§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1606201414512800
DOI 10.6846/TKU.2014.00552
論文名稱(中文) 轉爐石吸附去除磷之研究
論文名稱(英文) Phosphate removal by blast furnace slags adsorption
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 水資源及環境工程學系碩士班
系所名稱(英文) Department of Water Resources and Environmental Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 102
學期 2
出版年 103
研究生(中文) 王子婕
研究生(英文) Tzu-Chieh Wang
學號 601480097
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2014-06-12
論文頁數 62頁
口試委員 指導教授 - 康世芳(kangsf@mail.tku.edu.tw)
委員 - 李柏青(pclee@mail.tku.edu.tw)
委員 - 柯明賢(msko@ntut.edu.tw)
關鍵字(中)
轉爐石
脫硫渣
等溫吸附
動力吸附
關鍵字(英) Phosphate
BOF slag
desulphurization slag
Freundlich isotherm
absorption kinetic
第三語言關鍵字
學科別分類
中文摘要
轉爐石(BOF)與脫硫渣(DS)為鋼鐵製程之爐渣副產物且為廉價的吸附劑,本研究以磷酸鹽配製含磷人工水樣,轉爐石與脫硫渣取自中國鋼鐵公司,採等溫吸附實驗探討轉爐石與脫硫渣去除水中磷,吸附操作參數包含水洗、pH、BOF與DS添加量、及接觸時間等。吸附實驗結果以Freundlich等溫吸附公式、Lagergern 擬二階(Pseudo-second-order)動力與內部孔隙擴散速率(Intraparticle diffusion model)模式評估吸附水中磷之動力。此外,以能量散佈分析儀(EDS)與熱游離式掃描式電子顯微鏡(SEM)分別測定BOF與DS之化學成份組成及表面特性。
    EDS研究結果顯示BOF與DS化學成份組成Ca之重量百分比分別為12.6%與25.9%,於水中會溶出鈣且pH大於11,與磷形成Ca5(PO4)3(OH) (s)沉澱物,且因DS鈣溶出量為BOF鈣溶出量之約3倍,DS去除磷能力約為BOF之1.6倍。BOF與DS水洗前與水洗後之磷去除率分別為95-99%與20-60%,顯示水洗前BOF與DS以Ca5(PO4)3(OH) (s)沉澱型態去除為主。經水洗轉爐石(BOFW)、經水洗脫硫渣(DSW)亦具有吸附去除磷的功能,BOFW與SDW表面仍含Ca之重量百分比分別19.0%與20.8%,Freundlich等溫吸附結果顯示DSW之磷吸附量約為BOFW之3-4倍,pH對BOFW與SDW吸附磷最佳pH 為10,此乃因於表面形成Ca5(PO4)3(OH)(s)沉澱物,DSW 及SEM亦顯示BOFW與DSW表面有Ca5(PO4)3(OH) (s)沉澱物。BOFW與DSW對磷吸附動力學遵循Lagergren擬二階動力吸附模式,DSW之二階動力常數k2值小於BOFW之k2值。BOFW之內部孔隙擴散k1值大於DSW之k1值,磷於DSW之內部孔隙擴散速率大於BOFW。綜合上述BOF與SD可有效去除水中磷,且DS去除磷能力優於BOF。
英文摘要
Slag is a by-product from steel factory and is a low-cost adsorbent.  This study evaluates the adsorption removal of phosphate from aqueous solution by slags. Basic oxygen furnace steel slag (BOF) and desulfurization slag (DS) from The China steel company and phosphate-containing synthetic water are used in this study. The operational parameters include water washed, pH, type and dosage of slag (BOF and DS), initial concentration of phosphate, and contact time. All experiments are conducted by the isotherm adsorption test. The adsorption kinetic of phosphate by slags are evaluated by the Freundlich isotherm, the Lagergern pseudo-second-order and Intraparticle diffusion models. Furthermore, the chemical composition and surface morphology of slags are examined by energy dispersive spectrum (EDS) and scanning electron microscopy (SEM), respectively. 
    The results of chemical composition from EDS test show that BOF and DS contained 12.6% and 25.9% of Ca (wt%), respectively, which released Ca ions from the slags into solution to induce high pH levels to above 11. The released Ca ions could react with P to form the precipitation of Ca-phosphate compounds. The P removal capacity (PRC) of DS was about 1.6 times of that of BOF because the amount of released Ca ions of DS was about 3 times of that for BOF. Non-washed BOF and DS slags could remove 95-99% of P, as compared to washed BOF and DS slags (BOFW and DSW), which could remove 20-60% of P. It indicates that phosphate removal of non-washed BOF and DS slags occurred predominantly via the precipitation of Ca-phosphate compounds. The SEM micrographs show that Ca-phosphate compounds precipitated on the slag surface. The adsorption of P by BOFW and DSW followed the Freundlich adsorption isotherm model. The optimum pH for adsorption of P was at 10 and the removal ratio could reach more than 80%. The amount of adsorbed P of DSW was 3-4 times higher than that of BOFW. Moreover, the adsorption kinetic of P by BOFW and DSW well followed pseudo-second-order and intraparticle diffusion models. The pseudo-second-order adsorption rate constant, k2 value of DSW was larger than that of BOFW. In contrast, intraparticle diffusion rate constant, ki value of DSW was smaller than that of BOFW.  It implies that intraparticle diffusion rate of P by DSW was higher that of BOFW.  Overall, both BOF and DS could remove P effectively and the PRC of DS was better than that of BOF.
第三語言摘要
論文目次
目錄……..................................	I
表目錄…..................................IV
圖目錄…..................................	V
第一章、前言.............................	1
1.1研究緣起..............................	1
1.2 研究目的............................	2
第二章、文獻回顧........................	3
2.1 磷的特性、來源及限制...................	3
2.1.1 磷的水化學.........................	3
2.1.2 磷的產生來源	........................4
2.1.3磷對水環境之影響.....................	5
2.1.4 水中磷的限制	........................5
2.2 轉爐石...............................	6
2.2.1 轉爐石的來源	........................6
2.2.2 轉爐石的性質	........................8
2.2.3 轉爐石吸附磷的應用..................	9
2.3吸附原理..............................	11
2.3.1 Langmuir 等溫吸附模式.............	12
2.3.2 Freundlich恆溫吸附模式.............	13
2.3.3 Brunaur-Emmett-Teler (BET)等溫吸附模式.....	14
2.3.4動力吸附模式........................	15
2.3.5 孔隙擴散模式	........................17
第三章、材料與方法........................	18
3.1材料及設備...........................	18
3.1.1含磷人工水樣與吸附劑.................	18
3.1.2實驗藥品...........................	18
3.1.3實驗設備............................	19
3.2吸附實驗.............................	19
3.2.1等溫吸附實驗........................	20
3.2.2吸附動力實驗.........................	20
3.3水質分析..............................	21
3.4 SEM分析.............................	22
第四章 、 結果與討論......................	23
4.1 轉爐石物化特性	........................23
4.1.1 轉爐石SEM.........................	23
4.1.2 轉爐石化學成分組成..................	26
4.1.3 轉爐石經水洗對水中鈣溶出、導電度與pH之影響...	27
4.2轉爐石之選擇..........................	31
4.2.1 轉爐石水洗前後對去除磷之影響.......	31
4.2.2 轉爐石種類對吸附磷之影響..............	33
4.2.3 轉爐石對磷吸附量之比較	................35
4.3 轉爐石吸附磷之影響因子.................	37
4.3.1吸附劑添加量對磷去除之影響............	37
4.3.3 pH對轉爐石磷去除之影響..............	41
4.4 磷之等溫吸附實驗......................	43
4.4.1磷初始濃度對等溫吸附之影響.............	43
4.4.2 pH對磷等溫吸附之影響................	45
4.5 磷之Freudlich吸附實驗................	46
4.6 磷之動力吸附實驗......................	49
4.6.1 Lagergren 擬二階吸附...............	49
4.6.1.1 pH對吸附P二階吸附之影響............	49
4.6.1.2 吸附劑添加量對吸附P二階吸附之影響....	52
4.6.2孔隙擴散吸附.........................55
4.6.2.1 pH對吸附P孔隙擴散模式之影響.........	55
4.6.2.1 吸附劑添加量對吸附P孔隙擴散模式之影響..57
第五章、結論..............................	59
參考文獻.................	................60


表目錄
表2.1 為國內外放流水中磷的相關管制現況..................... 6
表2.2 轉爐石重金屬溶出試驗結果(單位:mg/L) ................. 9
表4.1 轉爐石及脫硫渣之元素組成  .......................... 26
表4.2 水洗前後對轉爐石去除磷之單位吸附量影響................ 32
表4.3 初始濃度對BOFW、BOFMW 及DSW 吸附P 之等溫吸附係數 .... 48
表4.4 pH 對BOFW 吸附P 之二階動力吸附影響比較 ............. 50
表4.5 pH 對DSW 吸附P 之二階動力吸附影響比較 .............. 52
表4.6 DSW 添加量對吸附P 之二階動力吸附影響比較 .. ..... ... 53
表4.7 BOFW 添加量對吸附P 之二階動力吸附影響比較 ........... 54
表4.8 BOFW 與DSW 之K2 值比較..........…………………………………...………54
表4.9 pH 對BOFW 及DSW 吸附P 之孔隙擴散吸附影響比較………………...55
表4.10 BOFW、DSW 添加量對吸附P 之孔隙擴散吸附影響比較 ..... 57


圖目錄
圖2.1 Four phosphate species at different pH ...... 4
圖2.2 Steel slag production process ............... 7
圖3.1 The values of the absorbance as a function of P concentration .................................... 21
圖4.1 SEM micrographs of powdered BOF slag ........ 24
圖4.2 SEM micrographs of powdered DS slag ......... 25
圖4.3 Total Ca2+ concentrations of the solutions for every 10mins. ........................ 28
圖4.4 Total Conductivity of the solutions for every 10mins. ................................... 29
圖4.5 Relationship between Concentration of Ca2+ release and Conductivity ......... 29
圖4.6 Total OH- concentrations of the solutions for every 10mins. ......................... 30
圖4.7 Effects of Slags dosage for washed and unwashed slags on the residual of P……...31
圖4.8 Effects of Slags dosage on the residual P (P = 5 mg/L).................................. 34
圖4.9 Effects of Slags dosage on the residual P (P = 10 mg/L)................................35
圖4.10 Effects of Slags dosage on the amount absorbed of P (P = 5 mg/L). ........... 36
圖4.11 Effects of Slags dosage on the amount absorbed of P (P = 10 mg/L) .......... 36
圖4.12 Effects of Slags dosage on the residual of P. ...37
圖4.13 Effects of DSW dosage on the residual of P. .... 38
圖4.14 Effects of time of BOFW on the residual of P. .. 39
圖4.15 Effects of time on the residual of P. .......... 40
圖4.16 Effects of time on the amount absorbed of P. ... 40
圖4.17 Effects of Slags dosage on the residual P. ..... 42
圖4.18 Effects of Slags dosage on the residual P. ..... 42
圖4.19 Effects of BOFW Slag dosage on the residual of P..44
圖4.20 Effects of DSW Slag dosage on the residual of P...44
圖4.21 Effects of pH on residual P. .................... 45
圖4.22 Phosphate adsorption isotherm regression by Freundlich equation.( P = 10 mg/L) ............ 47
圖4.23 Phosphate adsorption isotherm regression by Freundlich equation.( P = 5 mg/L) ............. 47
圖4.24 Lagergren pseudo-second-order model for the kinetics of P adsorption onto BOFW at different pH. ..... 50
圖4.25 Lagergren pseudo-second-order model for the kinetics of P adsorption onto DSW at different pH. .... 51
圖4.26 Effects of Slag dosage on Lagergren pseudo-second-order model for the kinetics for P adsorption onto DSW.. 53
圖4.27 Effects of Slag dosage on Lagergren pseudo-second-order model for the kinetics for P adsorption onto BOFW. ........ 54
圖4.28 Intraparticle diffusion model for P adsorption onto BOFW at different pH. ......... 56
圖4.29 Intraparticle diffusion model for P adsorption onto DSW at different pH. ........... 56
圖4.30 Effects of Slag dosage on intraparticle diffusion model for P adsorption onto DSW............... 58
圖4.31 Effects of Slag dosage on intraparticle diffusion model for P adsorption onto BOF................58
參考文獻
1.	Barca, C., Troesch, S., Meyer, D., Drissen, P., Andreis, Y., & Chazarenc, F. (2013). Steel slag filters to upgrade phosphorus removal in constructed wetlands: Two years of field experiments. Environmental Science and Technology, 47(1), 549-556.
2.	Barca, C., Gerente, C., Meyer, D., Chazarenc, F., & Andres, Y. (2012). Phosphate removal from synthetic and real wastewater using steel slags produced in europe. Water Research, 46(7), 2376-2384. 
3.	Bowden, L. I., Jarvis, A. P., Younger, P. L., & Johnson, K. L. (2009). Phosphorus removal from waste waters using basic oxygen steel slag. Environmental Science and Technology, 43(7), 2476-2481. 
4.	Cheung, W. H., Szeto, Y. S., & McKay, G. (2007). Intraparticle diffusion processes during acid dye adsorption onto chitosan. Bioresource Technology, 98(15), 2897-2904.
5.	Drizo, A., Cummings, J., Weber, D., Twohig, E., Druschel, G., & Bourke, B. (2008). New evidence for rejuvenation of phosphorus retention capacity in EAF steel slag. Environmental Science and Technology, 42(16), 6191-6197. 
6.	Drizo, A., Forget, C., Chapuis, R. P., & Comeau, Y. (2006). Phosphorus removal by electric arc furnace steel slag and serpentinite. Water Research, 40(8), 1547-1554. 
7.	Duan, J., & Su, B. (2014). Removal characteristics of cd(II) from acidic aqueous solution by modified steel-making slag. Chemical Engineering Journal, 246(0), 160-167. 
8.	Feng, D., van Deventer, J. S. J., & Aldrich, C. (2004). Removal of pollutants from acid mine wastewater using metallurgical by-product slags. Separation and Purification Technology, 40(1), 61-67. 
9.	Guerra, D. J. L., & da Silva, R. A. R. (2014). Kinetic and thermodynamic studies of brazilian illite–kaolinite in natural and intercalated forms as adsorbents to removal of Zn2+ from aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers, 45(1), 268-274.
10.	Ling, H., Yong, Q. S. (2009). Phosphorus Removal in Sewage by Mixed Steel slag Fillings. Environmental Science and Information Application Technology,, (3), 292-295.
11.	Jha, V. K., Kameshima, Y., Nakajima, A., & Okada, K. (2008). Utilization of steel-making slag for the uptake of ammonium and phosphate ions from aqueous solution. Journal of Hazardous Materials, 156(1–3), 156-162. 
12.	Kim, D., Shin, M., Choi, H., Seo, C., & Baek, K. (2008). Removal mechanisms of copper using steel-making slag: Adsorption and precipitation.  Desalination, 223(1–3), 283-289.
13.	Kostura, B., Kulveitova, H., & Leško, J. (2005). Blast furnace slags as sorbents of phosphate from water solutions. Water Research, 39(9), 1795-1802. 
14.	Li, L., & Stanforth, R. (2000). Distinguishing adsorption and surface precipitation of phosphate on goethite (α-FeOOH). Journal of Colloid and Interface Science, 230(1), 12-21. 
15.	Mangwandi, C., Albadarin, A. B., Glocheux, Y., & Walker, G. M. (2014). Removal of ortho-phosphate from aqueous solution by adsorption onto dolomite. Journal of Environmental Chemical Engineering, 2(2), 1123-1130. 
16.	Oh, C., Rhee, S., Oh, M., & Park, J. (2012). Removal characteristics of as(III) and as(V) from acidic aqueous solution by steel making slag. Journal of Hazardous Materials, 213–214(0), 147-155. 
17.	Okochi, N. C., & McMartin, D. W. (2011). Laboratory investigations of stormwater remediation via slag: Effectss of metals on phosphorus removal. Journal of Hazardous Materials, 187(1–3), 250-257. 
18.	Peleka, E. N., & Deliyanni, E. A. (2009). Adsorptive removal of phosphates from aqueous solutions. Desalination, 245(1–3), 357-371. 
19.	Pratt, C., Shilton, A., Haverkamp, R. G., & Pratt, S. (2009). Assessment of physical techniques to regenerate active slag filters removing phosphorus from wastewater. Water Research, 43(2), 277-282. 
20.	Pratt, C., Shilton, A., Pratt, S., Haverkamp, R. G., & Elmetri, I. (2007). Effectss of redox potential and pH changes on phosphorus retention by melter slag filters treating wastewater. Environmental Science and Technology,41(18), 6585-6590.
21.	Pratt C. and Shilton A. (2010) Active slag filters- simple and sustainable phosphorus removal from wastewater using steel industry byproduct. Water Science and Technology, 62(8), 1713-1718.
22.	Shilton, A. N., Elmetri, I., Drizo, A., Pratt, S., Haverkamp, R. G., & Bilby, S. C. (2006). Phosphorus removal by an ‘active’ slag filter–a decade of full scale experience. Water Research, 40(1), 113-118. 
23.	Song, X., Pan, Y., Wu, Q., Cheng, Z., & Ma, W. (2011). Phosphate removal from aqueous solutions by adsorption using ferric sludge. Desalination, 280(1–3), 384-390. 
24.	Wilsenach, J. A., Schuurbiers, C. A. H., & van Loosdrecht, M. C. M. (2007). Phosphate and potassium recovery from source separated urine through struvite precipitation. Water Research, 41(2), 458-466. 
25.	Xiong, J., He, Z., Mahmood, Q., Liu, D., Yang, X., & Islam, E. (2008). Phosphate removal from solution using steel slag through magnetic separation. Journal of Hazardous Materials, 152(1), 211-215. 
26.	Xiong, J. B., & Mahmood, Q. (2010). Adsorptive removal of phosphate from aqueous media by peat. Desalination, 259(1–3), 59-64. 
27.	Xiong, J., Qin, Y., Islam, E., Yue, M., & Wang, W. (2011). Phosphate removal from solution using powdered freshwater mussel shells. Desalination, 276(1–3), 317-321.
28.	Xue, Y., Hou, H., & Zhu, S. (2009). Characteristics and mechanisms of phosphate adsorption onto basic oxygen furnace slag. Journal of Hazardous Materials, 162(2–3), 973-980. 
29.	Xue, Y., Wu, S., & Zhou, M. (2013). Adsorption characterization of cu(II) from aqueous solution onto basic oxygen furnace slag. Chemical Engineering Journal, 231(0), 355-364. 
30.	Zhao, X. H., & Zhao, Y. Q. (2009). Investigation of phosphorus desorption from P-saturated alum sludge used as a substrate in constructed wetland. Separation and Purification Technology, 66(1), 71-75. 
31.	Zhu, X., & Jyo, A. (2005). Column-mode phosphate removal by a novel highly selective adsorbent. Water Research, 39(11), 2301-2308.
32.	中鋼集團,2003,”爐石利用推廣手冊”。
33.	李敏菱,2011,”利用轉爐石粉料處理含銅廢水之研究”,國立台北科技大學,資源工程所碩士論文。
34.	袁家偉,2007,”使用轉爐石提升耐久性瀝青混凝土成效之研究”,國立中央大學,土木工程系碩士論文。
35.	郭育宗,2009,”轉爐石去除河水中磷之探討”,國立屏東科技大學,環境工程與科學系碩士論文。
36.	張信義,2004,”煉鋼爐石去除水中砷及磷之研究”,國立屏東科技大學,環境工程與科學系碩士論文。
37.	黃昭貴,2005,”含磷污泥與鋁鹽污泥之共調理脫水”,碩士論文,國立台灣科技大學,化學工程學系。 
38.	黃隆昇等人,2010,”評估煉鋼爐石應用於瀝青混凝土之性質及現場鋪設成效”,中工高雄會刊,第18卷,第2期。
39.	廖秋榮,2008,”農路鋪設中鋼公司轉爐石之環境相容性評估”,轉爐石應用與管理研討會暨圓桌會議,台北,第144-152 頁。
40.	謝莞蓁,2010,”以不同介質表面下流動式人工濕地系統去除金屬加工廠放流水中重金屬之研究”,嘉南藥理科技大學,環境工程與科學系碩士論文。
41.	蕭宇廷,2012,”淨水污泥餅作為吸附材料處理含磷廢水之研究”,碩士論文,國立中央大學,環境工程研究所。
論文全文使用權限
校內
紙本論文於授權書繳交後2年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後2年公開
校外
同意授權
校外電子論文於授權書繳交後2年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信