydrophilic–hydrophobic hollow fiber membranes, Journal of Membrane Science, 306, 134-146 (2007).
[51] Servi, A. T., Kharraz, J., Klee, D., Notarangelo, K., Eyob, B., A systematic study of the impact of hydrophobicity on the wetting of MD membranes, Journal of Membrane Science, 520, 850-859 (2016).
[52] Tijing, L. D., Woo, Y. C., Shon, H. K., Lee, S. H., Fouling and its control in membrane distillation—A review, Journal of Membrane Science, 475, 215-244 (2015).
[53] Qtaishat, M., Khayet, M. & Matsuura, T., Guidelines for preparation of higher flux hydrophobic/hydrophilic composite membranes for membrane distillation, Journal of Membrane Science, 329, 193-200 (2009).
[54] Martı́nez, D. L., Vázquez, G. M. I., Temperature and concentration polarization in membrane distillation of aqueous salt solutions, Journal of Membrane Science, 156, 265-273 (1999).
[55] Gryta, M., Fouling in direct contact membrane distillation process, Journal of Membrane Science, 325, 383-394 (2008).
[56] Lee, J. G., Kim, Y.D., Kim, W. S., Francis, L., Amy, G., Performance modeling of direct contact membrane distillation (DCMD) seawater desalination process using a commercial composite membrane. Journal of Membrane Science, 478, 85-95 (2015).
[57] Boubakri, A., Bouguecha, S. A.T., Dhaouadi, I., Hafiane, A. Effect of operating parameters on boron removal from seawater using membrane distillation process, Desalination, 373, 86-93 (2015).
[58] Cath, T. Y., Adams, V. D. & Childress, A. E., Experimental study of desalination using direct contact membrane distillation: a new approach to flux enhancement, Journal of Membrane Science, 228, 5-16 (2004).
[59] Al-Obaidani, S., Curcio, E., Macedonio, F., Potential of membrane distillation in seawater desalination: Thermal efficiency, sensitivity study and cost estimation, Journal of Membrane Science, 323, 85-98 (2008).
[60] Im, B.G., Lee, J. G., Kim, Y. D., Kim, W. S., Theoretical modeling and simulation of AGMD and LGMD desalination processes using a composite membrane, Journal of Membrane Science, 565, 14-24 (2018).
[61] Baker,R.W., Membrane technology and applications, John Wiley & Sons, (2012)..
[62] 張聰譯, 聚偏二氟乙烯複合膜應用於間隔式薄膜蒸餾之海水淡化研究, 淡江大學化學工程與材料工程學系碩士班, 2019.
[63] 蘇彥霖, 以熱及非溶劑雙重誘導相分離法製備 EVOH 薄膜, 淡江大學化學工程與材料工程學系碩士班, 2014
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2020-07-21公開。
  • 同意授權瀏覽/列印電子全文服務,於2020-07-21起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信