淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1607200810375900
中文論文名稱 球對稱膜宇宙學
英文論文名稱 Cosmology of spherical branes
校院名稱 淡江大學
系所名稱(中) 物理學系碩士班
系所名稱(英) Department of Physics
學年度 96
學期 2
出版年 97
研究生中文姓名 陳俊宏
研究生英文姓名 Chun-Hung Chen
學號 694180331
學位類別 碩士
語文別 英文
口試日期 2008-06-26
論文頁數 40頁
口試委員 指導教授-曹慶堂
委員-秦一男
委員-吳建宏
中文關鍵字 球對稱  膜宇宙學  宇宙學 
英文關鍵字 Cosmology  Spherical  Brane 
學科別分類 學科別自然科學物理
中文摘要 這篇論文主要的想法是把我們所存在的三維空間,假設成被埋藏在五維球對稱時空中的三維球膜,我們利用外部區率[extrinsic curvature]和 Israel junction condition得到球膜的運動方程式。我們探討了物質主宰和輻射主宰兩種不同的流體之後,發現宇宙演化的方式和宇宙常數有非常大的關係,根據不同的宇宙常數我們把宇宙的演化分成四類。接著我們把宇宙常數假設成高維時空中的位能來探討球膜演化的方式,最後我們簡述了兩層球膜的狀況。
英文摘要 The main idea of this thesis is to image the three-dimensional space as a three-brane embedded in a five-dimensional spherical symmetry spacetime. We get the equation of motion from the extrinsic curvature and Israel junction condition. After discussing the equation of motion in dust case and radiation dominated case, we know that the cosmological constants dominate the behavior of our model. According to different pair of cosmological constants, we divide the evolution of our model into four types. We suppose the cosmological constant as the potential energy in five-dimensional spacetime to analyze the evolution of our model. Finally, we give a suggestion about two branes system.
論文目次 Chapter 1
Introduction

1.1Extra dimensions…………………………………………………1
1.2Spherical brane …………………………………………………4

Chapter 2
The equation of motion of a (3+1)-dimensional spherical brane

2.1 5-dimensional Schwarzschild-like solution………………6
2.2 Extrinsic curvature……………………………………………8
2.3 Equation of motion …………………………………………12

Chapter 3
The evolution of the (3+1)-dimensional spherical brane

3.1 w=0, dust case…………………………………………………16
3.2 w=1/3, radiation dominated case …………………………28
3.3 Summary …………………………………………………………31


Chapter 4
Discussion

4.1 Cosmological constants………………………………………34
4.2 Two 3-branes embed in five-dimensional space time …37

Reference


Figures and Tables
Figure 1.1: A three brane embedded in a five dimensional spacetime….3
Figure 1.2: A three shell brane embedded in a five dimensional spherical
symmetry spacetime…………………...…………………4
Figure 3.1: The evolution when the cosmological constants are zero on
the both sides of the brane in dust case……………………17
Table 3.1: Some example with specific values of Λ………………...18
Figure 3.2: The evolution before the maximum radius as ± Λ being 64 27
on both sides in dust case……..................................19
Figure 3.3: The acceleration of Λ+=Λ− in dust case……….…..………..20
Figure 3.4: Effective potential of Λ+=Λ− in dust case………………….20
Figure 3.5: The figures of Λ+=Λ- and Λ<0 in dust case……………..21
Figure 3.6: The figures of | | | | + − Λ >> Λ and (Λ Λ ) = (+ +) (+ −) + − , , , , in dust
case..…………………………………………………..23
Figure 3.7: The eff V when Λ = 10 + , | | | | + − Λ >> Λ and (Λ Λ ) = (+ +) (+ −) + − , , , ,
in dust case.………………………………………………..23
Figure 3.8: The figures of | | | | + − Λ >> Λ and (Λ Λ ) = (− +) (− −) + − , , , , in dust
case.………………………………………………………..24
Figure 3.9: The eff V whenΛ = 10 + , | | | | + − Λ >> Λ and (Λ Λ ) = (− +) (− −) + − , , , ,
in dust case………………………………………………...25
Figure 3.10: The figures of | | | | + − Λ << Λ and (Λ Λ ) = (+ +) (− +) + − , , , , in
dust case.……………………………….…………………..26
Figure 3.11: The figures of | | | | + − Λ << Λ and (Λ Λ ) = (+ −) (− −) + − , , , , in dust
case.………..……………………………………………..27
Figure 3.12: Three different Λ± of radiation dominated case………..…29
Figure 3.13: The velocity of radiation dominated case………...………30
Figure 3.14: Four types of the evolution in our models…………..……31
Figure 3.15: The different universe types with different pair of the
cosmological constants in the dust case.…………………32
Figure 3.16: The different universe types with different pair of the
cosmological constants in the radiation dominated case…33
Figure 4.1: The evolutions of our model with the assuming on
cosmological constants.……………………………………36
Figure 4.2: Two three shell branes embedded in a five dimensional
spherical symmetry spacetime……………………………..37
參考文獻 [1] T. Bringmann, M. Eriksson, and M. Gustafsson, Physical Review D 68, 063516 (2003).

[2] Jr-Wei Tsai, Master.D. thesis (2003).

[3] E. Papantonopoulos, arXiv:hep-th/0202044 (2002).

[4] D. Langlois, arXiv:hep-th/0209261 (2002).

[5] A. Wang, R-G Cai, and N.O. Santos, arXiv: astro-ph/0607371 (2006).

[6] M. Gogberashvili, arXiv:hep-ph/9812365 (1998).

[7] R. C. Myers and M. J. Perry, Annals of Physics 172, 304-347 (1986).

[8] E. Poisson, A Relativist’s Toolkit-The Mathematics of Black-Hole Mechanics, Cambridge University Press.

[9] V. A. Berezin and V. A. Kuzim, Physical Review D36, 2919 (1987).
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2008-07-17公開。
  • 同意授權瀏覽/列印電子全文服務,於2008-07-17起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信