淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1606201210555600
中文論文名稱 死亡率變動與資本市場之關聯性研究
英文論文名稱 The Study of Relationships between Mortality Change and Capital Market.
校院名稱 淡江大學
系所名稱(中) 保險學系保險經營碩士班
系所名稱(英) Department of Insurance
學年度 100
學期 2
出版年 101
研究生中文姓名 黃揚陵
研究生英文姓名 Yang-Ling Huang
學號 699560263
學位類別 碩士
語文別 中文
口試日期 2012-06-01
論文頁數 57頁
口試委員 指導教授-繆震宇
委員-曾郁仁
委員-黃瑞卿
中文關鍵字 長壽風險  避險  Lee-Carter模型  死亡率  股票溢酬 
英文關鍵字 longevity risk  hedge  Lee-Carter model  mortality  stock premium 
學科別分類 學科別社會科學商學
中文摘要 由於醫療技術進步及政府對公共衛生的重視,延長了人類的壽命,加上生育率下降,世界各國紛紛邁入高齡化社會,這是全球所共同面對的課題。對販售年金險的壽險公司而言,為避免長壽風險帶來的損失,勢必應擬定一套健全的避險策略。然而,自然避險或證券化商品皆有實施的困難度及缺點,加上已有許多研究發現,人口統計變數與股票溢酬具有相關性,故本研究採用美國、日本、英國、德國及法國五個國家的死亡率數據參考Lee-Carter模型及經濟變數資料,配合資本資產訂價模型(CAPM),期望利用有別於傳統生命表的動態死亡率模型,可更有效地找出死亡率變動與股票溢酬之間的關聯性,並在高齡化的趨勢下,可使壽險公司在風險管理上找到新的突破,提供壽險公司規避死亡率變動風險的另一種選擇,提升整體的避險效果。
本研究結果顯示,以G5的縱橫資料分析時,未預期死亡率與股票溢酬之間無顯著相關;以各國資料分析時,僅在累積未來三年及累積未來五年有少數呈顯著相關。表示,在Lee-Carter模型下,未預期死亡率與股票溢酬並無顯著關聯存在,似乎意味著當壽險公司使用動態的死亡率模型進行商品定價後,所產生的未預期死亡率風險可能無法透過資本市場來規避。另一方面,由於Lee-Carter模型所產生的未預期死亡率非常小,或許可利用費率調整的方式,將未預期死亡率風險反應於保費之中。
英文摘要 Because of the advances in health technology and of the improvement of public health, human life expectancy has been increasing significantly. Moreover, recent fertility declines have been more rapidly around the world, so ageing is a challenge for the whole world. In order to avoid the loss of longevity risk, life insurance companies need to develop robust hedging strategies. However, there are some difficulties and shortcomings for the insurance companies to execute nature hedge or securitization.
Many researches have proved that links between stock premium and demographic characteristics, so this paper analyzes mortality rates of USA, Japan, England, Germany, and France over the period from 1950 to 2010 refer to the Lee-Carter model, economic variables, and CAPM. By using the dynamic mortality model different from traditional life table, we expect to find the links between stock premium and demographic characteristics and to provide another selection for the life insurance companies to hedge the risk of mortality changes.
According to the result from analyzing the five countries, it is no significant correlation between stock premium and demographic characteristics. By analyzing each country, there is some correlation only for three years and five years from now.
Hence, when the life insurance companies use dynamic mortality model, it is easily for them to predict the long-term trends because there is no significant correlation between stock premium and demographic characteristics. When the companies consider demographic risk to develop hedge strategies, they do not need to consider capital market instruments. Also, while designing insurance policies, the companies could put factors of demographic risk in to consideration and could increase the premium to disperse risks.
論文目次 第一章 緒論................................................................................................................1
第一節 研究背景................................................................................................1
第二節 研究動機與目的....................................................................................3
第二章 文獻回顧........................................................................................................5
第一節 死亡率模型之發展................................................................................5
第二節 死亡率變動對資本市場報酬之影響....................................................8
第三章 研究方法......................................................................................................12
第一節 死亡率模型..........................................................................................12
第二節 研究假說..............................................................................................14
第三節 實證模型..............................................................................................16
第四節 資料來源與變數定義..........................................................................18
第五節 實證方法..............................................................................................21
第四章 實證結果......................................................................................................24
第一節 敘述性統計..........................................................................................24
第二節 G5 實證結果........................................................................................40
第三節 各國實證結果......................................................................................42
第五章 結論與建議..................................................................................................46
參考文獻......................................................................................................................47
附錄..............................................................................................................................49

圖1-1 G5與台灣之零歲平均餘命直條圖 1
圖1-2 G5與台灣之生育率直條圖 1
圖1-3 G5與台灣之扶養比、扶幼比及扶老比 2
圖4-1 各變數散佈圖(法國) 27
續圖4-1 各變數散佈圖(法國) 28
續圖4-1 各變數散佈圖(德國) 29
續圖4-1 各變數散佈圖(德國) 30
續圖4-1 各變數散佈圖(日本) 31
續圖4-1 各變數散佈圖(日本) 32
續圖4-1 各變數散佈圖(英國) 33
續圖4-1 各變數散佈圖(英國) 34
續圖4-1 各變數散佈圖(美國) 35
續圖4-1 各變數散佈圖(美國) 36

表3-1 單根檢定 21
表4-1 各變數敘述性統計表 25
續表4-1 各變數敘述性統計表 26
表4-2 各國參數間相關係數矩陣 37
續表4-2 各國參數間相關係數矩陣 38
續表4-2 各國參數間相關係數矩陣 39
表4-3 G5實證結果 41
表4-4 預測未來一年各國比較股票溢酬實證結果 43
表4-5 累積未來三年各國比較股票溢酬實證結果 44
表4-6 累積未來五年各國比較股票溢酬實證結果 45
附表1-1 Lee-Carter死亡率模型配適參數表( 、 ) 49
附表1-2 Lee-Carter死亡率模型配適參數表( ) 49
續附表1-2 Lee-Carter死亡率模型配適參數表( ) 50
續附表1-2 Lee-Carter死亡率模型配適參數表( ) 51
續附表1-2 Lee-Carter死亡率模型配適參數表( ) 52
續附表1-2 Lee-Carter死亡率模型配適參數表( ) 53
附表2 資料匯整表 54
附表3 各參數國家間相關係數矩陣 56
續附表3 各參數國家間相關係數矩陣 57

參考文獻 1. Abel, A. B. (2001). “Will bequests attenuate the predicted meltdown in stock prices when baby boomers retire?” Working paper No. 01-2, The Wharton School of the University of Pennsylvania and NBER.
2. Ang, A., & Maddaloni, A. (2005). “Do demographic changes affect risk premiums? Evidence from international data*.” Journal of Business, 78(1), 341-379.
3. Bakshi, G.S., & Chen, Z. (1994). “Baby boom, population aging, and capital markets.” Journal of Business, 67(2), 165-202.
4. Bergantino, Steven M. (1998). “Life cycle investment behavior, demographics, and asset prices.” PhD Dissertation, MIT.
5. Blake, D. & Burrows, W. (2001). “Survivor bonds: Helping to hedge mortality risk.” Journal of Risk and Insurance, 68, 339-248.
6. Brooks, R. (2000).“What will happen to financial markets when the baby boomers retire?” IMF Working paper: WP/00/18.
7. Cairns, A.J.G., Blake, D., Dowd, K., Coughlan, G.D., Epstein, D., Ong, A. & Balevich, I. (2009). “A quantitative comparison of stochastic mortality models using data from England & Wales and the United States.” North American Actuarial Journal 13, 1-35.
8. Carriere, J.F. (1992). “Parametric models for life table.” Transactions of Society of Actuaries XLIV: 77-99.
9. Chan, W.S., Li, S.H. & Cheung, S.H. (2008). “Testing deterministic versus stochastic trends in the Lee-Carter mortality indexes and its implications for projecting mortality improvements at advanced ages.” Paper presented at the Living to 100 and Beyond Symposium, Orlando, FL, January 7-9.
10. Cox, S.H. & Lin, Y. (2007). “Natural hedging of life and annuity mortality risks.” American Actuarial Journal, 11(3), 1-15.
11. Davis E. P. & Li C. (2003). “Demographics and financial asset prices in the major industrial economies.” Brunel University Working Paper No. 03-07.
12. Fama, E. F., & French, K. R. (1988). “Dividend yields and expected stock returns.” Journal of Financial Economics, 22(1), 3-25.
13. Goyal, A. (2004). “Demographics, stock market flows, and stock returns.” Journal of Financial and Quantitative Analysis, 39(1), 115-142.
14. Gründl, H., Post, T. & Schulze, R.N. (2006). “To hedge or not to hedge: Managing demographic risk in life insurance companies.” The journal of Risk and Insurance 73, 19-41.
15. Hafner, R. & Mader, W. (2007). “How to deal with longevity risk: A capital market perspective.” Allianz Global Investors Asia-Pacific Pensions 2007, pp.27-30.
16. Huang, Miao & Tzeng (2011). “Does mortality improvement increase equity risk premiums?” Working paper.
17. Huynh, W., Mallik, G., & Hettihewa, S. (2006). “The impact of macroeconomic variables, demographic structure and compulsory superannuation on share prices: the case of Australia” Journal of International Business Studies, 37, 687-698.
18. Keim, D. B., & Stambaugh, R. F. (1986). “Predicting returns in the stock and bond markets.” Journal of Financial Economics, 17(2), 357-390.
19. Lee, R., & Carter, L. (1992). “Modeling and forecasting U.S. mortality.” Journal of the American Statistical Association 87: 659-671.
20. Poterba, J. M. (2001). “Demographic structure and asset returns.” The Review of Economics and Statistics, 83(4), 565-584.
21. Poterba, J. M. (2004). “The impact of population ageing on financial markets.”, NBER Working Paper No. 10851.
22. Yang, S.S., Yue, J.C. & Huang, H.C. (2010) “Modeling longevity risks using a principal component approach: A comparison with existing stochastic mortality models.” Insurance: Mathematics and Economics 46, 254-270.
23. Yoo, P. S. (1994) “Age dependent portfolio selection.” Working paper on 94-003A, Federal Reserve Bank of St. Louis.
24. Wang, J.L., Huang, H.C., Yang, S.S. & Tsai, J.T. (2010). “An optimal product mix for hedging longevity risk in life insurance companies: The immunization theory approach.” Journal of Risk and Insurance 77, 473-497.
25. Wong-Fupuy, C. & Haberman S. (2004) “Projecting mortality trends: Recent developments in the United Kingdom and the United States.” North American Actuarial Journal 8(1): 56-83.
26. 何駿 (2008),「死亡率改變對股票溢酬之影響-以國際資料為例」,淡江大學保險學系保險經營碩士論文。
27. 吳靜雯 (2008),「人口結構轉變對總體經濟及金融市場的影響」,東吳大學國際經營與貿易學系碩士班貿易金融組碩士論文。
28. 莊朝榮 (2005),「高齡化對金融市場的影響」,貨幣觀測與信用評等,第56期,pp.2-9。
29. 陳威臺 (2010),「人口結構變遷對股市風險溢酬的影響-跨國實證研究」,世新大學管理學院財務金融學系碩士論文。
30. 黃台心,《計量經濟學》,雙葉書廊,2006年2月。
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2012-06-21公開。
  • 同意授權瀏覽/列印電子全文服務,於2012-06-21起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信