§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1607201905550900
DOI 10.6846/TKU.2019.00429
論文名稱(中文) 非平坦表面下之週期性非均勻介質物體成像
論文名稱(英文) Microwave Imaging of a Periodic Inhomogeneous Dielectric Object Buried in Rough Surfaces
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系碩士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 107
學期 2
出版年 108
研究生(中文) 洪博捷
研究生(英文) Bo-Jie Hong
學號 606440120
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2019-06-27
論文頁數 64頁
口試委員 指導教授 - 丘建青(chiu@ee.tku.edu.tw)
委員 - 林丁丙(dblin@mail.ntust.edu.tw)
委員 - 方文賢(whf@mail.ntust.edu.tw)
關鍵字(中) 微波成像
非均勻介質物體
自我適應之差異型演化法
非同步粒子群聚法
正則化
關鍵字(英) Microwave Imaging
Inhomogeneous Dielectric Object
Self-Adaptive Dynamic Differential Evolution (SADDE)
Asynchronous Particle Swarm Optimization(APSO)
Regularization
第三語言關鍵字
學科別分類
中文摘要
微波與無線電波相比,微波有頻率高、波長短、訊息量大、方向性佳還有能穿透電離層等優點。微波成像是一種以微波作為訊號傳遞的成像方法,屬於電磁逆散射問題。其原理是用微波照射被測物體,然後通過物體外部散射場的測量值來重建物體的形狀或介電係數分布。由於介電系數與生物組織的含水量密切相關,所以微波成像常用來作生物組織的成像。
    本論文是在探討非平坦表面下之非均勻物體進行物體重建的問題,吾人利用已知邊界條件及量測到的散射場值,可以推導出一組積分方程式,再由散射場積分方程式算出電場,將逆散射問題轉換成最佳化問題,接著使用自我適應之動態差異型演化法(SADDE)重建出物體位置及介電系數分佈,並比較其對非均勻物體重建之蒐尋速度及穩定性。
    將一週期性函數設定為已知表面,將非均勻介質物體,先推導其數學式,利用等效電流算出物體之積分方程式,再使用動差法將其轉換成矩陣,在電腦程式中計算散射場,進行數值模擬。最後利用自我適應之動態差異型演化法重建出非平坦表面下之非均勻介質物體,在任何的初始猜測值中,自我適應之動態差異型演化法都有辦法收斂到整體的極值,所以在數值模擬中,即使一開始的猜測值遠大於實際值,吾人還是可以求得準確的物體之介電系數分佈,且在散射場中加入雜訊後,仍可以得到良好的重建結果。
英文摘要
This thesis is to explore the problem of reconstruction of non-uniform objects under the surface. We initially consider objects as two-dimensional square matrix, and each cell puts different dielectric coefficients to indicate that the object is a non-uniform medium object. By placing the square matrix in the half space below the non-flat surface and calculating the dielectric constant of these square arrays, the position and dielectric coefficient distribution of the object can be reconstructed.
In this paper, we will use the non-uniform medium object as the main axis to explore the number of different objects and the distribution of dielectric coefficients in this environment. We use the self-adaptive dynamic differential evolution method (SADDE) reconstruction to simulate the non-uniform objects. Search speed and stability of reconstruction.
Set a periodic function to a known surface, derive the mathematical expression from the non-uniform medium object, calculate the integral equation of the object using the equivalent current, and convert it into a matrix using the motion difference method, and calculate it in the computer program. Scattering field for numerical simulation. Finally, the self-adaptive dynamic difference evolution method is used to reconstruct the non-uniform medium object under the surface. In any initial guess, the self-adaptive dynamic difference evolution method has a way to converge to the global extremum, so in numerical simulation In the mean, even if the initial guess is much larger than the actual value, we can still obtain the accurate distribution of the dielectric coefficient of the object, and after adding noise to the scattering field, good reconstruction results can still be obtained.
第三語言摘要
論文目次
目錄
誌謝	I
中文摘要	II
Abstract	IV
圖目錄   VIII 
第一章簡介	1
1.1 研究動機與相關文獻	1
1.2 本研究之貢獻	10
1.3 各章內容簡述	10
第二章非平坦介質表面在半空間中的正散射理論	12
2.1 正散射的理論公式推導	12
2.2 動差法求正散射公式	16
2.3 正散射的理論數值驗證	20
第三章 演算法	22
3.1自我適應之動態差異型演化法(Self-Adaptive Dynamic Differential Evolution)	22
3.2非同步粒子群聚最佳化法(Asynchronous Particle Swarm Optimization)	30
3.3正則化法(Regularization)	40
第四章數值分析及結果模擬	42
第五章結論	60
參考文獻	61


圖目錄
圖2-1 週期性非平坦表面及掩埋物示意圖	13
圖2-2 驗證正散射模擬示意圖	21
圖3-1 自我適應之動態差異型演化法流程圖	23
圖3-2 自我適應之動態差異型演化法中突變方法一的示意圖	25
圖3-3 自我適應之動態差異型演化法中突變方法二的示意圖	26
圖3-4自我適應之動態差異型演化法中的交配向量於一個二維目標函數等位線圖描述的示意圖	28
圖3-5粒子群聚法流程圖	32
圖3-6粒子群聚法中於二維目標函數等位線圖	33
圖3-7三種邊界條件示意圖	35
圖3-8非同步粒子群聚法流程圖	39
圖4-1-1物體切割數為4X4之介質物體原始介電系數分佈	45
圖4-1-2例子一使用SADDE經過500次疊代之成像結果	46
圖4-1-3例子一以SADDE加入不同正則化因子後重建出的DEPS	46
圖4-1-4例子一以SADDE加上正則化因子10^(-5)重建之500代成像結果	47
圖4-1-5例子一之DEPS、DP趨勢圖	47
圖4-2-1物體切割數為6X6之介質物體原始介電系數分佈	49
圖4-2-2例子二以SADDE重建之500代介電系數分佈結果	49
圖4-2-3例子二以SADDE加入不同正則化因子後重建出的DEPS	50
圖4-2-4例子二以SADDE加上正則化因子10^(-5)重建之500代成像結果	50
圖4-2-5例子二之DEPS、DP趨勢圖	51
圖4-2-6例子二以特殊條件重建之500代介電系數分佈結果	52
圖4-2-7例子二以特殊條件加入不同正則化因子後重建出的DEPS	52
圖4-2-8例子二以特殊條件加上正則化因子10^(-5)重建之500代成像結果	53
圖4-3-1物體切割數為6X6之矩形介質物體原始介電系數分佈	55
圖4-3-2例子三以SADDE重建之500代介電系數分佈結果	56
圖4-3-3例子三以SADDE加入不同正則化因子後重建出的DEPS	56
圖4-3-4例子三以SADDE加上正則化因子10^(-6)重建之500代成像結果	57
圖4-3-5例子三之DEPS、DP趨勢圖	57
圖4-3-6例子三以APSO重建之500代介電系數分佈結果	58
圖4-3-7例子三以APSO加入不同正則化因子後重建出的DEPS	58
圖4-3-8例子三以APSO加上正則化因子10^(-5)重建之500代成像結果	59
參考文獻
[1]	E. Wolf, “Three-dimensional structure determination of semi-transparentobjects from holographic data,” Opt. Commun., Vol. 1, pp.153–164, Sep.-Oct. 1969.
[2]	O. Mudanyalı, S. Yıldız, O. Semerci, A. Yapar and I. Akduman, “A Microwave Tomographic Approach for Nondestructive Testing of Dielectric Coated Metallic Surfaces”, IEEE Geoscience and Remote Sensing Letters, Vol. 5, No. 2, pp. 180 - 184, Apr. 2008.
[3]	S. Genovesi, E. Salerno, A. Monorchio and G. Manara, “Permittivity range profile reconstruction of multilayered structures from microwave backscattering data by using particle swarm optimization,” Microwave and Optical Technology Letters, Vol. 51, No. 10, pp. 2390 - 2394, Oct. 2009.
[4]	T. Rubæk, O. S. Kim, P. Meincke, “Computational Validation of a 3-D Microwave Imaging System for Breast-Cancer Screening,” IEEE Transactions on Antennas and Propagation, vol. 57, No. 7, Jul. 2009.
[5]	M. Klemm, J. A. Leendertz, D. Gibbins, I. J. Craddock, A. Preece, R. Benjamin, “Microwave Radar-Based Breast Cancer Detection: Imaging in Inhomogeneous Breast Phantoms” IEEE Antennas and Wireless Propagation Letters, Vol. 8, 2009.
[6]	J. Bourqui, M. Okoniewski, E. C. Fear, “Balanced Antipodal Vivaldi Antenna With Dielectric Director for Near-Field Microwave Imaging.”, IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, Jul 2010.
[7]	 A. G. Ramm, “Uniqueness result for inverse problem of geophysics: I,” Inverse Problems, Vol. 6, pp. 635-641, Aug.1990.
[8]	V. Isakov, “Uniqueness and stability in multidimensional inverse problems,” Inverse Problems, Vol. 9, pp. 579–621, 1993.
[9]	O. M. Bucci and T. Isernia, “Electromagnetic inverse scattering: Retrievable information and measurement strategies,” Radio Sci., Vol. 32, pp. 2123–2138, Nov.–Dec. 1997.
[10]	D. Colton and L. Paivarinta, “The uniqueness of a solution to an inverse scattering problem for electromagnetic waves,” Arc. Ration. Mech. Anal., Vol. 119, pp. 59–70, 1992.
[11]	S. Caorsi, M. Donelli, D. Franceschini, and A. Massa, “A new methodology based on an iterative multiscaling for microwave imaging,” IEEE Transactions on Microwave Theory and Techniques, Vol. 51, no. 4, pp. 1162-1173, Apr. 2003.
[12]	M. Bertero and E. R. Pike, Inverse Problems in Scattering and Imaging, ser. Adam HilgerSeries on Biomedical Imaging. Bristol, MA: Inst. Phys., 1992.
[13]	A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems. New York: Springer-Verlag, 1996.
[14]	A. M. Denisov, Elements of Theory of Inverse Problems. Utrecht, The Netherlands: VSP, 1999.
[15]	A. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in evolutionary algorithms,”, IEEE Transactions on Evolutionary Computation, Vol. 3, No. 2, pp.124–141, Jul. 1999.
[16]	S. Boutami,; M. Fall, , “Calculation of Free-Space Periodic Green’s Function Using Equivalent Finite Array,” IEEE Transactions on Antennas and Propagation.,Vol. 60, pp.4725-4731,2012.
[17]	D. S. Weile and E. Michielssen, “Genetic algorithm optimization applied to electromagnetics: a review,” IEEE Transactions on Antennas and Propagation, Vol. 45, No. 3, pp. 343- 353, Mar. 1997.
[18]	J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Transactions on Antennas and Propagation, Vol. 52, No. 3, pp. 397–407, Feb. 2004.
[19]	P. Rocca, G. Oliveri, and A. Massa,“Differential Evolution as Applied to Electromagnetics ,” IEEE Antennas and Propagation Magazine, Vol. 53, No. 1, pp. 38–49, May. 2011.
[20]	R. M. Lewis, "Physical optics inverse diffraction," IEEE Trans.   Antennas Propagat., vol. 17, pp. 308-314, May 1969.
[21]	N. N. Bojarski, "A survey of the physical optics inverse scattering identity," IEEE Trans. Antennas Propagat., vol. 30, pp. 980-989,Sept. 1982. 
[22]	T. H. Chu and N. H. Farhat, "Polarization effects in microwave diversity imaging of perfectly conducting cylinders," IEEE Trans. Antennas Propagar., vol.37, pp. 235-244, Feb. 1989.
[23]	D. B. Ge, "A study of Lewis method for target-shape reconstruction," Inverse Problems, vol. 6, pp. 363-370, June 1990.
[24]	D. Colton, H. Haddar and Piana," The linear sampling method in inverse electromagnetic scattering theory," Inverse Problems, vol. 19, pp. 105-137, December 2003.
[25]	M. Brignone and M. Piana, " The use of constraints for solving inverse scattering problems: physical optics and the linear sampling method," Inverse Problems, vol. 21, pp. 207-222, February 2005.
[26]	T. H. Chu and D. B. Lin, "Microwave diversity imaging of perfectly conducting objects in the near-field region," IEEE Trans. Microwave Theory Tech., vol. 39, pp. 480-487, Mar. 1991.
[27]	D. Van Orden,;V. Lomakin, “Rapidly Convergent Representations for Periodic Green’s Functions of a Linear Array in Layered Media,” IEEE Transactions on Antennas and Propagation., vol 60, issue 2, pp.870 - 879, 2012.
[28]	G. W. Hohmann, "Electromagnetic scattering by conductors in the earth near a line source of current," Geophysics, vol. 36, pp. 101-131,Feb. 1971.
[29]	N. Osumi and K. Ueno, "Microwave holographic imaging of underground objects," IEEE Trans. Antennas Propagat., vol. AP-33,pp. 152-159, Feb. 1985.
[30]	L. Chommeloux, C. Pichot, and J. C. Bolomey, "Electromagnetic modeling  for microwave  imaging  of cylindrical  buries inhomogeneities," IEEE Trans. Microwave Theory Tech., vol. MTT-34, pp. 1064-1076, Oct. 1986.
[31]	B. Duchene, D. Lesselier, and W. Tabbara, "Acoustical imaging of 2D fluid targets buried in a half-space: a diffraction tomography approach," IEEE Trans. Ultrason. Ferroelec. Freq. Contr., vol. UFFC-34, pp. 540-549, Sept. 1987.
[32]	W. Tabbara, B. Duchene, C. Pichot, D. Lesselier, L. Chommelous,and N. Joachimowicz, "Diffraction tomography: contribution to the analysis of some applications in microwaves and ultrasonics, "Inverse Problems, vol. 4, pp. 305- 331, May 1988.
[33]	R. F. Harrmgton, Field Computation by Moment Method, New York: Macmillan, 1968.
[34]	T. Moriyama, Z. Meng, and T. Takenaka, "Forward-backward time-stepping method combined with genetic algorithm applied to breast cancer detection", Microwave and Optical Technology Letters, Vol. 53, No. 2, pp.438-442, 2011.
[35]	R. Persico, R. Bernini, and F. Soldovieri, “The Role of the Measurement Configuration in Inverse Scattering From Buried Objects Under the Born Approximation,” IEEE Transactions on Antennas and Propagation, Vol. 53, No.6, pp. 1875-1887, Jun. 2005.
[36]	G. Franceschini, M. Donelli, R. Azaro and A. Massa, “Inversion of Phaseless Total Field Data Using a Two-Step Strategy Based on the Iterative Multiscaling Approach,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No.12, pp. 3527-3539, Dec. 2006.
[37]	A. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in evolutionary algorithms,”, IEEE Transactions on Evolutionary Computation, Vol. 3, No. 2, pp.124–141, Jul. 1999
[38]	Gu Jun and Wang Xiaobing, “Near Field Electomagnetic Scattering Model Studying for Rough Land Surface,” Antennas and Propagation (APCAP), 2014 3rd Asia-Pacific Conference on,2014.
[39]	TolgaUla¸sGürbüz, BirolAslanyürek, E. Pınar Karabulut, Ibrahim Akduman, “An Efficient Nonlinear Imaging Approach for Dielectric Objects Buried Under a Rough Surface”, IEEE Transactions On Geoscience And Remote Sensing, Vol. 52, No. 5, Pp.3013-3022, May 2014
[40]	Shamsaddini M.,Tavakoli A.,Dehkhoda P.,“Inverse electromagnetic scattering of a dielectric cylinder buried below a slightly rough surface using a New intelligence approach,” Electrical Engineering (ICEE), 2015 23rd Iranian Conference on, May 2015.
[41]	R. Storn, and K. Price, “Differential Evolution - a Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces,” Technical Report TR-95-012,International Computer Science Institute, Berkeley, 1995.
[42]	C. H. Sun and C. C. Chiu “Inverse Scattering of Dielectric Cylindrical Target Using Dynamic Differential Evolution and Self-Adaptive Dynamic Differential Evolution,” International Journal of RF and Microwave Computer-Aided Engineering, Vol. 23, Issue 5, pp. 579–585,  Sept. 2013.
[43]	C. C. Chiu, C. H. Sun, C. L. Li and C. H. Huang, “Comparative Study of Some Population-based Optimization Algorithms on Inverse Scattering of a Two- Dimensional Perfectly Conducting Cylinder in Slab Medium,” IEEE Transactions on Geoscience and Remote Sensing, vol. 51, pp. 2302–2315, Apr. 2013.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信