§ 瀏覽學位論文書目資料
系統識別號 U0002-1607201915303100
DOI 10.6846/TKU.2019.00444
論文名稱(中文) 創新設計一電容式無線充電使用的像素化電極板-適用具金屬外殼之手機
論文名稱(英文) Innovative Design of Pixelated Electrode Plates for Capacitive Wireless Charging - Suited for Mobile Phone with Metal Shell
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系碩士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 107
學期 2
出版年 108
研究生(中文) 劉和諦
研究生(英文) He-Di Liu
學號 606440013
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2019-07-12
論文頁數 57頁
口試委員 指導教授 - 李慶烈
委員 - 甘堯江
委員 - 紀俞任
關鍵字(中) 電容式無線充電
三種狀態的離散粒子群
像素化
關鍵字(英) Capacitive Wireless Charging
Tri-state Particle Swarm Optimization
Pixelated
第三語言關鍵字
學科別分類
中文摘要
本論文探討一種用於電容式無線充電的像素化電極板設計,研究方向著重於解決一般電極板在X方向偏移、Y方向偏移等情況下,電極板有效耦合面積低落的問題。針對像素化的電極板結構,我們首次引進「空缺」像素的概念,藉以形成一具有三種像素類別的電容式充電極板,以克服前述電極板置放時偏移所造成的有效偶合面積低落問題。
研究過程應用自行撰寫的三元離散粒子群優化法(T-D-PSO),藉由全域搜尋的方式,針對像素化正、負以及空缺電極板的像素分布進行優化設計(含正、負以及空缺等三種像素),以決定包括初級板(充電板)以及次級板(被充電板-手機)上的正、負電極形狀。優化的目標在令次級板分別於水平方向與垂直方向移動的情形下,其耦合係數能夠有較低的變動/偏差(deviation),與此同時,盡量提升其有效的耦合面積。
模擬結果顯示,當初級板的尺寸為56×56個像素、次級板的尺寸為28×28個像素,且「空缺」像素占比為10%的情況下,優化後所獲得的有效耦合面積比率約20%,偏差量約12%,若和未引進「空缺」像素的情況相比,有效耦合面積比率呈現大幅度的改善,偏差量則可約略維持不變。
英文摘要
This thesis investigates the design of a pixelated electrode plates for capacitive wireless charging. The research focuses on solving the problem that the effective coupling area is low when the normal electrode plate is shifted in X direction and/or in Y direction. For the pixelated electrode plate structure, we first introduced the concept of "vacancy" pixel to form a capacitive charging plate with three kinds of pixels, which is to overcome the problem of low effective coupling area caused by the placement offset of the secondary electrode plate.
For the research, a home-made compute program of the tristate discrete particle swarm optimization (T-D-PSO) method is applied to optimize the pixel distribution of both pixelized positive and negative electrode plates. By means of the global search scheme we can determine the shapes of positive and negative electrodes for both the primary side (charging board) and the secondary side (charged board, such as a mobile phone). The optimization goal is set to make the coupling area have a lower variation/deviation when the secondary plate is moved in the horizontal direction and/or the vertical direction, respectively, while the effective coupling area is maximized if possible.
The simulation results show that as the size of the primary board is of 56×56 pixels, and the size of the secondary board is of 28×28 pixels, and finally the “vacancy” pixel ratio is set to 10% on either board, the effective coupling area obtained after optimization is about 20%, and the deviation is about 12%. As compared with the case without "vacancy" pixels, the obtained effective coupling area exhibits great improvement, while the deviation is kept approximately unchanged.
第三語言摘要
論文目次
目錄

中文摘要	I
英文摘要	II
目錄	IV
圖目錄	V
表目錄	VIII
第1章	序論	1
1-1	無線充電的分類	2
第2章	粒子群優化法	5
2-1	粒子群優化法-連續粒子群優化法	5
2-2	造成PSO容易陷入區域最佳解的因素	7
2-3	有關權重設定的課題	8
2-4	PSO的改良	10
2-5	Discrete-PSO 與 Binary-D-PSO	11
第3章	像素化極板與無線充電	12
3-1	屏蔽效應	12
3-2	像素化	14
3-3	加入第三種粒子像素狀態:空缺	19
3-4	T-D-PSO	22
第4章	三元的D-PSO 和 電容式無線充電 (CPT)	26
4-1	分別納入四種不同適應值函數的T-D-PSO	27
4-2	僅納入總分	27
4-3	納入總分與偏差	31
4-4	納入總分與標準偏差	39
4-5	納入總分絕對值與偏差	47
第5章	結論	52
第6章	參考文獻	53

圖目錄

圖1 1  WPT分類	4
圖1 2  磁力齒輪無線充電系統	4
圖2 1  PSO優化示意圖 (以三維為例)	7
圖2 2  更新函式的三種簡化情境之示意圖	8
圖2 3  文獻 [19] 針對12種測試函數的兩類實驗組合之示意圖	9
圖2 4  B-PSO中取隨機值,進行判別取值	11
圖3 1  電容式無線充電示意圖	13
圖3 2  像素化的天線設計 [12]	14
圖3 3  MIMO天線像素化設計 [13]	14
圖3 4  像素化充電板 [15]	14
圖3 5  像素化結構分析 [16]	14
圖3 6  二維結構的像素化分布	16
圖3 7  極板像素情境分析之一	17
圖3 8  極板像素情境分析之二	18
圖3 9  極板像素情境分析之三	18
圖3 10  針對兩種像素的電容式充電板進行B-PSO優化之像素分布結果	19
圖3 11  進行適應值計算時所納入的兩種移動方式	20
圖3 12  針對圖3-10之分數百分比計算	20
圖3 13  T-D-PSO中更新函式示意圖	23
圖3 14  T-D-PSO收斂能力測試:利用相同尺寸的初級與次級板	24
圖4 1  T-D-PSO演算法:僅納入總分	27
圖4 2  N1與N2皆為 30的初級板與次級板示意圖 (n1=n2=0.3):正極為黑、負極為白且空缺為灰	28
圖4 3  依序移動後計算總分	28
圖4 4  僅以總分平均作為適應值函式	29
圖4 5  針對僅納入總分的適應值函數進行優化之像素分布結果 (n1=n2=0.25)	29
圖4 6  針對圖4-5的像素分佈進行移動分析	30
圖4 7  針對不同的總分及偏差權重,探究不同像素比例的影響	33
圖4 8  納入總分與偏差後,其最終優化結果之像素分佈	34
圖4 9  針對圖4-8的像素分佈進行移動分析	35
圖4 10  納入總分與偏差的情況,其對應優化結果之像素分佈	36
圖4 11  針對圖4-10 的像素分佈進行移動分析	37
圖4 12  納入總分與偏差的情況,其對應優化結果之像素分佈 (n1=n2=0.45,ω1=1,ω2=10)	38
圖4 13  針對圖4-12 的像素分佈進行移動分析	39
圖4 14  偏差與標準偏差比較	40
圖4 15  納入總分與標準偏差,又 ω1,ω2=(1,1) 且像素比例為 (0.45,0.45,0.1) 的優化結果之像素分佈	40
圖4 16  針對圖4-15的像素分佈進行移動分析	42
圖4 17  限縮次級板在初級板上的移動範圍之示意圖	43
圖4 18  針對圖4-8的像素分佈,且次級板移動範圍限縮為 ±9 的情況進行移動分析	44
圖4 19  針對圖4-8的像素分佈,且次級板移動範圍限縮為 ±4 的情況進行移動分析	44
圖4 20  針對圖4-15的像素分佈,且次級板移動範圍限縮為 ±9 的情況進行移動分析	45
圖4 21  針對圖4-15的像素分佈,且次級板移動範圍限縮為 ±4 的情況進行移動分析	45
圖4 22  限縮初級板移動範圍的總分與偏差之特性分析	46
圖4 23  小移動範圍情況下的總分與偏差值的趨勢示意	47
圖4 24  納入總分絕對值與標準偏差的情況,其對應優化結果之像素分佈 (n_1=n_2=0.45)	48
圖4 25  針對圖4-12的像素分佈進行移動分析以及收斂曲線比較	49
圖4 26  極板像素分布例子 (n1=n2=0.25)	50
圖4 27  納入總分(取絕對值)與標準偏差的情況,其對應的優化結果之像素分佈 (n1=n2=0.45)	51
圖4 28  針對圖4-27的像素分佈進行移動分析	51

表目錄

表2 1  12個常用的測試函數	9
表3 1  極板像素狀態的對應分數	15
表3 2  極板像素對應的分數(加入空缺)	22
表3 3  圖3-13中 (a) 所使用的比例詳細	25
表3 4  圖3-13中 (b) 所使用的比例詳細	25
表4 1  和納入偏差後的優化結果之比較( ω1=1,ω2=1)	34
表4 2  比較不同權重下的優化結果( ω1=1,ω2=5)	36
表4 3  比較不同權重下的優化結果( ω1=1,ω2=10)	38
表4 4  納入標準偏差後之優化結果比較( ω1=1,ω2=1)	41
表4 5  針對不同移動範圍 (±14,±9,±4) ,適應值納入偏差的結果與納入標準偏差的結果之比較	46
表4 6  比較兩種不同適應值組成下的優化結果	48
參考文獻
[1] Liu, C., Hu, A.P., Nair, N.-K.C., 'Modelling and analysis of a capacitive coupled contactless power transfer system', IET Power Electron., 4, (7), 2011, pp.808-815.
[2] Kline, M., Izyumin, I., Boser, B., Sanders, S., 'Capacitive power transfer for contactless charging', Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2011, pp. 1398-1404.
[3] Theodoridis, M.P., 'Effective capacitive power transfer', IEEE Trans. Power Electron., 27, (12), 2012, pp. 4906-4913.
[4] Ahmad, A., Alam, M. S, Chabaan, R., ‘A comprehensive review of wireless charging technologies for electric vehicles,’ IEEE Transactions on Transportation Electrification, vol. 4, no. 1, pp. 38-63, March 2018.
[5] Nikitin, P.V., Rao, K.V.S., Lazar, S., 'An overview of near field UHF RFID', IEEE International Conference on RFID, 2007, pp. 167-174.
[6] Stielau, O.H., Covic, G.A., 'Design of loosely coupled inductive power transfer systems', Proc. of the International Conference on Power Syst. Technol., 2000, pp. 85–90.
[7] Shinohara, N., 'Beam control technologies with a high-efficiency phased array for microwave power transmission in Japan', Proc. of the IEEE, 101, (6), 2013, pp. 1448-1463.
[8] Chau, K.T., Zhang, D., Jiang, J.Z., Liu, C., Zhang, Y., 'Design of a magnetic-geared outer-rotor permanent-magnet brushless motor for electric vehicles', IEEE Trans. Magn., 43, (6), 2007, pp. 2504-2506.
[9] Jian, L., Chau, K.T., Jiang, J.Z., 'A magnetic-geared outer-rotor permanent-magnet brushless machine for wind power generation', IEEE Trans. Ind. Appl., 45, (3), 2007, pp. 954-962.
[10] Qiu, C., Chau, K.T., Liu, C, Chan, C.C., 'Overview of wireless power transfer for electric vehicle charging', International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium (EVS27), 2013.
[11] Suzuki, S., Ishihara, M., Kobayashi, Y., 'The improvement of the noninvasive power-supply system using magnetic coupling for medical implants', IEEE Trans. Magn., 47, (10), 2011, pp. 2811-2814.
[12] Eberhart, R. C., Kennedy, J., ‘A new optimizer using particle swarm theory’, Proceedings Sixth International Symposium on Micro Machine and Human Science, 1995, Nagoya, Japan.
[13] Kennedy, J. , Eberhart, R. C., ‘Particle swarm optimization’, Proceeding IEEE International Conference on Neural Networks, 1995, Piscataway, NJ.
[14] Kennedy, J., Eberhart, R. C., Shi, Y., ‘Swarm intelligence’, The Morgan Kaufmann Series in Artificial Intelligence, 287-324, 2001, San Francisco, CA.
[15] Eberhart, R. C., Shi, Y., ‘Comparison between genetic algorithms and particle swarm optimization’, Annual Conference on Evolutionary Programming, 1998, San Diego, CA.
[16] Lee, W., ‘Research on modified paticle swarm optimization algorithm’ Journal of Science and Engineering Technology, 4, (2), 2008, pp. 51-62
[17] Shi, Y., Eberhart, R. C., ‘A modified particle swarm optimizer.’ Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, Piscataway, NJ.
[18] Shi, Y., Eberhart, R. C., ‘Fuzzy adaptive particle swarm optimization.’ Proceeding of the 2001 Congress on Evolutionary Computation, Piscataway, NJ.
[19] Wang, D., Li, M., ‘Performance analysis and parameter selection of PSO algorithms’ Acta Automatica Sinica, 42, (10), 2016, 1552-1561.
[20] Cheng, K., ‘Field and wave electromagnetics.’ Addison-Wesley Educational Publishers Inc., 1983.
[21] Zheng, J., ‘The study of electromagnetic shielding materials for plastic packaging in laser modules’, Master thesis, Department of Materials and Optoelectronic Engineering, National Sun Yat-Sen University, 2000
[22] Mager, A., ‘Magnetic shields’, IEEE transactions on magnetics, 6, (3), 1970, 67–75.
[23] Kiesel, G., Cook K., ‘Optimization of pixelated antennas’, IEEE International Symposium on Antennas and Propagation USNC/URSI National Radio Science Meeting, July 2015, pp. 1328–1329.
[24] Chen, Y., ‘Antenna designs for MIMO systems by the pixelated design technique’, USNC-URSI Radio Science Meeting (Joint with AP-S Symposium). July 2014, pp. 63-64.
[25] Chen, Y., Ku, T, ‘Pixelated design for multiple antennas in MIMO handset applications.’ Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC), (1), 2015, pp. 192-195.
[26] Liu, Y., Li, C., ‘Novel design of pixelated charging electrodes for capacitive power transfer.’ IEEE Wireless Power Transf. Conf. (WPTC), May 2017, pp. 1–4.
[27] Shao, S., ‘Pixelated VLC-backscattering for self-charging indoor IoT devices.’ IEEE Photonics Technology Letters, 29, (2), 2017 JANUARY 15
[28] Kennedy, J., Eberhart, R. C., ‘A discrete binary version of the particle swarm algorithm’, IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, October 1997, pp. 4104–4108, Orlando, USA. 
[29] Tran, B., Xue, B., Zhang, M., ‘Improved PSO for feature selection on high-dimensional datasets", Springer International Publishing Switzerland, pp. 503–515, 2014.
[30] Lin, C., Feng, Q., "New adaptive particle swarm optimization algorithm", Computer Engineering, 34, (7), April 2008.
[31] Xu, Y., Wang, Q., Li, Z., Li, Z., Lyu, M, "SA⁃APSO algorithm and its application in ultrasonic location of partial discharge in transformer oil", High Voltage Apparatus, 54, (12), 2018, 0143-0149.
[32] Achayuthakan, C., Ongsakul W., "TVAC-PSO based optimal reactive power dispatch for reactive power cost allocation under deregulated environment", IEEE Power and Energy Society General Meeting, pp. 1-9, October 2009.
[33] Rameshkumar, K., Suresh, R. K., Mohanasundaram, K. M., "Discrete particle swarm optimization (DPSO) algorithm for permutation flowshop scheduling to minimize makespan’, Proceedings of the ICNC, (3), 2005, 572–581.
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信