淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1606200923341900
中文論文名稱 利用最小平方法直接預測在正交多頻分工中通道頻率響應
英文論文名稱 A Novel Least-Squares Approach for Direct Estimation of OFDM Channel Frequency Response
校院名稱 淡江大學
系所名稱(中) 電機工程學系碩士在職專班
系所名稱(英) Department of Electrical Engineering
學年度 97
學期 2
出版年 98
研究生中文姓名 毛鉦翔
研究生英文姓名 Cheng-Hsiang Mao
學號 791350076
學位類別 碩士
語文別 英文
口試日期 2009-06-05
論文頁數 25頁
口試委員 指導教授-嚴雨田
委員-余金郎
委員-易志孝
中文關鍵字 正交分頻多工  通道預測  最大可能估計法  最小平方法  慢速衰減通道  通道頻率響應 
英文關鍵字 orthogonal frequency division multiplexing (OFDM)  channel estimation  maximum-likelihood  least squares  slow fading channel  channel frequency response 
學科別分類 學科別應用科學電機及電子
中文摘要 一般應用於正交分頻多工系統中的無線通道預測技術, 無論是採用最大可能估計法(maximum-likelihood estimation)或是最小平方法(least squares)來預測通道,大多是擷取通道脈衝響應為參數而不是通道頻率響應為參數來做預測。因為在多路徑散射通道中的通道脈衝響應係數是沒有相關聯性,而各子載頻之間的通道頻率響應則是具有相當程度相關聯性的,但是在正交分頻多工系統中被用於單頭(one tap)頻域等化器上所需的通道資訊必須是通道頻率響應。因此一般實際上的做法都是先得到通道脈衝響應的預估值,再利用離散傅利葉將結果轉換成通道頻率響應的預估值。在本論文中提出了只要當通道是屬於慢速衰減通道,就可以設計出最小平方演算法來利用重複的正交多頻分工系統的訓練符塊(training symbol block),直接估計通道頻率響應的結果,而不用先得到通道脈衝響應的預估值。理論的分析及模擬的結果對於通道預估的表現將會呈現於後,而預估效果是利用均方誤差(mean square error)來評估。
英文摘要 For channel estimation in orthogonal frequency division multiplexing (OFDM) systems operated over wireless channels, either by maximum-likelihood (ML) or least squares (LS) criterion, one usually must choose the channel impulse responses (CIRs) rather than the channel frequency responses (CFRs) as the parameters to be estimated. This is because CIR taps of a multipath dispersive channel are uncorrelated while the subcarrier CFRs are correlated. But the ultimate channel information needed in OFDM should be the CFRs which are used for the one-tap frequency-domain equalizers. Thus, the usual practice is to first get the CIR estimates and then convert them into CFR estimates by discrete Fourier transforms (DFTs). In this paper, we show that, when channel fading is slow, one can scheme a least-squares (LS) algorithm using repeated OFDM training blocks to directly estimate the subcarrier CFRs without first obtaining the CIR estimates. Theoretical analysis accompanied by simulation results will be given for the estimation performance in terms of estimator mean square error (MSE).
論文目次 TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION..........1
CHAPTER 2 THE OFDM SYSTEM..........3
2.1 The Signal Model..........4
2.2 The Channel..........6
2.3 Cyclic Prefix..........7
2.4 The Receiver..........7
CHAPTER 3 PRINCIPLE OF LEAST SQUARES METHOD...........10
3.1 History of Least Squares Method..........10
3.2 The Basic Theory of Least Squares Method........11
CHAPTER 4 LEAST SQUARES ESTIMATION FOR CFR IN OFDM SYSTEMS..........14
4.1 OFDM Channel Estimation..........14
4.2 The Novel LS CFR Estimation Algorithm for OFDM..15
4.3 The Estimator Performance..........21
CHAPTER 5 SIMULATION RESULTS..........18
CHAPTER 6 CONCLUSION..........22
REFERENCES..........23

LIST OF FIGURES

Figure 2.1 Spectrum of a single OFDM subcarrier...3
Figure 2.2 OFDM spectrum of several adjacent subcarriers ...4
Figure 2.3 OFDM block diagram...8
Figure 2.4 Concept of a cyclic prefix...9
Figure 5.1 MSE of LS CFR estimator vs. SNR....19
Figure 5.2 MSE of LS CFR estimator vs. SNR....20
Figure 5.3 MSE of LS CFR estimator vs. SNR....21


參考文獻 [1] R. W. Chang, “High-speed multichannel data transmission with bandlimited orthogonal signals,” Bell Syst. Technol. J., vol. 45, pp. 1775-1795, Dec. 1966.
[2] 3GPP standard, Overview of 3GPP Release 8 v0.0.3 (2008-11)
[3] T. Pollet, and M. Moeneclaey, “Synchronizability of OFDM signals,” Global Telecommunications Conference, GLOBECOM '95., vol. 3, Nov. 13~17, 1995 pp.2054 – 2058.
[4] Bo Ai, Zhi-xing Yang, Chang-yong Pan, Jian-hua Ge, Yong Wang, and Zhen Lu, “On the Synchronization Techniques for Wireless OFDM Systems” IEEE Trans, on Broadcasting, vol., issue 2, pp.236 – 244, June 2006.
[5] X. Ma, H. Kobayashi and S. C. Schwartz, “EM-based channel estimation for OFDM systems”, IEEE Conf. on Signal, System and Computers, vol.2, Nov. 2002, pp. 1642-1646.
[6] W. Y. Zou and Y. Wu, “COFDM: an overview,” IEEE transactions on broadcasting, vol. 41, no. 1, March 1995.
[7] R.S. Bahai and B. R. Saltzberg, Multi-Carrier Digital Communication, Theory and Applications of OFDM, Springer, New York (2004)
[8] J.J. van de Beek, P. Ä Odling, S.K. Wilson, and P.O. Borjesson “Orthogonal frequency-division multiplexing (OFDM),” Review of Radio Science, 1996, Oxford University Press.
[9] Michel Verhaegen, Vincent Verdult, “Filtering and System Identification: A Least Squares Approach” Cambridge University Press; 1st edition, May 28, 2007
[10] J. G.. Proakis, Digital Communications, 4th ed. McGraw-Hill: New York, 2001.
[11] J. J. van de Beek, O. Edfors, M. Sandell, S. K. Wilson, and P. O. Borjesson, “On channel estimation in OFDM systems,” Proc. IEEE 45th Veh. Technol. Conf., Chicago, Il., 1995, vol. 2, 25-28, July 1995, pp. 815-819.
[12] F. Tufvesson and T. Maseng, “Pilot assisted channel estimation for OFDM in mobile cellular systems,” IEEE 47th Veh. Technol. Conf., vol. 3, 4-7 May 1997, pp. 1639-1643.
[13] M. H. Hsieh and C. H. Wei, “Channel estimation for OFDM systems based on comb-type pilot arrangement in frequency selective fading channels,” IEEE Trans. Consumer Electronics, vol. 44, no. 1, pp. 217-225, Feb. 1998.
[14] Edfors, M. Sandell, J-J van de Beek, S. K. Wilson, and P. O. Borjesson, “OFDM channel estimation by singular value decomposition,” IEEE Tran. Commun., vol. 46, no. 7, pp. 931-938, July 1998.
[15] Y. Li, N. Seshadri, and S. Ariyavisitakul, “Channel estimation for OFDM systems with transmitter diversity in mobile wireless channels,” IEEE J. Selected Areas in Commun., vol. 17, no. 3, pp. 461-471, Mar. 1999.
[16] Y. Li, “Pilot-symbol-aided channel estimation for OFDM in wireless systems,” IEEE Trans. Veh. Technol., vol. 49, no. 4, pp. 1207-1215, July 2000.
[17] T. L. Tung, K. Yao, and R. E. Hudson, “Channel estimation and adaptive power allocation for performance and capacity improvement of multiple-antenna OFDM systems,” #rd IEEE signal Processing Workshop on Signal Processing Advances in Wireless Commun., Taoyuan, Taiwan, Mar. 20-23, 2001, pp. 82-85.
[18] Y. Li, “Simplified channel estimation for OFDM systems with multiple transmit antennas,” IEEE Trans. Wireless Commun., vol. 1, no. 1, pp. 67-75, Jan. 2002.
[19] H. Minn, D. I. Kim, and V. K. Bhargava, “A reduced complexity channel estimation for OFDM systems with transmit diversity in mobile wireless channels,” IEEE Trans. Commun., vol. 50, no. 5, pp. 799-807, May 2002.
[20] Y. Li, J. H. Winters, and N. R. Sollenberger, “MIMI-OFDM for wireless communications: signal detection with enhanced channel estimation,” IEEE Trans. Commun., vol. 50, no. 9, pp. 1471-1477, Sep. 2002.
[21] Z Cheng and D. Dahlhaus, “Time versus frequency domain channel estimation for OFDM systems with antenna arrays,’ ICSP’02 Proceedings, 2002, pp. 1340-1343.
[22] S. Coleri, M. Ergen, A. Puri, and A. Bahai, “Channel estimation techniques based on pilot arrangement in OFDM systems,” IEEE Trans. Broadcasting, vol. 48, no. 3, pp. 223-229, Sep. 2002.
[23] I. Barhumi, G. Leus, and M. Moonen, “Optimal training design for MIMO OFDM systems in mobile wireless channels,” IEEE Trans. Signal Processing, vol. 51, no. 6, pp. 1615-1624, June 2003.
[24] M. Shin, H. Lee, and C. Lee, “Enhanced channel-estimation technique for MIMO-OFDM systems,” IEEE Trans. Veh. Technol., vol. 53, no. 1, pp. 261-265, Jan. 2004.
[25] X. Wang, Y. Wu, and J.-Y. Chouinard, “Modified channel estimation algorithms for OFDM systems with reduced complexity,” ICSP’04 Proceedings, vol. 2, Aug. 31~Sep. 4, 2004, pp. 1747-1751.
[26] M. Z. A. Khan, “Low-complexity ML channel estimation schemes for OFDM,” 2005 13th IEEICC, vol. 2, Nov. 16-18, 2005, pp. 607-612.
[27] D. C. Chu, “Polyphase codes with good periodic correlation properties,” IEEE Trans. Information Theory, pp. 531-532, 1972.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2011-07-03公開。
  • 同意授權瀏覽/列印電子全文服務,於2011-07-03起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信