§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1607200500474000
DOI 10.6846/TKU.2005.00319
論文名稱(中文) 聚二甲基矽氧烷鍍金之漣漪形成機制與型態
論文名稱(英文) Formation mechanism and topography of ripple of gold thin coatings deposited on Polydimethylsiloxane
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 機械與機電工程學系碩士班
系所名稱(英文) Department of Mechanical and Electro-Mechanical Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 93
學期 2
出版年 94
研究生(中文) 李育修
研究生(英文) YU-XIU LI
學號 692340366
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2005-06-17
論文頁數 150頁
口試委員 指導教授 - 林清彬(cblin@mail.tku.edu.tw)
委員 - 林仁輝(jflin@mail.ncku.edu.tw)
委員 - 蔡哲正(cjtsai@mse.nthu.tku.edu)
委員 - 林清彬(cblin@mail.tku.edu.tw)
關鍵字(中) 聚二甲基矽氧烷
回復應力
鍍金
漣漪結構
楊氏模數
關鍵字(英) Polydimethylsiloxane
Tensile stress release
Gold coating
Ripple
Young's modulus
第三語言關鍵字
學科別分類
中文摘要
本研究已成功發展一種大面積漣漪結構的製造方法,該製程係將聚二甲基矽氧烷(PDMS)薄膜,於伸長量5%之固定應變下濺鍍一層鍍金層,隨後將PDMS薄膜依單軸向釋放應力,使拉伸狀態下的PDMS薄膜受到回復應力,而在PDMS表面產生漣漪結構。經原子力顯微鏡量測後,漣漪結構最小波長與振幅分別為508nm及37.5nm,且平均表面粗糙度(Ra)均為5nm以下。本研究並探討PDMS薄膜的楊氏模數、鍍金時間與薄膜厚度對漣漪結構之波長、振幅與缺陷影響。實驗結果中,漣漪結構之波長與振幅隨楊氏模數增加而減少;隨鍍鍍金時間增加而上升;隨PDMS薄膜厚度增加而上升,但較厚的鍍金層易導致鍍金層從PDMS表面撕裂或剝離。在大面積漣漪結構形成過程中,衍發出排向表面裂縫、類差排及裂縫三種不同缺陷型態,其缺陷之尺寸隨漣漪結構波長增加而上升。另外,於PDMS薄膜未施加拉伸應變下濺鍍金鍍層,隨後給予拉伸應力,可由PDMS薄膜表面裂縫邊緣觀察到漣漪結構的初始型態。
英文摘要
The study has been developed successfully a process to manufacture the ripple structure with large area. The polydimethylsiloxane(PDMS) films were fixed under 5% tensile strain that were coated with gold, and then released the tensile strain. The ripple structure was formed on the surface of the PDMS film. By means of atomic force microscope observing, the minimum dimension of wavelength and the amplitude on the ripple structure with 508nm and 37.5nm, respectively, and the mean surface roughness(Ra) was all under 5nm. This study also probed into the effect of Young's modulus of PDMS, time of sputtering deposition gold and thickness of PDMS’s film on the wavelength, the amplitude and defect of the ripple structure. The wavelength and amplitude of the ripple structure decreased with increasing Young's modulus, increased with increasing time of sputtering deposition and thickness of PDMS film. But the thick gold film debonded and departed easily from the surface of PDMS film. During the history of the ripple structure was formed, three types of the defect easily happened in the ripple structure. (1) oriented surface crack; (2) dislocation-like; (3) crack, which the dimension of defect increased with increasing the wavelength of ripple structure.
第三語言摘要
論文目次
總目錄…………………………………………………………………I
圖目錄…………………………………………………………………III 
表目錄…………………………………………………………………XIII
符號說明………………………………………………………………XIV
壹、導論………………………………………………………………1
1-1 前言………………………………………………………………1
1-2 文獻回顧…………………………………………………………2
        1-2.1 漣漪的製造方法與質………………………………3
1-2.2 飛秒雷射光熔損………………………………………………5
1-2.3 熱應力產生波紋………………………………………………7
1-2.4 應力拉伸法……………………………………………………8
1-2.5 離子束濺鍍法…………………………………………………10
1-2.6 分子磊晶術……………………………………………………11
1-2.7 真空蒸鍍………………………………………………………12
        1-2.8 薄膜測量之應用……………………………………13
    1-3 研究範疇……………………………………………………15
貳、實驗設計…………………………………………………………25
2-1 實驗材料…………………………………………………………25
2-2 實驗設備…………………………………………………………25
2-3 俱漣漪薄膜製作…………………………………………………26
2-3.1 矽晶片清洗……………………………………………………26
    2-3.2 不同的交鏈劑與預聚物PDMS溶膠配製…………………26
2-3.3 旋轉塗佈與真空乾燥…………………………………………27
2-3.4 薄膜拉伸………………………………………………………27
2-3.5 楊氏模數計算…………………………………………………27
2-3.6 真空濺鍍………………………………………………………28
2-4 表面形態觀察及特徵尺寸量測…………………………………28
    2-4.1 光學顯微鏡………………………………………………28
    2-4.2 原子力顯微鏡……………………………………………28
2-5 光學干涉檢測……………………………………………………28
參、結果與討論………………………………………………………34
3-1 漣漪結構的形成與機制…………………………………………34
3-2 漣漪結構的缺陷…………………………………………………35
    3-2.1 排向表面裂縫(oriented surface crack)……………37
3-2.2 類差排(dislocation-like)…………………………………38
3-2.3  裂縫(crack)…………………………………………………38
3-3 PDMS薄膜之楊氏模數對漣漪特徵尺寸的影響…………………40
3-4 鍍金時間對漣漪特徵尺寸的影響………………………………41
3-5 PDMS薄膜厚度對漣漪特徵尺寸的影響…………………………43
3-6 PDMS薄膜之楊氏模數對漣漪缺陷之影響………………………45
3-7 鍍金時間對漣漪缺陷之影響……………………………………45
3-8 PDMS薄膜厚度對漣漪缺陷之影響………………………………46
3-9 PDMS未拉伸下濺鍍PDMS薄膜,隨後拉伸再釋放,探討對漣漪結 構形成之影響…………………………………………………………46
肆、 結論……………………………………………………………145
伍、 參考文獻………………………………………………………147
 
圖目錄
圖1.1 (a)離子空氣槍設備;(b),(c)離子束以角度θ=0°入射,產生的漣漪形態與離子束成垂直正交的關係;(d)離子束以角度θ=80°入射,產生的漣漪形態沿著離子束前進的方向………………………16
圖1.2 (a)澳大利亞沙漠中所表現出漣漪形態的圖像,(b)離子轟擊玻璃表面造成的漣漪現象,(c)阿爾及利亞沙漠中所表現出漣漪形態的圖像,(d)天空雲層所表現出漣漪形態的圖像 ……………………17
圖1.3 雙光束雷射定位入射示意圖…………………………………18
圖1.4 利用PDMS材料製作大尺寸的漣漪機構;尺寸為振幅1.5μm、波長為30m ………………………………………………………………19
圖1.5 UV曝光與未曝光區域的楊氏模數之不同,來達到漣漪圖案的形成示意圖  ……………………………………………………………20
圖1.6 (a)拉伸應變與波長,(b)白金鍍層與波長之關係圖………21
圖1.7 提出在聚乙烯對苯二甲酸酯(PET)橡膠基板上塗佈二氧化矽薄膜,在隨著不同的拉伸應變下,裂縫會隨之增加…………………22
圖1.8 在拉伸下使用氬離子轟擊PDMS表面,隨後濺鍍上白金薄膜,以製得金屬薄棒…………………………………………………………23
圖1.9 鍍上一層的待側物之PDMS固定在機台上並擠壓使其變形示意圖………………………………………………………………………24
圖2.1 聚二甲基矽氧烷化學式………………………………………30
圖2.2 (a)拉伸試片示意圖,(b) 拉伸製具示意圖 ………………31
圖2-3 鍍金時間與鍍金層之關係圖…………………………………32
圖2.3 雷射光干涉路徑俯視圖………………………………………33
圖3.1 (a) PDMS形成漣漪結構意圖;PDMS厚度750um,楊氏模數2.953MPa,鍍金時間6秒 (b)3D-AFM圖;PDMS厚度200um,楊氏模數2.953MPa,鍍金時間10秒 (c) 鍍金層剝離3D-AFM ………………48
圖3.2 交聯聚合物分子鏈之示意圖:(a)未受應力狀態,(b)施加拉伸應力所產生的彈性變形………………………………………………49
圖3.3 彈性半無線空間中實體波及雷利波的傳播…………………50
圖3.4 雷利波傳播及質點運動軌跡…………………………………51
圖3.5 高彈性高分子之應力-應變行 ………………………………52
圖3.6 PDMS厚度200um;楊氏模數0.604MPa;鍍金時間6秒;(b)OM (200X)。PDMS厚度200um;楊氏模數0.250MPa;鍍金時間15秒;(b)OM (500X)。PDMS厚度200um;楊氏模數2.953MPa;鍍金時間6秒;AFM之分析圖(c)3D profile (d)Flatten (e)Section Analysis Part-I  (f) Section Analysis Part-I…………………………………53
圖3.7 PDMS厚度750um;楊氏模數0.185MPa;鍍金時間15秒(a)OM (500X)圖。PDMS厚度200um;楊氏模數0.604MPa;鍍金時間15秒(b)OM (500X)圖。PDMS厚度200um;楊氏模數2.953MPa;鍍金時間4秒;AFM之分析圖 (c) 3D profile (e) Flatten (e) Section Analysis Part-I (f) Section Analysis Part-I……………………………54
圖3.8 厚度200μm及楊氏模數2.953MPa 之PDMS薄膜,在鍍金時間15秒下,漣漪缺陷之裂縫OM圖…………………………………………55
圖3.9在俱漣漪結構之PDMS表面上,以45°角度濺鍍上白金(Pt),隨後在拉伸應力下於鍍層較薄處產生裂縫………………………………56
圖3.10楊氏模數與交鏈硬化比率之關係……………………………58
圖3.11 PDMS厚度200um;楊氏模數3.250MPa;鍍金時間4秒(a)OM (500X);AFM之分析圖 (b)3D profile (c)Flatten (d)Section Analysis (e)RMS, Ra, Rmax, Rz (f)Laser………………………59
圖3.12 PDMS厚度200um;楊氏模數2.953MPa;鍍金時間4秒(a)OM (500X);AFM之分析圖 (b)3D profile (c)Flatten (d)Section Analysis (e)RMS, Ra, Rmax, Rz (f)Laser………………………60
圖3.13 PDMS厚度200um;楊氏模數2.100MPa;鍍金時間4秒(a)OM (500X);AFM之分析圖 (b)3D profile (c)Flatten (d)Section Analysis (e)RMS, Ra, Rmax, Rz (f)Laser………………………61
圖3.14 PDMS厚度200um;楊氏模數0.604MPa;鍍金時間4秒(a)OM (500X);AFM之分析圖 (b)3D profile (c)Flatten (d)Section Analysis (e)RMS, Ra, Rmax, Rz (f)Laser………………………62
圖3.15 PDMS厚度200um;楊氏模數0.250MPa;鍍金時間4秒(a)OM (500X);AFM之分析圖 (b)3D profile (c)Flatten (d)Section Analysis (e)RMS, Ra, Rmax, Rz (f)Laser………………………63
圖3.16 PDMS厚度200um;楊氏模數0.185MPa;鍍金時間4秒(a)OM (500X);AFM之分析圖 (b)3D profile (c)Flatten (d)Section Analysis (e)RMS, Ra, Rmax, Rz (f)Laser………………………64
圖3.17 PDMS厚度200um;楊氏模數0.041MPa;鍍金時間4秒;AFM之分析圖 (a)3D profile (b)Flatten (c)Section Analysis (d)RMS, Ra, Rmax, Rz (e)Laser ……………………………………………65
圖3.18 PDMS厚度200um;楊氏模數3.250MPa;鍍金時間6秒 (a)OM (500X);AFM之分析圖 (b)3D profile (c)Flatten (d)Section Analysis (e)RMS, Ra, Rmax, Rz (f)Laser………………………66
圖3.19 PDMS厚度200um;楊氏模數2.953MPa;鍍金時間6秒 (a)OM (500X);AFM之分析圖 (b)3D profile (c)Flatten (d)Section Analysis (e)RMS, Ra, Rmax, Rz (f)Laser………………………67
圖3.20 PDMS厚度200um;楊氏模數2.100MPa;鍍金時間6秒 (a)OM (500X);AFM之分析圖 (b)3D profile (c)Flatten (d)Section Analysis (e)RMS, Ra, Rmax, Rz (f)Laser………………………68
圖3.21 PDMS厚度200um;楊氏模數0.604MPa;鍍金時間6秒 (a)OM (500X);AFM之分析圖 (b)3D profile (c)Flatten (d)Section Analysis (e)RMS, Ra, Rmax, Rz (f)Laser………………………69
圖3.22 PDMS厚度200um;楊氏模數0.250MPa;鍍金時間6秒 (a)OM (500X);AFM之分析圖 (b)3D profile (c)Flatten (d)Section Analysis (e)RMS, Ra, Rmax, Rz (f)Laser………………………70
圖3.23 PDMS厚度200um;楊氏模數0.185MPa;鍍金時間6秒 (a)OM (500X);AFM之分析圖 (b)3D profile (c)Flatten (d)Section Analysis (e)RMS, Ra, Rmax, Rz (f)Laser………………………71
圖3.24 PDMS厚度200um;楊氏模數0.041MPa;鍍金時間6秒;AFM之分析圖 (a)3D profile (b)Flatten (c)Section Analysis (d)RMS, Ra, Rmax, Rz (e)Laser ……………………………………………72
圖3.25 PDMS厚度200um;楊氏模數2.953MPa;鍍金時間10秒(a)OM (500X);AFM之分析圖 (b)3D profile (c)Flatten (d)Section Analysis (e)RMS, Ra, Rmax, Rz (f)Laser………………………73
圖3.26 PDMS厚度200um;楊氏模數2.100MPa;鍍金時間10秒(a)OM (500X);AFM之分析圖 (b)3D profile (c)Flatten (d)Section Analysis (e)RMS, Ra, Rmax, Rz (f)Laser………………………74
圖3.27 PDMS厚度200um;楊氏模數0.604MPa;鍍金時間10秒(a)OM (500X);AFM之分析圖 (b)3D profile (c)Flatten (d)Section Analysis (e)RMS, Ra, Rmax, Rz (f)Laser………………………75
圖3.28 PDMS厚度200um;楊氏模數0.250MPa;鍍金時間10秒(a)OM (500X);AFM之分析圖 (b)3D profile (c)Flatten (d)Section Analysis (e)RMS, Ra, Rmax, Rz (f)Laser………………………76
圖3.29 PDMS厚度200um;楊氏模數0.185MPa;鍍金時間10秒(a)OM (500X);AFM之分析圖 (b)3D profile (c)Flatten (d)Section Analysis (e)RMS, Ra, Rmax, Rz (f)Laser………………………77
圖3.30 PDMS厚度200um;楊氏模數0.041MPa;鍍金時間10秒;AFM之分析圖 (a)3D profile (b)Flatten (c)Section Analysis (d)RMS, Ra, Rmax, Rz (e)Laser ……………………………………………78
圖3.31 PDMS厚度200um;楊氏模數2.953MPa;鍍金時間15秒(a)OM (500X);AFM之分析圖 (b)3D profile (c)Flatten (d)Section Analysis (e)RMS, Ra, Rmax, Rz (f)Laser………………………79
圖3.32 PDMS厚度200um;楊氏模數2.100MPa;鍍金時間15秒(a)OM (500X);AFM之分析圖 (b)3D profile (c)Flatten (d)Section Analysis (e)RMS, Ra, Rmax, Rz (f)Laser………………………80
圖3.33 PDMS厚度200um;楊氏模數0.604MPa;鍍金時間15秒(a)OM (500X);AFM之分析圖 (b)3D profile (c)Flatten (d)Section Analysis (e)RMS, Ra, Rmax, Rz (f)Laser………………………81
圖3.34 PDMS厚度200um;楊氏模數0.250MPa;鍍金時間15秒(a)OM (500X);AFM之分析圖 (b)3D profile (c)Flatten (d)Section Analysis (e)RMS, Ra, Rmax, Rz (f)Laser………………………82
圖3.35 PDMS厚度200um;楊氏模數0.185MPa;鍍金時間15秒(a)OM (500X);AFM之分析圖 (b)3D profile (c)Flatten (d)Section Analysis (e)RMS, Ra, Rmax, Rz (f)Laser………………………83
圖3.36 PDMS厚度200um;楊氏模數0.041MPa;鍍金時間15秒;AFM之分析圖 (a)3D profile (b)Flatten (c)Section Analysis (d)RMS, Ra, Rmax, Rz (e)Laser ……………………………………………84
圖3.37厚度200μm之PDMS,鍍金時間4秒,楊氏模數與波長之關係圖………………………………………………………………………89
圖3.38厚度200μm之PDMS,鍍金時間4秒,楊氏模數與振幅之關係圖………………………………………………………………………90
圖3.39 厚度200μm之PDMS,鍍金時間6秒,楊氏模數與波長之關係圖………………………………………………………………………91
圖3.40 厚度200μm之PDMS,鍍金時間6秒,楊氏模數與振幅之關係圖………………………………………………………………………92
圖3.41厚度200μm之PDMS,鍍金時間10秒,楊氏模數與波長之關係圖………………………………………………………………………93
圖3.42厚度200μm之PDMS,鍍金時間10秒,楊氏模數與振幅之關係圖………………………………………………………………………94
圖3.43厚度200μm之PDMS,鍍金時間15秒,楊氏模數與波長之關係圖………………………………………………………………………95
圖3.44厚度200μm之PDMS,鍍金時間15秒,楊氏模數與振幅之關係圖………………………………………………………………………96
圖3.45 PDMS厚度200um;鍍金時間4秒;楊氏模數由上而下依序為3.250MPa、2.953 MPa、2.100 MPa、0.604 MPa、0.250 MPa、0.185 Mp及0.041 MPa之雷射干涉圖 ………………………………………97
圖3.46厚度200um;鍍金時間6秒;楊氏模數由上而下依序為3.250MPa、2.953 MPa、2.100 MPa、0.604 MPa、0.250 MPa、0.185 MPa及0.041 MPa之雷射干涉圖………………………………………98
圖3.47厚度200um;鍍金時間10秒;楊氏模數由上而下依序為2.953 MPa、2.100 MPa、0.604 MPa、0.250 MPa、0.185 MPa及0.041 MPa之雷射干涉圖……………………………………………………………99
圖3.48厚度200um;鍍金時間15秒;楊氏模數由上而下依序為2.953 MPa、2.100 MPa、0.604 MPa、0.250 MPa、0.185 MPa及0.041 MPa之雷射干涉圖……………………………………………………………100
圖3.49 PDMS厚度650um;楊氏模數2.953MPa;鍍金時間4秒(a)OM (500X);AFM之分析圖 (b)3D profile (c)Flatten (d)Section Analysis (e)RMS, Ra, Rmax, Rz (f)Laser………………………101
圖3.50 PDMS厚度650um;楊氏模數2.953MPa;鍍金時間6秒 (a)OM (500X);AFM之分析圖 (b)3D profile (c)Flatten (d)Section Analysis (e)RMS, Ra, Rmax, Rz (f)Laser………………………102
圖3.51 PDMS厚度650um;楊氏模數2.953MPa;鍍金時間10秒;AFM之分析圖 (a)3D profile (b)Flatten (c)Section Analysis (d)RMS, Ra, Rmax, Rz (e)Laser ……………………………………………103
圖3.52 PDMS厚度650um;楊氏模數2.953MPa;鍍金時間15秒(a)OM (500X);AFM之分析圖 (b)3D profile (c)Flatten (d)Section Analysis (e)RMS, Ra, Rmax, Rz (f)Laser………………………104
圖3.53 PDMS厚度750um;楊氏模數0.604MPa;鍍金時間4秒(a)OM (500X);AFM之分析圖 (b)3D profile (c)Flatten (d)Section Analysis (e)RMS, Ra, Rmax, Rz (f)Laser………………………105
圖3.54 PDMS厚度750um;楊氏模數0.604MPa;鍍金時間6秒 (a)OM (500X);AFM之分析圖 (b)3D profile (c)Flatten (d)Section Analysis (e)RMS, Ra, Rmax, Rz (f)Laser………………………106
圖3.55 PDMS厚度750um;楊氏模數0.604MPa;鍍金時間10秒(a)OM (500X);AFM之分析圖 (b)3D profile (c)Flatten (d)Section Analysis (e)RMS, Ra, Rmax, Rz (f)Laser………………………107
圖3.56 PDMS厚度750um;楊氏模數0.604MPa;鍍金時間15秒(a)OM (500X);AFM之分析圖 (b)3D profile (c)Flatten (d)Section Analysis (e)RMS, Ra, Rmax, Rz (f)Laser………………………108
圖3.57 PDMS厚度750um;楊氏模數0.185MPa;鍍金時間4秒(a)OM (500X);AFM之分析圖 (b)3D profile (c)Flatten (d)Section Analysis (e)RMS, Ra, Rmax, Rz (f)Laser………………………109
圖3.58 PDMS厚度750um;楊氏模數0.185MPa;鍍金時間6秒 (a)OM (500X);AFM之分析圖 (b)3D profile (c)Flatten (d)Section Analysis (e)RMS, Ra, Rmax, Rz (f)Laser………………………110
圖3.59 PDMS厚度750um;楊氏模數0.185MPa;鍍金時間10秒(a)OM (500X);AFM之分析圖 (b)3D profile (c)Flatten (d)Section Analysis (e)RMS, Ra, Rmax, Rz (f)Laser………………………111
圖3.60 PDMS厚度750um;楊氏模數0.185MPa;鍍金時間15秒(a)OM (500X);AFM之分析圖 (b)3D profile (c)Flatten (d)Section Analysis (e)RMS, Ra, Rmax, Rz (f)Laser………………………112
圖3.61厚度650μm PDMS薄膜及楊氏模數2.953MPa,不同鍍金時間與波長之關係圖…………………………………………………………116
圖3.62厚度650μm PDMS薄膜及楊氏模數2.953MPa,不同鍍金時間與振幅之關係圖…………………………………………………………117
圖3.63厚度750μm PDMS薄膜及楊氏模數0.604MPa,不同鍍金時間與波長之關係圖…………………………………………………………118
圖3.64厚度750μm PDMS薄膜及楊氏模數0.604MPa,不同鍍金時間與振幅之關係圖…………………………………………………………119
圖3.65厚度750μm PDMS薄膜及楊氏模數0.185MPa,不同鍍金時間與波長之關係圖…………………………………………………………120
圖3.66厚度750μm PDMS薄膜及楊氏模數0.185MPa,不同鍍金時間與振幅之關係圖…………………………………………………………121
圖3.67在聚乙烯對苯二甲酸酯(PET)薄膜上濺鍍白金層,白金層與薄膜試片上漣漪之波長關係……………………………………………122
圖3.68於30%拉伸應變下,氬離子能量與波長關係圖 ……………123
圖3.69厚度650um;楊氏模數2.953MPa:鍍金時間由上而下依序為4秒、6秒、10秒及15秒之雷射干涉圖 ………………………………124
圖3.70厚度750um;楊氏模數2.953MPa:鍍金時間由上而下依序為4秒、6秒、10秒及15秒之雷射干涉圖 ………………………………125
圖3.71厚度750um;楊氏模數2.953MPa:鍍金時間由上而下依序為4秒、6秒、10秒及15秒之雷射干涉圖 ………………………………126
圖3.72 PDMS厚度200μm;楊氏模數3.250MPa;鍍金時間10秒AFM之分析圖(a)3D profile (b)Flatten (c)Section Analysis (d)RMS, Ra, Rmax, Rz…………………………………………………………127
圖3.73不同厚度與楊氏模數之PDMS薄膜對漣漪結構波長之關係圖
…………………………………………………………………………130
圖3.74不同厚度與楊氏模數之PDMS薄膜對漣漪結構振幅之關係圖
…………………………………………………………………………131
圖3.75改質的PDMS薄層及金屬鍍層之厚度比率與波長相互關係圖
…………………………………………………………………………132
圖3.76 PDMS厚度550um;楊氏模數2.953MPa;鍍金時間15秒(a)OM (500X);AFM之分析圖 (b)3D profile (c)Flatten (d)Section Analysis (e)RMS, Ra, Rmax, Rz (f)Laser………………………133
圖3.77 PDMS厚度550um;楊氏模數0.604MPa;鍍金時間15秒(a)OM (500X);AFM之分析圖 (b)3D profile (c)Flatten (d)Section Analysis (e)RMS, Ra, Rmax, Rz (f)Laser………………………134
圖3.78 PDMS厚度550um;楊氏模數0.185MPa;鍍金時間15秒(a)OM (500X);AFM之分析圖 (b)3D profile (c)Flatten (d)Section Analysis (e)RMS, Ra, Rmax, Rz (f)Laser………………………135
圖3.79 550μm PDMS薄膜厚度及鍍金時間15秒,不同楊氏模數與波長之關係圖………………………………………………………………137
圖3.80 550μm PDMS薄膜厚度及鍍金時間15秒,不同楊氏模數與振幅之關係圖………………………………………………………………138
圖3.81 PDMS薄膜厚度550um;鍍金時間15秒:楊氏模數分別由上而下依序為2.953MPa、0.604MPa、0.185MPa……………………………139
圖3.82 200μm PDMS薄膜厚度,鍍金時間6秒,楊氏模數分別為(a) 3.250MPa、(b) 2.953 MPa (c) 2.100 MPa (d) 0.604 MPa (e) 0.250 MPa (f) 0.185 MPa,漣漪缺陷之500倍率OM圖……………140
圖3.83楊氏模數0.604 MPa與厚度200μm PDMS薄膜;鍍金時間為(a) 4秒、(b) 6秒、(c) 10秒及(d) 15秒漣漪結構中,排向表面裂縫之200倍率OM圖 …………………………………………………………141
圖3.84 楊氏模數0.185 MPa與鍍金時間15秒,PDMS薄膜厚度為(a)200μm、(b)550μm及(c)750μm,漣漪結構中,排向表面裂縫之500倍率OM圖………………………………………………………………………142
圖3.85 (a)PDMS鍍金後再做拉伸放鬆動作鍍金後放鬆示意圖;(b)OM (500X)圖………………………………………………………………143
圖3.86 PDMS楊氏模數0.604MPa;200μm PDMS薄膜厚度;鍍金時間20秒(a)100X,(b)500X,PDMS薄膜鍍金後拉伸下之OM圖……………144

表目錄
表一 不同交鏈硬化比率與楊氏模數之圖像 ………………………57
表二 厚度200μm之PDMS及鍍金時間4秒,不同楊氏模數對漣漪特徵尺寸之關係………………………………………………………………85
表三 厚度200μm之PDMS及鍍金時間6秒,不同楊氏模數對漣漪特徵尺寸之關係………………………………………………………………86
表四 厚度200μm之PDMS及鍍金時間10秒,不同楊氏模數對漣漪特徵尺寸之關係……………………………………………………………87
表伍 厚度200μm之PDMS及鍍金時間15秒,不同楊氏模數對漣漪特徵尺寸之關係……………………………………………………………88
表六 厚度650μm PDMS及楊氏模數2.953MPa,不同鍍金時間對漣漪特徵尺寸之關係…………………………………………………………113
表七 厚度750μm PDMS及楊氏模數0.604MPa,不同鍍金時間對漣漪特徵尺寸之關係…………………………………………………………114
表八 厚度750μm PDMS及楊氏模數0.185MPa,不同鍍金時間對漣漪特徵尺寸之關係…………………………………………………………115
表九 於相同之楊氏模數下,不同厚度、楊氏模數及鍍金時間對漣漪結構特徵尺寸之關係…………………………………………………128
表十 於相同之楊氏模數下,不同厚度、楊氏模數及鍍金時間對漣漪結構特徵尺寸之關係…………………………………………………129
表十一 厚度550μm PDMS及鍍金時間15秒之不同楊氏模數對漣漪特徵尺寸之關係……………………………………………………………136
參考文獻
1.Navez M, Sella C and Chaperot D C. R. Acad. Sci., Paris  254 (1962) p240.
2.U Valbusa, C Boragno and F Buatier de Mongeot, “Nanostructuring surfaces by ion sputtering”, Journal of Physics Matter, 14 (2002) pp8153-8175.
3.R M Bradley and J M Harper, “Theory of ripple topography induced by ion bombardment” J. Vac. Sci. Technol. A , 6 (1988) pp2390-2395.
4.G. I Sivashinsky, “Nonlinear analysis of hydrodynamic instability in laminar flames-I. Derivation of basic equations”, Acta Astronaut., 4 (1977) pp1177-1206.
5.Jan Groenewold*, “Wrinkling of plates coupled with soft elastic media”, J. Groenewold/ Physica A, 298 (2001) pp32-45.
6.L.D. Landau and E.M Lifshitz, “Course of Theoretical Physics, Theory of Elasticity”, 3rd Edition, 7 (1986).
7.P. M. Fauchet, A.E. Siegman, Appl. Phys. A 32 (1983), p135.
8.H.M. van Driel, J. E. Sipe and J.F. Young, ”Laser-Induced Periodic Surface Structure on Solids: A Universal Phenomenon”, Phys. Rev. Lett. 49 (1982) pp1955-1959.
9.D. B. Chrisey, G. K. Hubler, “Pulsed Laser Deposition of thin films”, (Wiley, New York, 1994).
10.L. K. Ang, Y. Y. Lau, R. M. Gilgenbach, H. L. Spindler, J. S. Lash, “Surface instability of multipulse laser ablation on a metallic target“, Journal of Applied Physics, 83 (1998) pp4466-4471.
11.Jurgen Reif , Florenta Costache, Matthias Henyk, V. Stanislav Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics”, Applied Surface Science, 197-198 (2002) pp891-895.
12.J. Reif, M. Henyk, and D. Wolfframm, SPIE Proc. Ser. 26 (2000) p3933.
13.Ned Bowden, Scott Brittain, Anthony G. Evans, W. John Hutchinson, and M. George Whitesides, “Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer”, Nature, 393 (1998) pp146-149.
14.T. S. Wilhelm Huck, Ned Bowden, Patrick Onck, Thoms Pardoen, W. John Hutchinson, and M. George Whitesides, “Ordering of Spontaneously Formed Buckles on Planar Surfaces”, Langmuir, 16 (2000) pp3497-3501.
15.F. Katzenberg, R. Janlewing, and J. Petermann, “Surface diffusion of metal atoms on polymer substrates during physical vapour deposition”, Colloid Polym. Sci., 10 (2000) pp280-284.
16.Frank Katzenberg, “Irradiation- and Strain- Induced Self-Organization of Elastomer Srfaces”, Macromol. Mater. Eng., 286 (2001) pp26-29.
17.A. L. Volynskii, S. Bazhenov, O. V. Lebedeva, and N. F. Bakeev, “Mechanical buckling instability of thin coatings deposited on soft polymer substrates”, Journal of Materials Science, 35 (2000), pp547-554.
18.F Katzenberg, “Cost-effective production of highly regular nano- structured metallization layers”, Institute of Physics Publishing, 14 (2003) pp1019-1022.
19.Y. Leterrier, L. Boogh, J. Andersons, J.-A. E. Manson, “Adhesion of Silicon Oxide Layers on Poly (ethylene terephthalate). I: Effect of Substrate Properties on Coating’s Fragmentation Process”, January, 35 (1997) pp1463-1472.
20.J. Krim, I. Heyvaert, C. Van Haesendonck, and Y. Bruynseraede, “Scanning Tunneling Microscopy Observation of Self-Affine Fractal Roughness in Ion-Bombarded Film Surfaces”, Phys. Rev. Lett., 70 (1993) pp57-60.
21.S. Rusponi, C. Boragno,* and U. Valbusa, “Ripple Structure on Ag(110) Surface Induced by Ion Sputtering”, Physical Review Letters, 78 (1996) pp2795-2798.
22.W Zhou, A Cuenat, and M J Aziz, “Formation of self-organized nanostructures on Ge during focused ion beam sputtering”, Microscopy of semiconducting materials 2003: Proceedings of the 13thInternation al Conference on Microscopy of Semiconducting Materials, Cambridge University, 31 (2003) pp625-628.
23.S Facsko, T Dekorsy, C Koerdt, C Trappe, H Kurz, Vogt A and Hartnagel H L , ” Formation of Ordered Nanoscale Semiconductor Dots by Ion Sputtering” Science, 285 (1999) pp1551-1553.
24.J. Y. Marzin, J. M. Gerard, A. Izrael, D. Barrier, ”Photoluminescence of Single InAs Quantum Dots Obtained by Self-Organized Growth on GaAs”, Phys. Rev. Lett., 73 (1994) ppt716-719.
25.G S Lau, E S Tok, R Liu, A T Swee, W C Tjiu and J Zhang, “Nanostructure formation by O2+ ion sputtering of Si/SiGe heterostructures”, Nanotechnology, 14 (2003) ppt1187-1191.
26.賴怡仁, “Size control of self-assembled CdSe quantum dots grown by molecular beam epitaxy”, 私立中原大學, (2003), pp7-10.
27.Nehal S. Chokshi and Joanna Mirecki Millunchicka, “Cooperative nucleation leading to ripple formation in InGaAs/GaAs films”, Applied Physics Letters, 76 (2000) pp2382-2384.
28.J Nowak and W Scharf, “Magnetisation ripple structure in neodymium- cobalt thin films”, J. Phys. D: Appl. Phys., 12 (1979) pp139-140.
29.K J Harte, ”Theory of Magnetization Ripple in Ferromagnetic films” J. Appl. Phys., 39 (1968) pp1503-1524.
30.M. Christopher Stafford, Christopher Harrison, L. Kathryn Beers, Alamgir Karim, J. Eric Amis, R. Mark Vanlandingham, Ho-Cheol Kim, Willivolksen, D. Robert Miller, and Eva E. Simonyi, “A buckling-based metrology for measuring the elastic moduli of polymeric thin films”, Nature Publishing Group, 3 (2004) pp545-550.
31.L. D. LANDAU and E, M. LIFSHITZ, “Elasticity Theory”(Nauka, Moscow, 1965).
32.M. A. BIOT, J. Applied Mechanics 4 (1937) A1.
33.B. M. Das, “Principles of Soil Dynamics”, PWS-KENT, (1993) pp52-86.
34.J. W. S. Hearle, Polymers and Their Properties, Vol. 1, Fundamentals of Structure and Mechanics, Ellis Horwood, Ltd., Chichester, West Sussex, England, 1982.
35.Sih, G.C. and Hartranft, R.J., “Vaariation of strain energy release rate with plate thickness”. Int. J. Fract. Mech., 9 (1973) pp75-82.
論文全文使用權限
校內
紙本論文於授權書繳交後1年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後1年公開
校外
同意授權
校外電子論文於授權書繳交後1年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信