淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1607202013435700
中文論文名稱 透過暗物質及中子衰變異常的微中子模型
英文論文名稱 A neutrino mass model relating the neutron decay anomaly via dark matter
校院名稱 淡江大學
系所名稱(中) 物理學系碩士班
系所名稱(英) Department of Physics
學年度 108
學期 2
出版年 109
研究生中文姓名 陳定賢
研究生英文姓名 Ting-Hsien Chen
電子信箱 love840306@gmail.com
學號 606210101
學位類別 碩士
語文別 英文
口試日期 2020-06-30
論文頁數 50頁
口試委員 指導教授-陳樫旭
委員-劉國欽
委員-林豐利
中文關鍵字 中子衰變  暗物質  微中子 
英文關鍵字 neutron decay  dark matter  neutrino 
學科別分類 學科別自然科學物理
中文摘要 在原子核中,中子及質子會形成束縛態使得原子核穩定。而在原子核中,中子幾乎是穩定態。不過當中子在原子核外時(稱為自由中子),將會變得非常不穩定,並且透過理論計算自由中子的壽命大約為881.5±1.5 s。有了理論計算的結果,實驗量測也應該會有相似結果。但是事實卻不是如此。在多年前,美國團隊及法國團隊分別以 « Beam experiment »和 « Bottle experiment »量測中子的壽命。但是實驗結果明顯的有差異,起初物理學家覺得可能是某一組的實驗團隊有錯誤,才造成此誤差。近幾年,美國研究團隊進行了一項長期且嚴謹的實驗來探討之前的實驗中所有的誤差來源,最後反而是更確定了兩個實驗結果的差異性。
至今為止中子的壽命依舊是個謎團。許多理論物理學家開始建立暗物質模型並且解釋中子衰變異常。而此研究報告也是建立一個暗物質模型來解釋中子衰變異常,此模型也可以透過暗物質及新的純量場計算出微中子質量。
英文摘要 Inside the nucleus, there are protons and neutrons and they form the bound states. When neutron leave the nucleus, it will become an unstable particle which is called a free neutron. The free neutron lifetime is predicted to be 881.5±1.5 s by the Standard Model. For years the experimental measurement are basically consistent with the theoretical results. However, recently laboratories in USA (Beam experiment) and France (Bottle experiment) were shown that the neutron lifetime anomaly, namely a discrepancy of about 1% is found between the experimental measurements and the theoretical prediction.
Regarding the neutron lifetime anomaly. We propose an new gauge U(1) symmetry portal to dark matter to resolve the neutron lifetime anomaly. The symmetry breaking pattern of this new gauge symmetry will also shed light on the neutrino mass generation through the quantum radioactive corrections.
論文目次 Contents:
1 Introduction...1
2 Standard Model(SM)...3
2.1 Spontaneous symmetry breaking...7
2.2 Standard electroweak theory...8
2.2.1 Gauge fi elds...8
2.2.2 Fermions...9
2.2.3 Symmetry breaking via the Higgs mechanism...10
2.2.4 Mass spectrum...11
2.2.5 Charge current and Neutral currents...12
2.3 Neutrino mass problem and dark matter...13
3 Neutron lifetime anomaly...15
3.1 Introduction...15
3.2 Neutron Lifetime with Theoretical description...16
3.3 Experiment of Neutron lifetime...17
3.3.1 Bean experiment...18
3.3.2 Bottle experiment...18
3.3.3 Result of neutron lifetime...19
4 Dark Matter...24
4.1 Background...24
4.2 Observational evidences...25
4.2.1 Galaxy rotation curve...25
4.2.2 Gravitational lensing...26
4.2.3 Collision of two galaxies...27
4.3 Dark matter theory and initial conditions...28
4.4 Small scale structure problem...29
4.4.1 The core-cuspy problem...29
4.4.2 The missing satellites problem and
the too-big-to-fail problem...30
4.5 Self-Interacting Dark Matter...31
5 Neutrino...33
5.1 Introduction...33
5.2 Seesaw Mechanism...36
5.2.1 Radiative Seesaw Mechanism...38
6 The frame of model...41
6.1 Research motivation...41
6.2 Gauge group...41
6.3 The radiative neutrino mass model...43
6.4 Conclusion...47

List of Figures:
3.1 Bean experiment...18
3.2 Bottle experiment...19
3.3 The history of the neutron lifetime...20
4.1 Rotation Curve of the M33 galaxy...26
4.2 Gravitational lensing...27
4.3 Bullet Cluster...28
4.4 The Virgo cluster and simulated of the cluster...30
4.5 The circular velocity pro les for MW subhalos
by simulation...31
5.1 The one-loop neutrino mass model,credited by [1]...39
6.1 The one loop model of neutrino...43
6.2 The numerical results of my neutrino mass model...46

List of Tables:
2.1 Three generations fermions...3
2.2 Twelve gauge bosons and Higgs boson...4
2.3 The quantum number of leptons...5
2.4 The quantum number of quarks...5
2.5 The quantum number of mediator...6
2.6 The quantum number on SU(2)L*U(1)Y gauge...9
5.1 The particles under SU(2)L*U(1)Y*Z2 group...39
6.1 The quantum number on SU(2)L*U(1)Y*U(1)' gauge...44
參考文獻 [1] Ernest Ma. Veri able Radiative Seesaw Mechanism of Neutrino Mass and Dark Matter. Phys.Rev.D73:077301,2006.

[2] J.S.Nico F.E.Wietfeldt X.Fei W.M.Snow G.L.Greene J.Pauwels R.Eykens A.Lamberty J.Van Gestel M.S.Dewey, D.M.Gilliam. Measurement of the Neutron Lifetime Using a Proton Trap. Phys.Rev.Lett.91,152302, 2003.

[3] C.Bates J.M.Pendlebury A.Steyerl W.Mampe, P.Ageron. Neutron Lifetime Measured with Stored Ultracold Neutrons. Phys.Rev.Lett.63(1989)593-596.

[4] Benjamin Grinstein Bartosz Fornal. Dark Matter Interpretation of the Neutron Decay Anomaly. Phys.Rev.Lett.120,191801(2018).

[5] Jonathan M.Cornell James M.Cline. Dark decay of the neutron. J.High Energ.Phys.(2018)2018:81.

[6] Alberto Sirlin William J. Marciano. Improved Calculation of Electroweak Radiative Corrections and the Value of Vud. Phys. Rev. Lett. 96, 032002-Published 27 January 2006.

[7] F. E. Wietfeldt. Measurements of the Neutron Lifetime. Atoms 2018, 6(4),70.

[8] Michael Boylan-Kolchin James S.Bullock. Small-Scale Challenges to TheCDM Paradigm. Annual Review of Astronomy and Astrophysics, vol.55, pp. 343-387 (2017).

[9] Fabio Governato George Lake Tom Quinn Joachim Stadel Paolo Tozzi Ben Moore, Sebastiano Ghigna. Dark Matter Substructure in Galactic Halos. Astrophys.J.524:L19-L22,1999.

[10] Manoj Kaplinghat Michael Boylan-Kolchin, James S. Bullock. The Milky Way's bright satellites as an apparent failure of CDM. Monthly Notices of the Royal Astronomical Society, Volume 422, Issue 2, May 2012, Pages 1203-1218.

[11] David N. Spergel and Paul J. Steinhardt. Observational evidence for self-interacting cold dark matter. Phys.Rev.Lett. 84 (2000) 3760-3763.

[12] Hai-Bo Yu Sean Tulin. Dark Matter Self-interactions and Small Scale Structure. Phys.Rept. 730 (2018) 1-57.

[13] The Super-Kamiokande Collaboration. Evidence for oscillation of atmospheric neutrinos. Phys.Rev.Lett.81:1562-1567,1998.

[14] SNO Collaboration. The Sudbury Neutrino Observatory.
Nucl.Instrum.Meth.A449:172-207,2000.

[15] Ofer Lahav Shaun A. Thomas, Filipe B. Abdalla. Upper Bound of 0.28eV on the Neutrino Masses from the Largest Photometric Redshift Survey. Phys.Rev. Lett. 105, 031301, 2010.

[16] Adam Moss Richard A. Battye. Evidence for massive neutrinos from CMB and lensing observations. Phys. Rev. Lett. 112, 051303, 2014.

[17] John N. Ng We-Fu Chang, Tanmoy Modak. Signal for a light singlet scalar at the LHC. Phys. Rev. D 97, 055020, 2018.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2020-07-22公開。
  • 同意授權瀏覽/列印電子全文服務,於2020-07-22起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信