下載電子全文 （限經由淡江IP使用）
 系統識別號 U0002-1607201317310100 中文論文名稱 三物種之食物鏈模型的動態行為研究 英文論文名稱 Dynamics of Three Species Food Chain Models with Holling type II Functional Response 校院名稱 淡江大學 系所名稱(中) 數學學系碩士班 系所名稱(英) Department of Mathematics 學年度 101 學期 2 出版年 102 研究生中文姓名 潘虹霖 研究生英文姓名 Hung-Lin Pan 學號 600190101 學位類別 碩士 語文別 英文 口試日期 2013-06-27 論文頁數 25頁 口試委員 指導教授-楊定揮委員-許正雄委員-楊智烜 中文關鍵字 霍林型二  食物鏈模型  三物種 英文關鍵字 Holling-type II  Food Chain Model  Three Species 學科別分類 學科別＞自然科學＞數學 中文摘要 本次研究的三個物種食物鏈模型是最簡單的三層食物網類型，一個變數變換後將模型轉化為三個一階常微分方程且有六個參數，起始值為正且有界。然後我們分類邊界平衡點的存在與局部穩定性。並且我們發現一個完整的參數分類，它的必要條件和充分條件存在，但不存在正重根，但正平衡點的局部穩定性數值已驗證。最後我們進行一些數值模擬我們所分類的每個區域。 英文摘要 In this work, the three species food chain models which are the simplest biological models with three trophic levels are investigated. After a non-dimensionless transformation, the model is transformed to a three first order ordinary differential equations with six parameters. The boundedness and positivity of solution with positive initial conditions are first established. Then we classify the existence and local stability of all boundary equilibria. Moreover, we obtain a complete classification of parameter space. For each region of the classification, the necessary and sufficient conditions of existence, non-existence and multiplicity of positive equilibria are obtained. However, the local stability of positive equilibrium is verified numerically. Finally, some numerical simulations are performed for each region of our classification. 論文目次 Contents 1 Introduction 2 2 Preliminary Results 3 2.1 Boundedness of Solutions 3 2.2 Subsystems and its Equilibria, Dynamics 4 3 Dynamics of Equilibria in R3 5 3.1 Local Stability of Equilibria in R3 7 3.2 Existence of Coexistence State and its Local Stability 9 4 Numerical Results 14 5 Reference 23 List of Figures 3.1 The region of parameters pace with various a1, a2, xed m1, m2, d1, d2 under assumptions (A1) and (A2) 9 3.2 The region of parameters pace with various a1, a2 and xed m1, m2, d1, d2 under assumptions (A1) and (A2) 12 4.1 The boundary equilibrium Ex is globally asymptotically stable if assumption (A1) does not hold 16 4.2 The dynamics is a unique limit cycle if d2 m2 and d1 < m1 a1+1( x < 1+a1 2 ) 16 4.3 Proposition 3.2. If d2 m2 and d1 < m1 a1+1 ( x > 1+a1 2 ) 18 4.4 Boundary equilibrium Exy is globally asymptotically stable if pa- rameters in the green region of Figure 3.2 19 4.5 The orbit is periodic on x-y plane if parameters in the light green region of Figure 3.2 19 4.6 Boundary equilibrium Ex is globally asymptotically stable if param- eters in the black region of Figure 3.2 20 4.7 Boundary equilibrium Exy is globally asymptotically stable if pa- rameters in the white region of Figure 3.2 20 4.8 The orbit is periodic on x-y plane if parameters in the orange region of Figure 3.2 21 4.9 The orbit is periodic on x-y plane if parameters in he left hand of yellow area of Figure 3.2 21 4.10 Positive equilibrium E is globally asymptotically stable if parame- ters in the right hand of yellow region of Figure 3.2 22 4.11 The orbit is periodic on x-y plane if parameters in the left hand of red region of Figure 3.2 22 4.12 Positive equilibrium E is globally asymptotically stable if parame- ters in the right hand of red region of Figure 3.2 23 List of Tables 2.1 Subsystems, equilibria and its stability for system (1.2) 6 4.1 The dynamics and parameter values with xed d1 = 0:45, m1 = 0:6, m2 = 0:6 and various a1, a2, d2 for each numerical simulation 17 4.2 The corresponding analytical conditions for each numerical simulation 18 參考文獻 [1] M. P. Boer, B. W. Kooi, and S. A. L. M. Kooijman. Homoclinic and hetero- clinic orbits to a cycle in a tri-trophic food chain. Journal of Mathematical Biology, 39(1):19{38, 1999. [2] K. S. Ch^eng. Uniqueness of a limit cycle for a predator-prey system. SIAM Journal on Mathematical Analysis, 12(4):541{548, 1981. [3] C.-H. Chiu. Global qualitative analysis of coupled three-level food chains. Journal of Mathematical Analysis and Applications, 349(1):272{279, 2009. [4] C.-H. Chiu and S.-B. Hsu. Extinction of top-predator in a three-level food- chain model. Journal of Mathematical Biology, 37(4):372{380, 1998. [5] B. Deng. Food chain chaos due to junction-fold point. Chaos. An Interdisci- plinary Journal of Nonlinear Science, 11(3):514{525, 2001. [6] B. Deng. Food chain chaos with canard explosion. Chaos. An Interdisciplinary Journal of Nonlinear Science, 14(4):1083{1092, 2004. [7] B. Deng. Equilibriumizing all food chain chaos through reproductive e ciency. Chaos. An Interdisciplinary Journal of Nonlinear Science, 16(4):043125, 7, 2006. [8] B. Deng and G. Hines. Food chain chaos due to Shilnikov's orbit. Chaos. An Interdisciplinary Journal of Nonlinear Science, 12(3):533{538, 2002. [9] B. Deng and G. Hines. Food chain chaos due to transcritical point. Chaos. An Interdisciplinary Journal of Nonlinear Science, 13(2):578{585, 2003. [10] H. I. Freedman and J. W. H. So. Global stability and persistence of simple food chains. Mathematical Biosciences, 76(1):69{86, 1985. [11] H. I. Freedman and P. Waltman. Mathematical analysis of some three-species food-chain models. Mathematical Biosciences, 33(3-4):257{276, 1977. [12] T. C. Gard. Persistence in food chains with general interactions. Mathematical Biosciences, 51(1-2):165{174, 1980. [13] T. C. Gard. Persistence in food webs: Holling-type food chains. Mathematical Biosciences, 49(1-2):61{67, 1980. [14] T. C. Gard and T. G. Hallam. Persistence in food webs. I. Lotka-Volterra food chains. Bulletin of Mathematical Biology, 41(6):877{891, 1979. [15] A. Hastings and T. Powell. Chaos in a three-species food chain. Ecology, 72(3):896{903, June 1991. [16] S. B. Hsu. On global stability of a predator-prey system. Mathematical Biosciences, 39(1-2):1{10, May 1978. [17] S.-B. Hsu, C. A. Klausmeier, and C.-J. Lin. Analysis of a model of two parallel food chains. Discrete and Continuous Dynamical Systems. Series B. A Journal Bridging Mathematics and Sciences, 12(2):337{359, 2009. [18] A. Klebano and A. Hastings. Chaos in three-species food chains. Journal of Mathematical Biology, 32(5):427{451, 1994. [19] Y. A. Kuznetsov, O. De Feo, and S. Rinaldi. Belyakov homoclinic bifurcations in a tritrophic food chain model. SIAM Journal on Applied Mathematics, 62(2):462{487 (electronic), 2001. [20] C. Letellier, L. A. Aguirre, J. Maquet, and M. A. Aziz-Alaoui. Should all the species of a food chain be counted to investigate the global dynamics? Chaos, Solitons and Fractals, 13(5):1099{1113, 2002. [21] S. Mandal, M. M. Panja, S. Ray, and S. K. Roy. Qualitative behavior of three species food chain around inner equilibrium point: spectral analysis. Nonlinear Analysis-Modelling And Control, 15(4):459{472, 2010. [22] R. K. Naji and A. T. Balasim. Dynamical behavior of a three species food chain model with Beddington-DeAngelis functional response. Chaos, Solitons and Fractals, 32(5):1853{1866, 2007. [23] S. G. Ruan and H. I. Freedman. Persistence in three-species food chain models with group defense. Mathematical Biosciences, 107(1):111{125, 1991. [24] P. T. Saunders and M. J. Bazin. On the stability of food chains. Journal of theoretical biology, 52(1):121{142, 1975. [25] J. W.-H. So. A note on the global stability and bifurcation phenomenon of a Lotka-Volterra food chain. Journal of theoretical biology, 80(2):185{187, 1979. 論文使用權限 同意紙本無償授權給館內讀者為學術之目的重製使用，於2013-07-23公開。同意授權瀏覽/列印電子全文服務，於2013-07-23起公開。

 若您有任何疑問，請與我們聯絡！圖書館： 請來電 (02)2621-5656 轉 2487 或 來信 dss@mail.tku.edu.tw