淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1607200819574000
中文論文名稱 供應鏈協同運輸管理之出貨預測與貨運需求預測模式研究
英文論文名稱 Shipment Forecasting and Freight Demand Forecasting Models for Collaborative Transportation Management in Supply Chain
校院名稱 淡江大學
系所名稱(中) 運輸管理學系碩士班
系所名稱(英) Department of Transportation Management
學年度 96
學期 2
出版年 97
研究生中文姓名 李書賢
研究生英文姓名 Shu-Hsien Li
學號 695660414
學位類別 碩士
語文別 中文
口試日期 2008-06-20
論文頁數 112頁
口試委員 指導教授-溫裕弘
委員-賈凱傑
委員-邱裕鈞
中文關鍵字 供應鏈協同;協同運輸管理;出貨預測;貨運需求預測;灰色預測模式 
英文關鍵字 Supply Chain Collaboration;Collaborative Transportation Management;Shipment Forecasting;Freight Demand Forecasting;Grey Forecasting Models 
學科別分類 學科別社會科學管理學
中文摘要 因應全球市場環境的競爭壓力,為避免長鞭效應所造成的供應鏈成本浪費,企業開始重視所謂供應鏈協同。供應鏈協同目前最受矚目的是由VICS所發展之「協同規劃、預測與補貨系統(Collaborative Planning Forecasting Replenishment, CPFR」,並延伸物流運輸環節提出「協同運輸管理(Collaborative Transportation Management, CTM)」。CTM旨在解決供應鏈運輸程序無效率為目的,在CTM架構下,出貨預測與貨運需求預測係整體業務流程架構之關鍵核心基礎,物流運送業者推估未來出貨量與貨運需求動態波動與發展態勢,進行運輸網路規劃、路線排程、車隊規劃等涵蓋戰略規劃與作業規劃之基礎。然而過去相關文獻尚未從預測模式與數學理論模式探討協同運輸管理,故發展一套協同運輸管理架構下之出貨預測與貨運需求預測模式以提供供應鏈實務上之應用實為一項重要課題。
本研究整合一系列灰色預測模式,包括灰色數列預測、灰色多元系統預測與灰色異常值預測,發展一系列CTM架構下之出貨預測與貨運需求預測模式。本研究在出貨預測模式上,因應不同供應鏈協同機制,分為數列預測與多元系統預測,並將灰數(Grey Number)的概念引入預測模式,分析協同運輸管理架構之不同程度資訊共享下,物流運送業者進行出貨預測之理論模式基礎。貨運需求預測分別建構數列預測與貨運需求加總模式,貨運需求加總模式係以出貨預測為基礎,分別建立各廠商出貨預測模式,並將所得之預測結果進行加總,計算物流運送業者未來總體貨運需求。進一步本研究因應協同運輸管理異常處理機制,以灰色異常值預測為基礎,發展出貨異常時點預測模式,以預測未來異常可能發生時點,提供物流運送業者提前掌握異常時點之決策基礎。藉由實證個案分析,本研究所建構之出貨預測與貨運需求模式預測能力較多元迴歸模式、時間序列模式與類神經網路模式佳;而協同情境分析在資訊共享程度越高下,物流運送業者對於未來出貨量幅值範圍掌握能力越佳,引領出協同運輸管理之重要性。而異常值發生時點預測上,本研究所建構之預測模式能有效掌握未來可能發生異常時點。
本研究成果不僅在學術上為供應鏈協同運輸管理之出貨預測與貨運需求預測模式相關研究之參考,所發展之模式亦可提供CTM系統預測模組開發之模式基礎。
英文摘要 Under the keenly competitive environment and avoid to waste cost by bullwhip effect, the enterprises beginning to join the supply chain collaboration. The recent collaborative initiative, termed Collaborative Planning, Forecasting, and Replenishment (CPFR®  ), has begun to gain wide acclaim for the benefits it delivers. The new evolution of CPFR is to extend the core elements to include the transportation component, termed Collaborative Transportation Management (CTM). CTM is a holistic process that improve the operating performance of all parties involved in the relationship by eliminating inefficiencies in the transportation component of the supply chain through collaboration. CTM shipment forecasting and freight demand forecasting are critical foundation in the CTM business process, that are prerequisite to carriers’ tactical and operational planning, such as network planning, routing, scheduling, and fleet planning and assignment. However, few literatures have been paid to the forecasting modeling for CTM. This study attempts to develop a series of forecasting models for shipment and freight demand forecasting under the CTM framework.
This study extends and improves grey forecasting theory and constructs hybrid models to develop a series of shipment forecasting and freight demand forecasting models for CTM. In shipment forecasting, consider different collaborative frameworks, both grey systematic forecasting and grey time-series forecasting are developed. This study first attempts to integrate the grey number in forecasting models, in order to analyze shipment forecasting under partical information sharing in CTM framework. Furthermore, an aggregated freight demand forecasting model was also developed. This study then use grey calamity forecasting model to predicting the shipment exceptions. A case study with an IC (Integrated Circuit) supply chain and other relevant data was provided to illustrate the results. These models are shown to be more accurate prediction results than multiple regression, ARIMA and neural network models, as well as shipment exception forecasting. Finally, the results indicate that the more information sharing under CTM, the carriers can predict more accurately.
This study demonstrates how the proposed forecasting models might be applied to the CTM system and provides as the model theoretical basis for the forecasting module developed for the CTM.
論文目次 中文摘要 i
英文摘要 ii
誌謝 iv
目錄 vi
表目錄 viii
圖目錄 ix
符號說明 xi

第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 3
1.3 研究範圍 4
1.4 研究流程與架構 5
第二章 文獻回顧 8
2.1 供應鏈協同管理 8
2.2 協同運輸管理 9
2.3 供應鏈預測模式 14
2.4 供應鏈資訊分享 19
2.5 灰色預測 22
2.6 綜合評析 25
第三章 協同運輸管理之出貨預測與貨運需求預測模式 27
3.1 灰色系統與協同供應鏈管理協同程度 29
3.2 灰色預測理論、灰數與灰色統計 32
3.2.1 灰數與灰色統計 32
3.3 出貨預測模式 35
3.3.1 出貨灰色數列預測模式 35
3.3.2 馬爾可夫鏈殘差修正模式與灰色包絡模式 37
3.3.3 滾動灰色預測模式 39
3.3.4 出貨灰色多元系統預測模式 42
3.4 貨運需求預測模式 49
3.4.1 貨運需求灰色數列預測模式 49
3.4.2 貨運需求加總模式 51
3.5 灰色異常值預測模式 53
3.6 小結 57
第四章 個案分析 58
4.1 出貨預測之個案分析 58
4.1.1 出貨GM(1,1)數列預測 60
4.1.2 協同運輸管理架構之出貨GM(1,1)數列預測 68
4.1.3 出貨GM(1,N)灰色多元系統預測 72
4.1.4 協同運輸管理架構之出貨GM(1,3)多元系統預測 79
4.2 貨運需求預測個案分析 90
4.2.1 貨運需求GM(1,1)數列預測 90
4.2.2 貨運需求加總模式 97
4.3 出貨異常值預測個案分析 100
第五章 結論與建議 104
5.1 結論 104
5.1.1 出貨預測 104
5.1.2 貨運需求預測 105
5.1.3 出貨異常值預測 106
5.2 建議 107
參考文獻 108
表目錄
表2.1 供應鏈協同與協同運輸管理文獻回顧整理 13
表2.2 供應鏈預測文獻回顧整理 18
表2.3 供應鏈資訊分享文獻回顧整理 21
表2.4 灰預測文獻回顧整理 24
表3.1 精度檢驗綜合評定等級表 37
表4.1 IC製造出貨預測值與誤差(k=12) 62
表4.2 出貨數列預測精度檢驗綜合評定等級表 62
表4.3 滾動GM(1,1)、ARIMA與多元線性迴歸趨勢預測比較 64
表4.4 IC製造出貨預測值與包絡曲線 65
表4.5 灰色多元系統解釋變數之關聯度比較 72
表4.6 IC製造出貨量、晶圓代工出貨量與IC相關產品銷售總量實際值 74
表4.7 IC製造出貨多元系統預測值與誤差(k=12) 75
表4.8 各多元系統預測模式預測結果 75
表4.9 類神經網路訓練模式相關參數設定表 77
表4.10 GM(1,3)、多元線性迴歸與類神經網路預測結果比較 77
表4.11 解釋變數實際值與上下包絡值 80
表4.12 IC相關產品銷售總量與晶圓出貨量預測值與上下包絡值 80
表4.13 IC製造出貨量實際值、預測值與上下包絡值 85
表4.14 不同資訊共享程度下IC製造出貨預測上下包絡值 88
表4.15 T貨運公司貨運需求預測值與誤差(k=9) 92
表4.16 貨運需求預測精度檢驗綜合評定等級表 92
表4.17 貨運需求上下包絡值 93
表4.18 Improved GM(1,1)、ARIMA與線性迴歸趨勢預測結果比較 94
表4.19 貨運需求不同產業出貨量預測 99

圖目錄
圖1.1 研究流程圖 6
圖1.2 研究架構圖 7
圖2.1 CTM業務流程整合架構 10
圖2.2 (續) CTM業務流程整合架構 11
圖2.3 混合預測模型架構圖 14
圖2.4 本研究於供應鏈架構中之定位 26
圖3.1 協同運輸管理預測模式流程圖 28
圖3.2 協同程度與CTM價值提升關係圖 30
圖3.3 白化權函數三種型態 33
圖3.4 出貨滾動灰色預測模式構建程序 41
圖3.5 出貨白化權函數 46
圖3.6 出貨預測模式流程架構圖 48
圖3.7 貨運需求滾動灰色預測模式構建程序 50
圖3.8 貨運需求加總模式建構程序 51
圖3.9 貨運需求預測模式流程架構圖 52
圖3.10 出貨異常值預測模式流程架構圖 56
圖4.1 IC製造產業供應鏈架構圖 59
圖4.2 Improved GM(1,1)、線性迴歸趨勢預測與ARIMA模式預測比較 66
圖4.3 Improved GM(1,1)預測值與上下包絡曲線 67
圖4.4 協同資訊共享概念圖 69
圖4.5(a) 影響出貨量事件之白化權函數 70
圖4.5(b) 影響出貨量事件之白化權函數 70
圖4.6 GM(1,3)與多元線性迴歸、類神經網路預測結果比較 78
圖4.7 晶圓出貨實際值與上下包絡曲線 81
圖4.8 IC相關產業產品銷售總量實際值與上下包絡曲線 81
圖4.9 晶圓出貨量白化權函數 83
圖4.10 IC相關產品銷售總量白化權函數 83
圖4.11 IC製造出貨預測與上下包絡預測比較 86
圖4.12 不同資訊共享程度下IC製造出貨預測值與上下包絡預測值 89
圖4.13 貨運需求Improved GM(1,1)預測值與上下包絡曲線 95
圖4.14 Improved GM(1,1)、ARIMA與線性迴歸趨勢預測結果比較 96
圖4.15 貨運需求加總情境假設 98
圖4.16 IC製造出貨歷史資料與上下限門檻值 101
圖4.17 上異常值預測時點分布 103
圖4.18 下異常值預測時點分布 103
參考文獻 1. 公開資訊觀測站,台灣證卷交易所。http://newmops.tse.com.tw/
2. 台灣地區資訊電子工業生產統計月報,經濟部統計處。
3. 鄧聚龍,灰色系統基本方法,華中理工大學,武漢,中國,1985年。
4. 鄧聚龍,灰色預測與決策,華中理工大學,武漢,中國,1986年。
5. 鄧聚龍、郭洪,灰預測原理與應用,全華科技出版,1996年。
6. 吳綺芳 (2006),「整合類神經網路與灰色理論之預測模型設計」,元智大學工業工程與管理學系碩士論文,民國95年。
7. 吳慧玲 (2002),「台灣零售業應用協同規劃預測補貨模式之可行性研究-以烘焙與百貨量販業為例」,淡江大學資訊管理學系碩士論文,民國91年。
8. 邱坤朋 (2005),「協同計劃、預測、補貨(CPFR)導入建材業之可行性及實施策略」,國立東華大學企業管理研究所碩士論文,民國94年。
9. 邱妍菁 (2006),「高速公路短期交通資訊之灰預測模型」,逢甲大學交通工程與管理學系碩士論文,民國95年。
10. 許仲傑 (2005),「工具機業協同預測模式之研究」,東海大學工業工程與經營資訊學系碩士論文,民國94年。
11. 陳寬茂 (2005),「CPFR流程下之訂單預測方法」,國立政治大學資訊管理研究所碩士論文,民國94年。
12. 曾永勝 (2006),「CPFR銷售預測模式之探討」,國立政治大學資訊管理研究所碩士論文,民國95年。
13. 黃蘭禎 (2004),「CPFR流程下之銷售預測方法-混合預測模型」,國立政治大學資訊管理研究所碩士論文,民國93年。
14. 錢炳全、李順益、王學亮 (2003),「基於灰色理論之短期銷售預測方法」,資訊管理展望期刊,第5卷,第1期,頁1-18,民國92年3月。
15. 薛旭志 (2004),「3C零售業導入CPFR模式之研究」,國立高雄第一科技大學行銷與流通管理系碩士論文,民國93年。
16. Akay, D. and Atak, M., “Grey Prediction with Rolling Mechanism for Electricity Demand Forecasting of Turkey,” Energy, Vol. 32, pp.1670-1675, 2007.
17. Aviv, Y., “The Effect of Collaborative Forecasting on Supply Chain Performance,” Management Science, Vol. 47, No.10, pp.1326-1343, 2001.
18. Aviv, Y., “Gaining Benefits From Joint Forecasting and Replenishment Processes:The Case of Auto-Correlated Demand,” Manufacturing & Service Operations Management, Vol. 4, No.1, pp.55-74, 2002.
19. Aviv, Y., “On The Benefits of Collaborative Forecasting Partnerships between Retailers and Manufacturers,” Management Science, Vol. 53, No.5, pp.777-794, 2007.
20. Barratt, M. and Oliveira, A., “Exploring the Experiences of Collaborative Planning Initiatives,” International Journal of Physical Distribution & Logistics Management, Vol. 31, No.4, pp.266-289, 2001.
21. Browning, B. and White, A., “Collaborative Transportation Management,” Logility, Inc. White paper, (2000). http://www.vics.org

22. Chang, P. C., Wang, Y. W., and Tasi, C. Y., “Evolving Neural Network for Printed Circuit Board Sales Forecasting,” Expert System with Applications, Vol. 29, pp.83-92, 2005.
23. Chang, S. C., Lai, H. C., and Yu, H. C., “A Variable P Value Rolling Grey Forecasting Model for Taiwan Semiconductor Industry Production,” Technological Forecasting & Social Change, Vol. 72, pp.623-640, 2005.
24. Chen, M. C., Yang, T., and Li, H. C., “Evaluating the Supply Chain Performance of IT-Based Inter-Enterprise Collaboration,” Information & Management, Vol. 44, pp.524-534, 2007.
25. Chu, W. H. J., and Lee, C. C., “Strategic Information Sharing in A Supply Chain,” European Journal of Operational Research, Vol. 174, pp.1567-1579, 2006.
26. Deng, J. L., “Introduction to Grey System Theory,” J. Grey Syst. 1, Vol. 1, pp.1-24, 1989.
27. Esper, T. L. and Williams, L. R., “The Value of Collaborative Transportation Management (CTM):Its Relationship to CPFR and Information Technology,” Transportation Journal, Vol. 42, No.4, pp.55-65, 2003.
28. Feng, C. M., Lin, Y, C., and Yuan, C. Y., “The System Framework for Evaluating the Effect of Collaborative Transportation Management on Supply Chain,” Journal of the Eastern Asia Society for Transportation Studies, Vol. 6, pp.2837-2851, 2005.
29. Fiala, P., “Information Sharing in Supply Chain,” Omega-The International Journal of Management Science, Vol. 33, pp.419-423, 2005.
30. Gavirneni, S., “Price Fluctuation, Information Sharing, and Supply Chain Performance,” European Journal of Operational Research, Vol. 174, pp.1651-1663, 2006.
31. Holmstrom, J., Kary, F., Riikka, K., and Juha, S., “Collaborative Planning Forecasting and Replenishment: New Solutions Needed for Mass Collaborative,” Supply Chain Management, Vol. 7, Iss.3/4, pp.136-145, 2002.
32. Holweg, M., Disney, S., Holmstrom, J., and Smaros, J., “Supply Chain Collaborative:Making Sense of the Strategy Continuum,” European Management Journal, Vol. 23, pp.170-181, 2005.
33. Hsu, C. C. and Chen, C. Y., “Applications of Improved Grey Prediction Model for Power Demand Forecasting,” Energy Conversion and Management, Vol. 44, pp.2241-2249, 2003.
34. Hsu, C. I. and Wen, Y. H., “Improved Grey Prediction Models for the Trans-Pacific Air Passenger Market,” Transportation Planning and Technology, Vol. 22, pp.87-107, 1998.
35. Hsu, C. I. and Wen, Y. H., “Application of Grey Theory and Multiobjective Programming Towards Airline Network Design,” European Journal of Operational Research, Vol. 127, pp.44-68, 2000.
36. Hsu, L. C., “Applying the Grey Prediction Model to the Global Integrated Circuit Industry,” Technological Forecasting & Social Change, Vol. 70, pp.563-574, 2003.
37. Huang, M., He, Y., and Cen, H. Y., “Predictive Analysis on Electric-Power Supply and Demand in China,” Renewable Energy, Vol. 32, pp.1165-1174, 2007.
38. Jiang, Y. Q., Yao, Y., Deng, S. M., and Ma, Z. L., “Applying Grey Forecasting to Predicting the Operating Energy Performance of Air Cooled Water Chillers,” International Journal of Refrigeration, Vol. 27, pp.385-392, 2004.
39. Karolefsky, J., “Collaborating Across the Supply Chain,” Collaboration in Practice: A Supplement to Food Logistics and Retailtech Magazines, pp.24-34, 2001.
40. Kung, L. M. and Yu, S. W., “Prediction of Index Futures Returns and the Analysis of Financial Spillovers-A Comparison between GARCH and the Grey Theorem,” European Journal of Operational Research, Vol. 186, pp.1184-1200, 2008.
41. Lin, C. T. and Yang, S. Y., “Forecast of the Output Value of Taiwan's Opto-Electronics Industry Using the Grey Forecasting Model,” Technological Forecasting & Social Change, Vol. 70, pp.177-186, 2003.
42. Mason, R., Lalwani, C., and Boughton, R., “Combining Vertical and Horizontal Collaborative for Transport Optimisation,” Supply Chain Management: An International Journal, Vol. 12, No.3, pp.187-199, 2007.
43. McCarthy, T. M. and Golicic, S. L., “Implementing Collaborative Forecasting to Improve Supply Chain Performance,” International Journal of Physical Distribution and Logistics Management, Vol. 32, No. 6, pp.431-454, 2002.
44. Meredith, J. and Akinc, U., “Characterizing and Structuring a New Make-To-Forecast Production Strategy,” Journal of Operations Management, Vol. 25, pp.623-642, 2007.
45. Mula, J., Poler, R., Garcia, J. P., and Lario, F. C., “Models for Production Planning under Uncertainty,” International Journal of Production Economics, Vol. 103, pp.271-285, 2006.
46. Ouyang, Y., “The Effect of Information Sharing on Supply Chain Stability and the Bullwhip Effect,” European Journal of Operational Research, Vol. 182, pp.1107-1121, 2007.
47. Sohn, S. Y. and Lim, M., “The Effect of Forecasting and Information Sharing in SCM for Multi-Generation Products,” European Journal of Operational Research, Vol. 186, pp.276-287, 2008.
48. Tyan, J. C. and Wang, F. K., “Applying Collaborative Transportation Management Models in Global Third-Party Logistics,” International Journal of Computer Integrated Manufacturing, Vol. 16, No.4-5, pp.283-291, 2003.
49. Tyan, J. C., Wang, F. K., and Du, T. C., “An Evaluation of Freight Consolidation Polices in Global Third Party Logistics,” Omega-The International Journal of Management Science, Vol. 31, pp.55-62, 2003.
50. VICS, CTM Sub-Committee of the Voluntary Commerce Standards, (2004), Collaborative Transportation Management white paper, Version 1.0, Voluntary Interindustry Commerce Standards Association. http://www.vics.org

51. Wang, C. H. and Hsu, L. C., “Using Genetic Algorithms Grey Theory to Forecast High Technology Industrial Output,” Applied Mathematics and Computation, Vol. 195, pp.256-263, 2005.
52. Yao, A. W. L., Chi, S. C., and Chen, J. H., “An Improved Grey-Based Approach for Electricity Demand Forecasting,” Electric Power System Research, Vol.67, pp.217-224, 2003.
53. Zhang, C., Tan, G. W., Robb, D. J., and Zheng, X., “Sharing Shipment Quantity Information in the Supply Chain,” Omega-The International Journal of Management Science, Vol. 34, pp.427-438, 2006.
54. Zhao, X., Xie, J., and Leung, J., “The Impact of Forecasting Model Selection on the Value of Information Sharing in a Supply Chain,” European Journal of Operational Research, Vol. 142, pp.321-344, 2002.
55. Zhou, P., Ang, B. W., and Poh, K. L., “A Trigonometric Grey Prediction Approach to Forecasting Electricity Demand,” Energy, Vol. 31, pp.2839-2847. 2006.
56. Zhou, H. and Benton Jr., W. C., “Supply Chain Practice and Information Sharing,” Journal of Operations Management, Vol. 25, pp.1348-1365, 2007.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2009-07-18公開。
  • 同意授權瀏覽/列印電子全文服務,於2009-07-18起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信