淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-1607201417040200
中文論文名稱 利用選擇性電鍍法製備銅凸塊於矽基板之研究
英文論文名稱 The Study of the Selective Electroplating of Cu Bumps on Si Substrate
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 102
學期 2
出版年 103
研究生中文姓名 陳洛嶙
研究生英文姓名 Lo-Lin Chen
學號 601400590
學位類別 碩士
語文別 中文
口試日期 2014-06-19
論文頁數 76頁
口試委員 指導教授-許世杰
委員-吳宛玉
委員-林正嵐
中文關鍵字 選擇性電鍍  銅凸塊  電流密度  半導體 
英文關鍵字 selective electroplating  Cu bump  current density  semiconductor 
學科別分類
中文摘要 本論文旨在開發選擇性電鍍的製程技術,此技術能夠不需要任何阻擋層,而達到在半導體基板預先晶粒定義的位置上電鍍銅凸塊的目的。
研究中,使用定電流密度之方法,可以成功地製作出不需阻擋層的圖形化電鍍銅凸塊,而達到選擇性電鍍的效果。以表面輪廓儀測量電鍍銅凸塊的輪廓,可觀察到電鍍銅凸塊的平均厚度會隨著電流密度增加而降低,而電鍍銅凸塊的邊緣會隨著電流密度增加有明顯的突起。進一步地研究發現,電流密度為45 mA/cm2時為形貌轉換過渡期,此時銅凸塊部分邊緣有稍微突起之現象;電流密度為45 mA/cm2以下時,銅凸塊形貌為蘑菇頭狀;而當電流密度為45 mA/cm2以上時,銅凸塊邊緣則明顯突起。這個現象將藉由邊緣效應及電荷聚集效應的機制作一深入之探討。此外,本研究也定義了相似度來判定銅凸塊的形貌狀況,從實驗結果中可以得知當電流密度為50 mA/cm2時,電鍍銅凸塊基板有最適化的表面形貌。
除了定電流密度之外,本研究還完成了定電位、脈衝電流的測試實驗,由於僅為初期之實驗結果,故放入附錄中以供參考。
英文摘要 The purpose of the study is developing the selective electroplating technique. For the manufacture of semiconductor, we can successfully fabricate the copper bumps on the pre-defined pattern seed layer without using barriers by the selective electroplating technique.
In the study, we can successfully fabricate the copper bumps by using galvanostatic methods. The contours of the copper bumps were measured by the Alpha-step profilometer. The thickness of the copper bumps decreases with increasing current density. In further investigations, it is found that the copper bumps with obtuse edges obtained if the electroplating current density is lower than 45 mA/cm2. At the current density of 45 mA/cm2, a portion of the edge of the copper bumps was slightly protruded as the transition stage. The edge of the copper bumps was obviously protruded when deposited using current density higher than 45 mA/cm2. It further discusses with edge effect and charge aggregation effect. In addition, the morphology and the similarity of the copper bumps at 50 mA/cm2 are the best from the results.
論文目次 致謝 I
摘要 II
目錄 V
圖目錄 VIII
表目錄 XII
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 3
第二章 理論基礎 5
2-1銅金屬沉積方式 5
2-1.1化學氣相沉積法(CVD) 7
2-1.2物理氣相沉積法(PVD) 7
2-1.3無電鍍法(Eectroless Deposition) 8
2-1.4電鍍法(EPD) 9
2-2電鍍反應沉積機制 11
2-2.1電鍍機制 11
2-2.2直流與脈衝電鍍 14
2-2.3薄膜成長機制 15
第三章 實驗方法與步驟 18
3-1 實驗材料 18
3-2 實驗裝置與原理 21
3-2.1 光阻塗佈機 21
3-2.2 雙面光罩對準曝光機 22
3-2.3 電子槍及熱蒸鍍系統 23
3-2.4 電化學分析儀 24
3-3 分析儀器與原理 25
3-3.1 掃瞄式電子顯微鏡 25
3-3.2探針式表面分析儀 26
3-4 實驗步驟 27
第四章 實驗結果與討論 33
4-1 不同電流密度下電鍍銅凸塊表面形貌分析 33
4-1.1電鍍銅凸塊SEM圖之分析與討論 34
4-1.2電鍍銅凸塊層表面輪廓圖分析 37
4-1.3邊緣效應及電荷累積效應 39
4-2電鍍銅凸塊表面輪廓及相似度分析與討論 46
4-2.1電鍍銅凸塊表面輪廓之分析 46
4-2.2電鍍銅凸塊相似度之分析與討論 48
4-3電鍍銅凸塊水平與垂直成長比較分析 58
第五章 結論 65
第六章 參考文獻 67
附錄A 71
附錄B 72
附錄C 74
圖2-1 CVD製程流程示意圖 6
圖2-2 Cu(hfac)2化學結構圖 6
圖2-3濺鍍製程示意圖 8
圖2-4金屬離子沉積於晶體表面之起始及最終狀態圖 12
圖2-5金屬離子沉積之臺階邊緣離子轉移機制圖(1)直接轉移至扭折位置;(2)沿著臺階邊緣擴散至扭折位置 13
圖2-6金屬離子沉積之表面離子轉移機制圖 14
圖2-7 (1)直流以及(2)脈衝電流的波形示意圖 14
圖2-8 薄膜成長機制:(1)成核,(2)晶粒成長,(3)晶粒聚集,(4)縫道填補,(5)連續薄膜成長 17
圖3-1光阻塗佈機 21
圖3-2雙面光罩對準曝光機 22
圖3-3電子槍及熱蒸鍍系統 23
圖3-4 電子槍蒸鍍示意圖 24
圖3-5 電化學分析儀 25
圖3-6 掃瞄式電子顯微鏡 26
圖3-7 探針式表面分析儀 27
圖3-8工作電極示意圖 29
圖3-9 實驗流程示意圖 30
圖3-10 實驗裝置示意圖 31
圖4-1不同電流密度下之SEM圖。(a) 20 mA/cm2,(b) 40 mA/cm2,(c) 60 mA/cm2,(d) 80 mA/cm2,(e) 100 mA/cm2,(f) 160 mA/cm2 35
圖4-2表面輪廓掃描方向示意圖 37
圖4-3不同電流密度下之表面輪廓分析圖。(a) 20 mA/cm2,(b) 40 mA/cm2,(c) 60 mA/cm2,(d) 80 mA/cm2,(e) 100 mA/cm2,(f) 160 mA/cm2 38
圖4-4 邊緣效應示意圖 40
圖4-5導體不同曲率半徑面電荷密度示意圖 41
圖4-6同一導體電荷密度分佈示意圖 41
圖4-7電流密度160 mA/cm2之表面輪廓及SEM結果比較圖 43
圖4-8不同電流密度下之表面輪廓比較圖 47
圖4-9電流密度為45、50、55 mA/cm2下之表面輪廓比較圖 48
圖4-10最適銅凸塊形貌之示意圖 49
圖4-11不同電流密度下之相似度比較圖 50
圖4-12不同電流密度下之相似度比較圖。(a) 20 mA/cm2,(b) 40 mA/cm2,(c) 45 mA/cm2,(d) 50 mA/cm2,(e) 55 mA/cm2,(f) 60 mA/cm2,(g) 80 mA/cm2,(h) 100 mA/cm2 53
圖4-13不同電流密度下之超出平均高度銅凸塊面積比率圖 56
圖4-14電流密度50 mA/cm2下之輪廓掃描示意圖 57
圖4-15電流密度50 mA/cm2下之厚度分佈圖 57
圖4-16不同電流密度下之銅凸塊側向面積比率圖 59
圖4-17不同電流密度下之側向成長圖 60
圖4-18不同電流密度下之側向成長速率圖 61
圖4-19不同電流密度下之沉積厚度圖 62
圖4-20不同電流密度下之沉積速率圖 63
圖4-21正向沉積與側向成長速率比圖 64
圖A-1圖案化基板線性掃描分析圖 71
圖B-1定電位-0.7 V、2400s之SEM圖。(a)電鍍前,(b)、(c)上視圖,(d)、(e)截面圖 73
圖C-1脈衝電位之SEM圖(Von : Voff = - 0.8V : 0V、ton : toff = 0.5s : 0.5s)。(a)電鍍前,(b)、(c)上視圖,(d) tile 45 圖 74
圖C-2不同電鍍模式下銅凸塊間走道之SEM圖。(a)為定電位、(b)為脈衝電位 76
表3-1 實驗參數表 32
表4-1沉積銅原子數與消耗電子數比較表 45

參考文獻 [1] M. T. Bohr, Interconnect scaling - the real limiter to high performance ULSI, IEDM, (1995) 241-244

[2] P.C. Andricacos, C. Uzoh, J.O. Dukovic, J. Horkans, H. Deligianni, Damascene copper electroplating for chip interconnections, IBM J. Res. Develop. 42 (1998) 567-574.

[3] H. Xiao, 半導體製程技術導論, 羅正忠和張鼎張譯, (2007) 345-425.

[4] S. Venkatesan, A. Gelatos, S. Hisra, B. Smith, R. Islam, J. Cope, B. Wilson, D. Tuttle, R. Cardwell, S. Anderson, A high performance 1.8 V, 0.20 μm CMOS technology with copper metallization, IEDM (1997) 769-772.

[5] A.C. West, C. Cheng, B.C. Baker, Pulse reverse copper electrodeposition in high aspect ratio trenches and vias, J. Electrochem. Soc. 145 (1998) 3070-3074.

[6] E. Taylor, J. Sun, M. Inman, Charge modulated electrochemical deposition of copper for electronic interconnect applications, Plat. Surf. Finish. 87 (2000) 68-73.

[7] W. Tsai, C. Wan, Y. Wang, Frequency effect of pulse plating on the uniformity of copper deposition in plated through holes, J. Electrochem. Soc. 150 (2003) C267-C272.

[8] J. Lee, A.C. West, Impact of pulse parameters on current distribution in high aspect ratio vias and through-holes, J. Electrochem. Soc. 152 (2005) C645-C651.

[9] C. Seah, S. Mridha, L. Chan, DC/pulse plating of copper for trench/via filling, J. Mater. Process. Technol. 114 (2001) 233-239.

[10] N. Nguyen, E. Boellaard, N. Pham, V. Kutchoukov, G. Craciun, P. Sarro, Through-wafer copper electroplating for three-dimensional interconnects, J. Micromech. Microeng. 12 (2002) 395-399.

[11] M. Georgiadou, D. Veyret, Modeling of Transient Electrochemical Systems Involving Moving Boundaries Parametric Study of Pulse and Pulse-Reverse Plating of Copper in Trenches, J. Electrochem. Soc. 149 (2002) C324-C330.

[12] S. Chang, J. Shieh, K. Lin, B. Dai, T. Wang, C. Chen, M. Feng, Y. Li, C. Lu, Investigations of effects of bias polarization and chemical parameters on morphology and filling capability of 130 nm damascene electroplated copper, J. Vac. Sci. Technol. B. 19 (2001) 767-773.

[13] K. Yung, T. Yue, K. Chan, K. Yeung, The effects of pulse plating parameters on copper plating distribution of microvia in PCB manufacture, IEEE Trans. Compon. Packag. Technol. 26 (2003) 106-109.

[14] X. Zhang, K. Tu, Z. Chen, Y. Tan, C.C. Wong, S.G. Mhaisalkar, X. Li, C. Tung, C. Cheng, Pulse electroplating of copper film: a study of process and microstructure, J. Nanosci. Nanotechno. 8 (2008) 2568-2574.

[15] C. Gu, H. Xu, T. Zhang, Fabrication of high aspect ratio through-wafer copper interconnects by reverse pulse electroplating, J. Micromech. Microeng. 19 (2009) 065011.

[16] J.P. Healy, D. Pletcher, M. Goodenough, The chemistry of the additives in an acid copper electroplating bath: part I. Polyethylene glycol and chloride ion, J. Electroanal. Chem. 338 (1992) 155-165.

[17] W. Dow, H. Huang, Z. Lin, Interactions between brightener and chloride ions on copper electroplating for laser-drilled via-hole filling, Electrochem. Solid-State Lett. 6 (2003) C134-C136.

[18] P.M. Vereecken, R.A. Binstead, H. Deligianni, P.C. Andricacos, The chemistry of additives in damascene copper plating, IBM J. Res. Develop. 49 (2005) 3-18.

[19] W. Dow, D. Liu, C. Lu, C. Chen, J. Yan, S. Huang, Through-hole filling by copper electroplating using a single organic additive, Electrochem. Solid-State Lett. 14 (2011) D13-D15.

[20] C. Wang, J. Zhang, P. Yang, M. An, Electrochemical behaviors of Janus Green B in through-hole copper electroplating: An insight by experiment and density functional theory calculation using Safranine T as a comparison, Electrochim. Acta. 92 (2013) 356-364.

[21] J. König, K. Tschulik, L. Büttner, M. Uhlemann, J. Czarske, Analysis of the Electrolyte Convection inside the Concentration Boundary Layer during Structured Electrodeposition of Copper in High Magnetic Gradient Fields, Anal. Chem. 85 (2013) 3087-3094.

[22] J. Quemper, E. Dufour-Gergam, N. Frantz-Rodriguez, J. Gilles, J. Grandchamp, A. Bosseboeuf, Effects of direct and pulse current on copper electrodeposition through photoresist molds, J. Micromech. Microeng. 10 (2000) 116-119.

[23] V. M. Dubin, Y. Shacham-Diamand, B. Zhao, P. K. Vasuder, and C.H. Ting, “Selective and Blanket Electroless Copper Deposition for Ultralarge Scale Integration, “ J. Electrochem. Soc. , 144 (1997) pp. 898-908

[24] M. Schlesinger, M. Paunovic, Fundamentals of Electrochemical Deposition, Wiley, (2006) 100-102.

[25] M. Schlesinger, M. Paunovic, Modern Electroplating, John Wiley & Sons,( 2011) 285–307 .

[26] 湯凱文, 脈衝電鍍銅的橫截面微結構及其特性, 成功大學材料科學及工程學系學位論文. (2009) 10-13.

[27] V. Rajendran, A. Gopalan, T. Vasudevan, W. Chen, T. Wen, Growth behaviour of polyaniline films deposited by pulse potentiostatic method, Mater. Chem. Phys. 65 (2000) 320-328.

[28] 吳仕勤, 以電鍍銅法製備薄膜式氮化鎵發光二極體元件及其應力分析, 淡江大學化學工程與材料工程學系碩士班學位論文. (2012) 41-42.

[29] C.V. Thompson, R. Carel, Stress and grain growth in thin films, J. Mech. Phys. Solids. 44 (1996) 657-673.

[30] F. Spaepen, Interfaces and stresses in thin films, Acta Materialia. 48 (2000) 31-42.

[31] P. Guduru, E. Chason, L. Freund, Mechanics of compressive stress evolution during thin film growth, J. Mech. Phys. Solids. 51 (2003) 2127-2148.

[32] http://www.nfc.nctu.edu.tw/mechine_new/mechine/C_photo.htm

[33] http://www.nfc.nctu.edu.tw/mechine_new/mechine/Double_Side_ Mask.htm

[34] http://grrc.khu.ac.kr/test_analysis/list4.htm

[35] M. Duch, J. Esteve, E. Gomez, R. Perez-Castillejos, E. Valles, Electrodeposited Co-Ni alloys for mems, J. Micromech. Microeng. 12 (2002) 400-405.

[36] N. Nikolić, L.J. Pavlović, S. Krstić, M. Pavlović, K. Popov, Influence of ionic equilibrium in the CuSO4–H2SO4–H2O system on the formation of irregular electrodeposits of copper, Chem. Eng. Sci. 63 (2008) 2824-2828.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2019-07-17公開。
  • 同意授權瀏覽/列印電子全文服務,於2019-07-17起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信