§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1607201316374400
DOI 10.6846/TKU.2013.00548
論文名稱(中文) 透析過濾操作中玻尿酸溶液之濾速行為及其純化
論文名稱(英文) Flux behavior and purification of hyaluronic acid solution by using diafiltration
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 101
學期 2
出版年 102
研究生(中文) 王莉茹
研究生(英文) Li-Lu Wang
學號 600401185
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2013-06-22
論文頁數 77頁
口試委員 指導教授 - 鄭東文(twcheng@mail.tku.edu.tw)
委員 - 黃國楨(kjhwang@mail.tku.edu.tw)
委員 - 童國倫(kuolun@ntu.edu.tw)
關鍵字(中) 透析過濾
玻尿酸
純化
電解質
關鍵字(英) Diafiltration
Hyaluronic acid
Purification
Electrolyte
第三語言關鍵字
學科別分類
中文摘要
本實驗採用一透析過濾裝置進行實驗,以單成分HA溶液、單成分LY溶液以及HA/LY雙成分溶液為實驗對象,並採用批次恆壓型式,針對攪拌速度、電解質種類、電解質濃度、透析液體積、透析液電解質濃度等操作變數之改變進行實驗分析。
研究結果顯示,加入攪拌可有效降低過濾阻力而提高濾速,電解質離子強度越大,使玻尿酸分子萎縮捲曲的程度越大,使得HA堆積形態越為緊密,濾速相對較低;而電解質造成LY與薄膜以及HA之間的靜電作用力降低,使LY不易吸附於膜面上,較易通過薄膜,提高移除效率。隨著透析過濾操作之進行,增加透析體積有助於批次濾出進料槽中之LY;若透析液中電解質濃增加有助於LY之移除率,但到達一定濃度後,再增加電解質濃度反而會影響LY的移除。
英文摘要
In this study, the HA solution, LY solution and the mixture solution of HA/LY were used as the feed solution, and experimented by adopting diafiltration in a dead-end stirred cell. The experimented results were discussed under different operating conditions such as stirred rate, electrolyte type, electrolyte concentration and diavolumes.
The results shows that the addition of stirring can reduce the filtration resistance  and improve the permeate flux. The permeate flux decreases with the increase of ion strength of electrolyte which causes the HA molecules become more shrunken and then form a compact deposited layer on membrane surface. However, the LY molecules can pass through the membrane more easily as the electrolyte is added. The strength of electrode ion will hinder the surface charge of LY, and decrease the electrostatic interference between LY molecules and membrane. During the diafiltration process of HA/LY solution, the diavolumes and electrolyte concentration can increase the removal of LY. But there is a limit to the increase of electrolyte concentration in dialyate solution, instead, would decrease the removal of LY.
第三語言摘要
論文目次
目錄
致謝	I
中文摘要	II
英文摘要	III
目錄	IV
圖目錄	VII
表目錄	X
第1章 緒論	1
1.1 前言	1
1.2 薄膜分離	1
1.3 薄膜型態與模組	4
1.4 濃度極化與結垢現象	6
1.5 研究目的	7
第2章 文獻回顧	11
2.1 玻尿酸	11
2.1.1 玻尿酸之發現	12
2.1.2 玻尿酸之純化	13
2.1.3 玻尿酸之應用	15
2.2 透析過濾相關研究	17
2.2.1 透析過濾之理論分析	17
2.2.2 透析過濾純化效果之研究	18
2.2.3 透析過濾之應用	19
2.3 影響濾速之因素	20
2.4 提升濾速之方法	21
2.5 濾速分析模式	23
第3章 實驗裝置與方法	29
3.1 實驗裝置	29
3.2 實驗藥品	30
3.3 實驗步驟	31
3.4 操作條件	32
3.5 分析方法	33
3.5.1 玻尿酸含量之測定	33
3.5.2 蛋白質含量之測定	34
3.5.3 阻隔率(Rejection, Rj)	36
3.5.4 移除率(Reduction, Rd)	36
3.5.5 保留液濃度	36
3.6 實驗後薄膜之清洗	37
第4章 結果與討論	40
4.1 薄膜純水濾速	40
4.2 單成分溶液之透析過濾行為	41
4.2.1 攪拌速度對單成份溶液之影響	41
4.2.2 電解質對單成分溶液之影響	42
4.3 雙成分HA/LY溶液之透析過濾行為	43
4.3.1 電解質種類	43
4.3.2 電解質濃度	44
4.3.3 透析液體積	45
4.3.4 透析液電解質濃度	45
4.3.5 分離效率	46
4.3.6 電解質之移除	48
4.3.7 HA之阻隔率	49
4.3.8 移除雙成分溶液中微量蛋白質	49
第5章 結論	67
參考文獻	69
附錄A	76
附錄B	77

圖目錄
Fig. 1 1 The classification of membrane separation process [2].	9
Fig. 1 2 The diagram of (a)dead end filtration and (b)cross-flow filtration [3].	10
Fig. 2 1 The biosynthetic pathway for HA production in S. zooepidemicus[53].	25
Fig. 2 2 The processes of HA production in S. zooepidemicus[53].	26
Fig. 2 3 The Schematic diagram of diafiltration.	27
Fig. 2 4 Typical methods to reduce concentration polarization and fouling in pressure driving membrane processes [2].	28
Fig. 3 1 The experimental set-up of diafiltration operation.	38
Fig. 4 1 Pure water fluxes at different pressures of 100 kDa membrane.	50
Fig. 4 2 Time courses filtration flux on diafiltration of HA solution under different Stirring rates.	50
Fig. 4 3 Time courses filtration resistances on diafiltration of HA solution under different Stirring rates.	51
Fig. 4 4 Time courses filtration resistances on diafiltration of HA solution under 0 rpm.	51
Fig. 4 5 Time courses filtration flux on diafiltration of LY solution under different Stirring rates.	52
Fig. 4 6 Time courses filtration resistances on diafiltration of LY solution under different Stirring rates.	52
Fig. 4 7 Effect of different Stirring rates on LY conc. in permeate of LY solution.	53
Fig. 4 8 Time courses filtration flux on diafiltration of HA solution under different electrolyte concentrations.	53
Fig. 4 9 Time courses filtration resistances on diafiltration of HA solution under different electrolyte concentrations.	54
Fig. 4 10Time courses filtration flux on diafiltration of LY solution under different electrolyte concentrations.	54
Fig. 4 11Time courses filtration resistances on diafiltration of LY solution under different electrolyte concentrations.	55
Fig. 4 12 Effect of different electrolyte concentrations on LY conc. in permeate of LY solution.	55
Fig. 4 13 Time courses filtration flux on diafiltration of binary HA/LY solution under different electrolytes.	56
Fig. 4 14Time courses filtration resistances on diafiltration of binary HA/LY solution under different electrolytes.	56
Fig. 4 15 Time courses filtration flux on diafiltration of binary HA/LY solution under different electrolytes.	57
Fig. 4 16 Time courses filtration resistances on diafiltration of binary HA/LY solution under different electrolytes.	57
Fig. 4 17 Time courses filtration flux on diafiltration of binary HA/LY solution under different electrolytes.	58
Fig. 4 18 Time courses filtration resistances on diafiltration of binary HA/LY solution under different electrolytes.	58
Fig. 4 19 Time courses filtration flux on diafiltration of binary HA/LY solution under different electrolyte (KCl) concentrations.	59
Fig. 4 20 Time courses filtration resistances on diafiltration of binary HA/LY solution under different electrolyte (KCl) concentrations.	59
Fig. 4 21 Time courses filtration flux on diafiltration of binary HA/LY solution under different electrolyte (MgCl2) concentrations.	60
Fig. 4 22 Time courses filtration resistances on diafiltration of binary HA/LY solution under different electrolyte (MgCl2) concentrations.	60
Fig. 4 23 Time courses filtration flux on diafiltration of binary HA/LY solution under different diavolumes.	61
Fig. 4 24 Time courses filtration resistances on diafiltration of binary HA/LY solution under different diavolumes.	61
Fig. 4 25 Time courses filtration flux on diafiltration of binary HA/LY solution under different electrolyte concentrations of dialysate.	62
Fig. 4 26 Time courses filtration resistances on diafiltration of binary HA/LY solution under different electrolyte concentrations of dialysate.	62
Fig. 4 27 Effect of different electrolytes on LY conc. in permeate of binary HA/LY solution.	63
Fig. 4 28 Effect of different electrolyte concentrations on LY conc. in permeate of binary HA/LY solution.	63
Fig. 4 29 Effect of different diavolumes on LY conc. in permeate of binary HA/LY solution.	64
Fig. 4 30 Effect of different electrolyte concentrations of dialysate on LY conc. in permeate of binary HA/LY solution.	64
Fig. 4 31 Effect of different electrolyte concentrations of dialysate on reduce of LY conc of binary HA/LY solution.	65
Fig. 4 32 Removal of electrolyte from hyaluronic acid solution after diafiltration.	65
Fig. 4 33 Effect of different electrolytes & concentrations on the rejection of HA of binary HA/LY solution.	66
Fig. 4 34  LY conc. in permeate of binary HA/LY solution (1% g protein/g HA).	66
 
表目錄
Table 1 1 The classification of driving force in different operation process [2].	9
Table 3 1 The property of disc membrane	39
Table 3 2 The properties of hyaluronic acid	39
Table 3 3 The properties of lysozyme	39
參考文獻
1.	Murkes, J., and Carlsson, C. G., “Crossflow Filtration-Theory and Practice”, John Wiley & Sons, New York (1988).
2.	Cheryan, M., “Ultrafiltration and Microfiltration Hand Book”, Tech-nomic Publishing Co. Inc. Pennsylvania (1998).
3.	呂維明編著,“固液過濾技術”, 高立圖書有限公司 (2004).
4.	陳毓華、陳松青,“透明質酸與其生醫應用”,化工資訊與商情,第37期 (2006).
5.	李明軒,”以超過濾去除玻尿酸發酵液中微量蛋白質之製程開發”,碩士論文,成功大學,台南,台灣 (2007).
6.	Rapport, M. M., Weissman B., and Linker A., “Isolation of a crystalline disaccharide hyalobiuronic acid from hyaluronic acid”, Nature, 168(10) (1951).
7.	Scott, J. E., Heatley F., and Hull W. E., “Secondary structure of hyaluronate in solution. A 1H-nmr investigation at 300 and 500 MHz in [2H6] dimethyl sulphoxide solution”, Biochem. J., 220, 197-205 (1984).
8.	Balazs, E. A., Laurent, T. C., and Jeanloz, R. W., “Nomenclature of hyaluronic acid ”, Biochem. J., 235, 903 (1986).
9.	Brake, J. W., and Thacker, K., “Hyaluronic acid from bacterial culture”, U. S. Pat. 4517295 (1985).
10.	Nimrod, A., Greenman, B., Kanner, D., Landsberg, M. and Beck, Y., “Methodof producing high molecular weight sodium hyallronate by fermentation of streptococcus”, U. S. Pat. 4780414 (1988).
11.	Carlino, S., and Magnette, F. C. O., “Process for purifying high molecular weighthyaluronic acid”, U. S. Pat. 6489467 (2002).
12.	Zhou, H., Ni, J., Huang, W., and Zhang, J., “Separation of Hyaluronic Acid from Fermentation Broth by Tangential Flow Microfiltration and Ultrafiltration”, Sep. Purif. Technol., 52, 29-38 (2006).
13.	Rangaswamy, V., and Jain, D., “An efficient process for production and purification of hyaluronic acid from Streptococcus equi subsp.
zooepidemicus”, Biotechnol. Lett., 30, 493-496 (2008).
14.	Sharif, M., “Serum hyaluronic acid levels as a predictor of disease  progression in osteoarthritis of the knee”, Arthritis Rheum., 38, 760-767 (1995).
15.	Saettone, M. F., Giannaccini, B., Teneggi, A., Savigni, P., and Tellini, N., “Vehicle effects on ophthalmic bioavailability: the influence of different polymers on the activity of pilocarpine in rabbit and man”, J. Pharm. Pharmacol., 34(7), 464-466 (1982).
16.	Drobink, J., “Hyaluronan in drug delivery”, Adv. Drug Delivery Rev., 7, 295-308 (1991).
17.	Duranti, F., Salti, G., Bovani, B., Calandra, M., and Rosati, M. L.,  “Injectable hyaluronic acid gel for soft tissue augmentation”, Dermatol. Surg., 24, 1317-1325 (1998).
18.	Jaffrin, M. Y., and Charrier, J. P., “Optimization of ultrafiltration and diafiltration processes for albumin production”, J. Membr. Sci., 97, 71-81 (1994).
19.	Bowen, W. R., and Mohammad, A. W., “Diafiltration by nanofiltration: Prediction and optimization”,  AlChE J., 44(8), 1799-1812 (1998).
20.	Barba, D., Beolchini, F., and Veglio, F., “Water saving in a two stage diafiltration for the production of whey protein concentrates”, Desalination., 119, 187-188 (1998).
21.	Barba, D., and Beolchini, F., “Minimizing water use in diafiltration of whey protein concentrates”, Sep. Sci. Technol., 35, 951-965 (2000).
22.	Foley, G., “Minimisation of process time in ultrafiltration and continuous diafiltration: the effect of incomplete macrosolute rejection”, J. Membr. Sci., 163, 349-355 (1999).
23.	Foley, G., and Garcia, J., “Ultrafiltration flux theory based on viscosity and osmotic effects: application to diafiltration optimization”, J. Membr. Sci., 176, 55-61 (2000).
24.	Foley, G., “Ultrafiltration with variable volume diafiltration: a novel approach to water saving in diafiltration processes”, Desalination, 199, 220-221 (2006).
25.	Yazdanshenas, M., Tabatabaeenezhad, A. R., Roostaazad, R., and Khoshfetrat, A. B., “Full scale analysis of apple juice ultrafiltration and optimization of diafiltration”,  Sep. Purif. Technol., 47, 52-57 (2005).
26.	Moreno-Villoslada, I., Miranda, V., Jofre, M., Chandia, P., Villatoro, J. M., Bulnes, J. L., Cortes, M., Hess, S., and Rivas, B. L., “Simultaneous interactions between a low molecular-weight species and two high molecular-weight species studied by diafiltration”, J. Membr. Sci., 272, 137-142 (2006).
27.	Vanreis, R., and Saksena, S., “Optimization Diagram for Membrane Separations”, J. Membr. Sci., 129(1), 19-29 (1997).
28.	Romero, J., and Zydney, A. L., “pH and salt effects on chiral separations using affinity ultrafiltration”, Desalination, 148, 159-164 (2002).
29.	Romero, J., and Zydney, A. L., “Staging of affinity ultrafiltration processes for chiral separations”,  J. Membr. Sci., 209(1), 107-119 (2002).
30.	Meacle, F., Aunins, A., Thornton, R., and Lee, A., “Optimization of the membrane purification of a polysaccharide-protein conjugate vaccine using backpulsing”, J. Membr. Sci., 161, 171-184 (1999).
31.	Lipnizki, F., Boelsmand, J., and Madsen, R. F., “Concepts of industrial-scale diafiltration systems”, Desalination, 144, 179-184 (2002).
32.	Britten, M., and Pouliot, Y., “Characterization of whey protein isolate obtained from milk microfiltration permeate”, Lait, 76,  255-265 (1996).
33.	Pouliot, M., Pouliot, Y., and Britten, M., “On the conventional cross-flow microfiltration of skim milk for the production of native  phosphocaseinate”, Int. Dairy J., 6(1), 105-111 (1996).
34.	Crum, R. H., Murphy, E. M., and Keller, C. K., “A non-adsorptive method for the isolation and fractionation of natural dissolved organic carbon”, Water Resour., 30, 1304-1311 (1996).
35.	Zydney, A. L., “Protein separations using membrane filtration: New opportunities for whey fractionation”, Int. Dairy J., 8, 243-250 (1998).
36.	Berot, S., Popineau, Y., Compoint, J. P., Blassel, C., and Chaufer, B., “Ultrafiltration to fractionate wheat polypeptides”, J. Chromatogr. B, 753, 29-35 (2001).
37.	Cho, C. W., Lee, D. Y., and Kim, C. W., “Concentration and purification of soluble pectin from mandarin peels using crossflow microfiltration system”, Carbohydr. Polym., 54, 21-26 (2003).
38.	Bhattacharjee, S., Bhattacharjee, C., and Datta, S., “Studies on the fractionation of β–lactoglobin from casein whey using ultrafiltration and ion-exchange membrane chromatography”, J. Membr. Sci., 275, 141-150 (2006).
39.	Martinez-Ferez, A., Guadix, A., and Guadix, E. M., “Recovery of caprine milk oligosaccharides with ceramic membranes”, J. Membr. Sci., 276, 23-30 (2006).
40.	Fell, C. J. D., Kim, K. J., Chem, V., Wiley, D. E., and Fane, A. G., “Factors Determining Flux and Rejection of Ultrafiltration Membranes”, Chem. Eng. Process., 27, 165 (1990).
41.	Fane, A. G., Fell, C. J. D., and Suki, A., “The Effect of pH and Ionic Environment on the Ultrafiltration of Protein Solutions with Retentive Membranes”, J. Membr. Sci., 16, 195 (1983).
42.	Gill, W. N., Wiley, D. E., Fell, C. J. D., and Fane, A. G., “Effect of Viscosity on Concentration Polarization in Ultrafiltration”, AIChE J., 34, 1563 (1988).
43.	Winzeler, H. B., and Belfort, G., “Enhanced performance for pressure-driven membrane processes: the argument for fluid instabilities”, J. Membr. Sci., 80, 35-47 (1993).
44.	Mulder, M., “Basic Principles of Membrane Technology”, Kluwer Academic Publishers, The Netherlands (1996).
45.	Nel, R. G., Oppenheim, S. F., and Rodgers, V. G. J., “Effect of solution properties on solute permeate flux in bovine serum albumin-IgG ultrafiltration”, Biotechnol. Prog., 10, 539-542 (1994).
46.	Bauser, H., Chmiel, H., Stroh, N., and Walitza, E., “Control of concentration polarization and fouling of membranes in medica, food and biotechnical application”, J. Membr. Sci., 27, 195-202 (1986).
47.	Mir, L., “Positive-charged ultrafiltration membrane for the seperation of cathodic/electro deposition Paint composition”, U. S. Patent., 4, 412 (1983).
48.	Chong, R., Jelen, P., and Wang, W., “The effect of cleaning agents on a noncellulosic ultrafiltration membrane”, Sep. Sci. Technol., 20, 393-402 (1985).
49.	Kim, B.S., and Chang, H. N., “Effects of periodic backflushing on ultrafiltration Performance”, Bioseparation , 2 , 9-23 (1991).
50.	Mercier-Bonin, M., Fonade, C., and Lafforgue-Delorme, C., “How slug Flow can enhance the ultrafiltration flux in mineral tubular membrane”, J. Membr. Sci., 128, 103-113 (1997).
51.	Cheng, T. W., Yeh, H. M., and Gau, C. T., “Enhancement of Permeate Flux by Gas Slugs for Crossflow Ultrafiltration in Tubular Membrane Module”, Sep. Sci. Technol., 33, 2295-2309 (1998).
52.	Cheng, T. W. and Pan, S. Y., “Recovery of Sizing Agent by Gas Sparging Ultrafiltration”, J. Chin. Inst. Chem. Engrs., 32, 431-436 (2001).
53.	Chong, B. F., and Nielsen, L. K., “Aerobic cultivation of Streptococcus zooepidemicus and the role of NADH oxidase”, Biochem. Eng. J., 16(2), 153-162 (2003).
54.	Bitter, T., Muir, H. M., “A modified uronic acid carbazole reaction”, Anal. Biochem., 4, 330-334 (1962).
55.	Bradford, M. M., “A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding”, Anal. Biochem., 72, 248-254 (1976).
56.	Yin, N., Yang, G., Zhong, Z., and Xing, W., “Separation of ammonium salts from coking wastewater with nanofiltration  combinedwith diafiltratio”, Desalination, 268(1), 233-237 (2011).
57.	Pisarcik, M., Bakos, D., Ceppan, M., “Non-Newtonia properties of hyaluronic acid aqueous solution”, Colloids Surf., 97, 197-202 (1995).
58.	van der Veen, M., Norde, W., and Stuart, M. C., “Electrostatic interactions in protein adsorption probed by comparing lysozyme and succinylated lysozyme”, Colloids Surf., B: Biointerfaces, 35(1), 33 (2004).
59.	Proctor, V. A., Cunningham, F. E., and Fung, D. Y. C., “The   chemistry of lysozyme and its use as a food preservative and a pharmaceutical”, Crit. Rev. Food. Sci. Nutr., 26(4), 359-395 (1988).
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信