淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-1607201315405100
中文論文名稱 線上拍賣詐騙行為之時序分析
英文論文名稱 Temporal Analysis on the Behavior of Online Auction Frauderster
校院名稱 淡江大學
系所名稱(中) 資訊管理學系碩士班
系所名稱(英) Department of Information Management
學年度 101
學期 2
出版年 102
研究生中文姓名 莊秉諺
研究生英文姓名 Bing-Yan Jhuang
學號 600631070
學位類別 碩士
語文別 中文
口試日期 2013-06-22
論文頁數 50頁
口試委員 指導教授-張昭憲
委員-趙景明
委員-陳穆臻
中文關鍵字 詐騙偵測  資料探勘  線上拍賣  電子商務 
英文關鍵字 Fraud Detection  Data Mining  Online Auction  Electronic Commerce 
學科別分類
中文摘要 近年來,線上拍賣的蓬勃發展有目共睹。線上拍賣交易兼具便利性與隱蔽性,且不受時間與空間的限制,對於交易量的提升有極大的幫助。然而,面對如此蓬勃的交易平台,許多詐騙者開始混雜其中,謀取不法利益。詐騙的方式不但多樣化,且經常隨著時間、環境改變,讓人難以防備。為了提供更安全的交易環境,本論文以行為分析為基礎,發展了一套線上拍賣詐騙早期預警方法。首先,我們針對詐騙者及正常者的交易記錄進行時序切割,再對其特徵值向量進行分群,以歸納出典型的交易者狀態。而後,針對資料集中所有的交易歷史進行狀態變遷切割,以產生與時序行為相關的分類樹偵測模型。此外,我們也利用狀態切割後的資料集,製作狀態標籤字串,並產生循序樣本庫,供使用者比對、監控可疑帳號。根據上述方法,本研究實作了一套簡單的線上拍賣交易輔助系統,讓使用者能在交易前觀察、分析交易對象的行為。為了驗證提出方法之有效性,本研究使用拍賣網站實際交易資料進行實驗。結果顯示本研究提出之方法確實有助於提升詐騙偵測之早期預警能力,並提升線上拍賣的交易安全。
英文摘要 In recent years, the rapid growth of online auctions were seen by everyone. The convenience, concealment and not constraints by time and space, is very helpful to raise the trading volume. However, many fraudersters start to obtain illegal benefits when facing such a vigorous trading platform. The ways of fraud are not only diverse but also changing by time and environment, difficult to avoid. In order to provide a more secure trading environment, our research development a online auction fraud early detection methods based on the analysis of behavior. First, we focus on segmentation of transaction history of fraudersters and normal users by trading events, and then proceed cluster analysis to conclude typical trader state. Second, in order to create the temporal behavior associated with the classification model we segment the transaction history by trader's state. Besides, we user the dataset that segment by trader's state to produce the state label string, and generate sequential pattern base to help the users monitor and compare the suspicious accounts. According to the methods above, our research implements a simple online auction trading decision support system. So the users can observe and analyze the behavior of account before trading. Last, to verify the effectiveness of our proposed method, we use actual transaction history on auction site to proceed experiments. The results show that the proposed method actually helps improve the early detection of auction fraud and promote the safety of online auction trading.
論文目次 目錄
目錄 III
表目錄 V
圖目錄 VI
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 3
1.3 研究目的 6
1.4 章節架構 7
第二章 相關技術與背景知識 8
2.1交易者行為變化分析 8
2.2群集分析(Cluster Analysis) 10
2.3分類技術(Classification) 10
2.4循序樣式(Sequential Pattern) 11
2.5字串編輯距離(String Edit Distance) 13
第三章 詐騙行為之時序分析與預警 15
3.1 詐騙偵測模型的建立 15
3.2 以交易狀態變遷為基礎的詐騙偵測方法 18
3.2.1詐騙偵測屬性集 18
3.2.2考慮狀態變遷的混合資料集 19
3.2.3詐騙偵測模型的建立與使用 24
3.3使用者狀態監控 24
3.3.1交易記錄轉換為狀態字串 24
3.3.2詐騙狀態監控與預警 26
第四章 系統實作 29
4.1 詐騙偵測與監控流程 29
4.2 詐騙偵測與監控系統 29
第五章 實驗結果 33
5.1實驗設定 33
5.2 效能驗證 35
第六章 結論及未來展望 38
參考文獻 40
附錄一、實驗結果分類矩陣 45
附錄二、Instances-Based Learning分類實驗結果 47
附錄三、GSP訓練樣式庫 50

圖目錄
圖1-1 台灣Yahoo拍賣二元名聲系統 3
圖1-2 詐騙偵測流程 4
圖2-1 詐騙者生命週期 9
圖2-1 詐騙偵測決策樹 11
圖3-1 多階段交易歷史切割方法 17
圖3-2 以交易事件作為切割點 21
圖3-3 以狀態改變之交易事件作為切割點 23
圖3-4 交易事件切割點 26
圖4-1 行為監控與預警流程圖 31
圖4-2 系統操作介面-詐騙偵測 31
圖4-3 系統操作介面-狀態監控 32
圖5-1 測試集資料集合 35
圖5-2 偵測成功率(Success Rate) 37
圖5-3 詐騙偵測精度(Precision) 37
圖5-4 詐騙召回率(Recall) 37

表目錄
表2-1 範例交易資料庫(Pei & Han, 2001) 12
表3-1 交易記錄屬性 19
表3-2 詐騙者與正常者之交易行為狀態分析 22
表3-3 詐騙者分群結果 22
表3-4 一般交易者分群結果 22
表3-5 詐騙者交易記錄 26
表3-6 詐騙樣式庫與交易者Ci之相似度 28
表3-7 正常者行為樣式庫與交易者Ci之相似度 28
表5-1 分類矩陣(Confusion Matrix) 34
表5-2 SCM及WCM對不同測試集的十次平均偵測結果 36
參考文獻 1. 洪儀玶,「具早期預警能力之線上拍賣詐騙偵測」,淡江大學資訊管理學系,碩士論文,民96。
2. 梁賀翔,「一套線上拍賣詐騙即時偵測系統」,淡江大學資訊管理學系,碩士論文,民99。
3. 劉祐宏,「線上拍賣詐騙偵測之屬性挑選與流程設計」,碩士論文,民101。
4. 曾憲雄、蔡秀滿等人,「資料探勘」,旗標出版,民97。
5. 張昭憲、周定賢,”以動態任務分配為基礎之分散式循序樣本探勘系統”,第十六屆國際資訊管理學術研討會論文集,民94。
6. Agrawal, R., & Srikant, R. (1995). Mining Sequential Patterns. Proceedings of International Conference on n Data Engineering. March 6-10, Taipei, Taiwan.
7. Agrawal, R., & Srikant, R. (1996). Mining Sequential Patterns: Generalizations and Performance improvements. Proc. 5th Int. Conf. Extending Database Technology, EDBT, Vol. 1057, (pp. 3-17).
8. Balingit, R., Trevathan, J., Lee, Y., & Read, W. (2009). A Software Tool for Collecting Data from Online Auctions. Proceedings the 6th International Conference on Information Technology: New Generations, (pp. 922-927).
9. Brown, D. E., and R. B. Oxford, “Data Mining Time Series with Applications to Crime Analysis,” Proceeding of the 2001 IEEE conference, pp. 1453-1458.
10. Chang, J., & Chang, W. (2009). An Early Fraud Detection Mechanism for Online Auctions Based on Phased Modeling. Proceeding the 2009 International Workshop on Mobile Systems E-commerce and Agent Technology (MSEAT 2009). December 3-5, Taipei, Taiwan.
11. Chang, W. a. (2010a). A Multiple-Phased Modeling Method to Identify Potential Fraudsters in Online Auctions. Proceedings of the 2nd International Conference on Computer Research and Development (ICCRD 2010). May 7-10, Kuala Lumpur, Malaysia.
12. Chang, W. a. (2010b). An Online Auction Fraud Screening Mechanism for Choosing Trading Partners. Proceeding of 2010 the 2nd International Conference on Education Technology and Computer (ICIEE 2010). June 22-24, Shanghai, China.
13. Chang, W., & Chang, J. (2011). A Novel Two-Stage Phased Modeling Framework for Early Fraud Detection in Online Auctions. Expert System with Applications, vol.38, no.9 , pp. 11244-11260.
14. Chang, W., & Chang, J. (2012, March). An Effective Early Fraud Detection Method for Online Auctions. Electronic Commerce Research and Applications (accepted) http://dx.doi.org/10.1016/j.elerap.2012.02.005 .
15. Chen, Y. L., S. S. Chen, and P. Y. Hsu, “Mining hybrid sequential patterns and sequential rules”, Information Systems, Vol. 27, No. 5, 2004, pp. 345-362.
16. Chau, D. H., & Faloutsos, C. (2005). Fraud Detection in Electronic Auction. Proceedings of European Web Mining Forum (EWMF 2005) at ECML/PKDD 2005. October 3-7.
17. Chua, C. E., & Wareham, J. (2004). Fighting Internet Auction Fraud: An Assessment and Proposal. Computer, vol. 37, no. 10 , pp. 31-37.
18. Dash, M., & Liu, H. (1997). Feature Selection for Classification . Intelligent Data Analysis, vol. 1 , pp. 131-151.
19. eBay Inc. (2011). 2011 Annual Report / Form 10-K. Retrieved June 1, 2012, from http://files.shareholder.com/downloads/ebay/1903545909x0xS1065088-12-6/1065088/filing.pdf
20. eBay Inc. (1995). How Feedback works. Retrieved Aug 11, 2012, from eBay: http://pages.ebay.com/help/feedback/howitworks.html
21. Gavish, B., & Tucci, C. (2008). Reducing Internet Auction Fraud. Communications of the ACM, vo. 51, no. 5 , pp. 89-97.
22. Goes, P., Tu, Y., & Tung, A. (2009). Online Auctions Hidden Metrics. Communications of the ACM, 52(4) , pp. 147-149.
23. Gualnik, Valerie , George Karypis ,“ Paralel tree-projection-based sequence mining algorithms ”,Parallel Computing ,30 (2004) 443-472.
24. Hall, M. A., & Smith, A. (1999). Feature Selection for Machine Learning: Comparing a Correlation-based Filter Approach to the Wrapper. Proceedings of the Twelfth International Florida Artificial Intelligence Research Society Conference.
25. Ishioka, T. (2005). An expansion of x-means for automatically determining the optimal number of clusters-progressive iterations of k-means and merging of the clusters. Proceedings of fourth IASTED international conference computational intelleigence. July 4-6, 2005, Calgery, Alberta, Canada.
26. Karahoca, A., Karahoca, D., & Kaya, O. (2008). Data Mining To Cluster Human Performance by Using Online Self Regulating Clustering Method. 1st WSEAS International Conference on Multivariate Analysis and its Application in Science and Engineering (MAASE '08). May 27-30, Istanbul, Turkey.
27. Kass, R., & Wasserman, L. (1995). A reference Bayesian test for nested hypotheses and its relationship to the Schwarz criterion. Journal of the American Statistical Association, vol.90 , pp. 928-934.
28. Kaszuba, T., Hupa, A., & Wierzbicki, A. (2010, Sept.-Oct.). Advanced Feedback Management for Internet Auction Reputation Systems. IEEE Internet Computing, vol. 14, no. 5 , pp. 31-37, doi:10.1109/MIC.2010.85.
29. Kauffman, R., & Wood, C. (2003). Running up the Bid: Detecting, Predicting, and Preventing Reserve Price Shilling in Online Auctions. Proceedings of the 5th international conference on Electronic Commerce (ICEC '03), (p. ).
30. Kobayashi, M., & Ito, T. (2007a). A transactional relationship visualization system in internet auctions. IEEE Computer Society , pp. 248-251.
31. Kobayashi, M., & Ito, T. (2008). A Transactional Relationship Visualization System in Internet Auctions. Electronic Commerce - Studies in Computational Intelligence, 110(2008) , pp. 87-99..
32. Kobayashi, M., & Ito, T. (2007b). An approach to implement a trading network visualization system for internet auctions. In Proceedings of the second international conference on knowledge, information and creativity support systems. Proceedings of the second international conference on knowledge, information and creativity support systems. November 5–7, Ishikawa Japan, .
33. Ku, Y., Chen, Y., & Chiu, C. (2007). A Proposed Data Mining Approach for Internet Auction Fraud Detection,. Intelligence and Security Informatics Lecture Notes in Computer Science, vol. 4430 , pp. 238-243,doi: 10.1007/978-3-540-71549-8_22.
34. Kumar, P., & Wasan, S. (2010, April). Comparative Analysis of k-mean Based Algorithms. I. International Journal of Computer Science and Network Security (JCSNS), vol.10, no. 4 , pp. 314-318.
35. Laxman, S., Sastry, P., & Unnikrishnan, K. (2007, Sep). Discovering Frequent Generalized Episodes When Events Persist for Different Durations. IEEE Transactions on knowledge and Data Engineering, 19 (9) , pp. 1188 - 1201.
36. MacQueen, J. (1967). Some Methods for Classification and Analysis of Multivariate Observations. Proceedings of 5th Berkley Symposium on Mathematical Statistics and Probability, Volume I: Statisticsp., (pp. 281–297).
37. Mannila, H., Toivonen, H., & Verkamo, A. I. (1997). Discovery of Frequent Episodes in Event Sequences. Data Mining and Knowledge Discovery , pp. 259–289.
38. National White Collar Crime Center (NW3C). (2011, January 1- December 31). 2010 Internet Crime Report. Retrieved Aug 2012, from Internet Crime Complaint Center: http://www.ic3.gov/media/annualreport/2010_IC3Report.pdf
39. National White Collar Crime Center(NW3C). (2009, January 1- December 31). 2008 Internet Crime Report. Retrieved Aug 11, 2012, from Internet Crime Complaint Center: http://www.ic3.gov/media/annualreport/2008_IC3Report.pdf
40. National White Collar Crime Center(NW3C). (2010, January 1- December 31). 2009 Internet Crime Report. Retrieved March 1, 2011, from Internet Crime Complaint Center: http://www.ic3.gov/media/annualreport/2009_IC3Report.pdf
41. National White Collar Crime Center(NW3C). (2012). 2011 Internet Crime Report. Retrieved Aug 2012, from Internet Crime Complaint Center: http://www.ic3.gov/media/annualreport/2011_IC3Report.pdf
42. Panda, M., & Patra, M. (2009, November). A Novel Classification via Clustering Method for Anomaly Based Network Intrusion Detection System. International Journal of Recent Trends in Engineering, vol.2, no.1 .
43. Pandit, S., Chau, D., Wang, S., & Faloutsos, C. (2007). Netprobe: a fast and scalable system for fraud detection in online auction networks. WWW '07 Proceedings of the 16th international conference on World Wide Web (pp. 201-210). New York, NY, US: ACM.
44. Pei, J., J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu,“PrefixSpan: Mining sequential patterns efficiently by prefix-projected pattern growth”,In Proc. Int. Conf. Data Engineering (ICDE ’01), Heidelberg, Germany, April 2001, pp.215-224.
45. Pei, J., J. Han and W. Wang, "Mining Sequential Patterns with Constraints in Large Databases," CIKM'02, Nov. 4-9, 2002, McLean, Virginia, USA.
46. Pelleg, D., & Moore, A. (2000). X-means: Extending K-means with Efficient Estimation of the Number of Clusters. Proceedings of the 17th International Conference on Machine Learning (pp. 727-734). San Francisco, CA: P. Langley Ed. Morgan Kaufmann Publishers.
47. Peng, H., Long, F., & Ding, C. (2005). Feature Selection Based on Mutual Information: Criteria of Max-Dependency, Max-Relevance, and Min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.27, no. 8 , pp. 1226-1238.
48. Quinlan, J. R. (1993). C4.5 Programs for machine learning. San Mateo, CA: Morgan Kaufmann.
49. Sinapov, J. a. (2008). A. Detecting the Functional Similarities between Tools Using a Hierarchical Representation of Outcomes,. Proceedings of Development and Learning (ICDL 2008) 7th IEEE International Conference, (pp. 91-96). Aug 9-12, Monterey, CA.
50. Trevathan, J., & Read, W. (2007). Detecting Collusive Shill Bidding. Proceeding of International Conference on Information Technology (ITNG'07), (pp. 799-808). April 2-4, Las Vegas, Nevada, USA.
51. Vaucher, S., Sahraoui, H., & Vaucher, J. (2008). Discovering New Change Patterns in Object-Oriented Systems. Reverse Engineering, 2008. WCRE '08. 15th Working Conference, (pp. 37-41). Oct 15-18, Montreal, QC , Canada.
52. Wang, J., & Chiu, C. (2005). Detecting OnlineAuction Inflated-Reputation Behaviors using Social Network Analysis. Proceedings of NAACSOS Conference 2005, June 26-28.
53. Witten, I., & Frank, E. (2005). Data mining: practical machine learning tools and techniques. Mogan Kaufmann.
54. Xing, Z., & Stroulia, E. (2004). Understanding class evolution in object-oriented software. Proceeding of the 12th International Workshop on Program Comprehension, volume 00 (p. 34). Los Alamitos, CA, USA,: IEEE Computer Society.
55. Yu, L., & Liu, H. (2004). Efficient Feature Selection via Analysis of Relevance and Redundancy. Journal of Machine Learning Research, vol.5 , pp. 1205-1224.
56. Zhong, N., & Dong, J. (2001). Using Rough Sets with Heuristics for Feature Selection. Journal of Intelligent Information Systems, vol.16 , pp. 199-214.
57. Zaki, M. J., “SPADE: An efficient algorithm for mining frequent sequences”, Machine Learning, vol. 1, no. 1~2, 2001, pp. 31-60.
58. VI Levenshtein. (1965). Binary Codes Capable of Correcting Deletions, Insertions, and Reversals. Soviet Physics-Doklady, vol.10 no.8 , pp. 707-710.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2018-07-22公開。
  • 同意授權瀏覽/列印電子全文服務,於2018-07-22起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信