淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1606200515554200
中文論文名稱 台灣股價指數期貨之頑強最適避險比率估計值
英文論文名稱 Robust Estimation of Optimal Hedge Ratio in Taiwan stock index futures
校院名稱 淡江大學
系所名稱(中) 財務金融學系碩士班
系所名稱(英) Department of Banking and Finance
學年度 93
學期 2
出版年 94
研究生中文姓名 曾正文
研究生英文姓名 Cheng-Wen Tseng
學號 692490948
學位類別 碩士
語文別 中文
口試日期 2005-06-19
論文頁數 65頁
口試委員 指導教授-李命志
委員-邱建良
委員-王凱立
委員-俞碩彥
中文關鍵字 避險  厚尾  等權移動平均法  指數加權移動平均法 
英文關鍵字 hedge  fat-tail  EWMA  SWMA 
學科別分類 學科別社會科學商學
中文摘要 本篇研究同時考慮解決資產報酬變異隨時間變化的特性與當標的資料分配不符合原始假設的問題。為配合資產報酬變異隨時間變化的特性,通常利用等權移動平均法(SWMA)、一般向量自我迴歸共變異矩陣(GARCH)與指數加權移動平均法(EWMA)等模型來對估計值加以處理。然而,這些方法都是根據樣本的變異數或報酬的共變異數估算的估計值。當原始的標的資料分配不符合假設,則會有估計不具效率的問題。本研究最主要目的在估計這些厚尾高峽峰型態資料之頑強最適避險比率,來驗證台灣股價指數期貨與摩根台灣股價指數期貨並進行動態的避險策略。本研究同時使用條件下等權移動平均法與指數加權移動平均法來進行頑強最適避險比率的估算,在將之與非條件下的個別方法估算出來的估算值進行比較。可以得知頑強最適避險比率估算的避險投資組合變異數比個別方法相對較小,更甚而言之,頑強的最適避險比率所估算的變異數比為避險時所估算的變異數減少相當多的程度,且可在動態避險時大量的減少交易成本。
英文摘要 This article considers solving that conditional distribution of most financial asset return tends to vary over time and the distribution of underlying asset does not conform with ordinary assumption simultaneously. In order to fit time-varying volatility in returns of asset, estimators dealt with simple weighted moving average (SWMA), GARCH, or EWMA models are usually applied. However, these methods are estimated according to sample variance and covariance estimators of returns. When the distribution of underlying asset does not match with the ordinary assumption, the estimators are not in general efficient. The primary purpose in the article is to verify the dynamic hedging strategies in Taiwan stock index futures and MSCI futures by estimating the robust estimation of optimal hedge ratio (OHR) when the data is leptokurtic and fat-tail. This article uses conditional SWMA and EWMA at the same time to estimate the robust estimation of OHR, and compares with the results in unconditional SWMA and EWMA. The variance of hedged portfolio is computed in the robust OHR are less than that in the unconditional way. In addition, the variance of hedged portfolio is computed in the robust OHR are much less than before, thus reducing the transaction costs which produces in dynamic hedging strategies.
論文目次 第一章 緒 論………………………………………………………………………1
第一節 研究動機………………………………………………………………1
第二節 研究目的………………………………………………………………2
第三節 研究架構………………………………………………………………3
第四節 研究流程………………………………………………………………4
第二章 文獻回顧……………………………………………………………………5
第一節 股價指數期貨契約……………………………………………………5
第二節 台灣股價指數期貨契約………………………………………………8
第三節 避險理論回顧……………………………………………… ……….11
第四節 實證相關文獻………………………………………………………..14
第三章 研究方法…………………………………………………………………..23
第一節 避險比率的估計……………………………………………………..23
第二節 等權移動平均法……………………………………………………..24
第三節 指數移動平均法……………………………………………………..25
第四節 頑強最適避險比率估計值…………………………………………..28
第五節 避險績效的衡量……………………………………………………..33
第四章 實證結果…………………………………………………………………..36
第一節 資料來源……………………………………………………………..36
第二節 資料型態……………………………………………………………..38
第三節 避險比率的估計結果………………………………………………..43
第四節 避險績效的結果……………………………………………………..45
第五章 結 論……………………………………………………………………..58
中文參考文獻………………………………………………………………………..61
英文參考文獻………………………………………………………………………..62

表次

【表2-1】以台灣股價指數為標的之股價期貨契約………………………………10
【表4-1】台灣股價指數現貨與期貨價格的基本統計量…………………………40
【表4-2】台灣股價指數現貨與期貨報酬的基本統計量…………………………41
【表4-3】MSCI現貨與期貨價格的基本統計量………………………………….41
【表4-4】MSCI現貨與期貨報酬的基本統計量………………………………….42
【表4-5】避險比率和投資組合變異估計結果(台灣股價指數期貨)…………52
【表4-6】不同控制變數下的投資組合變異估計結果(台灣股價指數期貨)…52
【表4-5】避險比率和投資組合變異估計結果(MSCI)………………………..53
【表4-6】不同控制變數下的投資組合變異估計結果(MSCI)………………..53


圖次

【圖1-1】研究流程圖………………………………………………………………..3
【圖3-1】不同控制變數下之PE分配…………………………………………….32
【圖3-2】不同分配的厚尾程度……………………………………………………32
【圖4-1】台灣股價指數現貨與期貨價格走勢圖…………………………………38
【圖4-2】台灣股價指數現貨與期貨報酬…………………………………………38
【圖4-3】MSCI現貨與期貨價格走勢圖………………………………………….39
【圖4-4】MSCI現貨與期貨價格………………………………………………….39
【圖4-5】移動視窗的估計方法圖示………………………………………………44
【圖4-6】台灣股價指數現貨的避險比率估計結果………………………………50
【圖4-7】摩根台灣股價指數現貨的避險比率估計結果…………………………51
參考文獻 中文參考摘要
李命志、邱哲修、黃景明、陳君達,(2003),臺灣股價指數期貨最適避險策略之研究,企業管理學報,第58卷,頁85-104。

江文強(1997),股價指數期貨避險效果之研究,交通大學管理科學研究所。

余尚武、賴昌作(2001),「股價指數期貨之避險比率與避險績效」,管理研究學報,第1卷第1期,頁1-31。

吳方聖(2002),運用條件Power EWMA估計式衡量風險值之績效研究,東吳大學企業管理學研究所。

高 峰(2003) ,跳躍風險之避險策略,淡江大學財務金融研究所碩士論文。

陳政德(1998), 利用國外台股指數期貨避險最適避險比率之探討,國立成功大學企業管理學系研究所。

張哲宇(1997),股價指數期貨避險比率之研究,台灣工業技術學院管理技術研究所企業管理學程碩士論文。

張育達(1991),期貨契約最適避險策略之研究,台灣大學財務金融學研究所。

黃景明(2002),台灣股價指數期貨最適避險策略之研究,淡江大學財務金融研究所碩士論文。

溫曜誌(1998),以 SGX摩根台股指數期貨規避台灣股價指數風險之研究,政治大學財務管理研究所碩士論文。

英文參考摘要
Alexander, C., and Leigh, C. (1997). “On the covariance matrices used in value at risk models”, Journal of Derivatives, Vol.4, Page 50-62.

Baillie, R. and DeGennaro , R. (1990). “Stock returns and volatility”, Journal of Financial and Quantitative Analysis, Vol. 25, Page 203-214.

Baillie, R. T. and R. J. Myers, (1991) “Bivariate GARCH Estimation of the Optimal Commodity Futures Hedge”, Journal of Applied Econometric , Vol.6 , Page 109-124.

Bollerslev, T., (1986) “Generalized Autoregressive Conditional Heteroskedasticity”, Journal of Econometrics, Vol. 31, Page 307-327.

Bollerslev, T., (1987) “A Conditionally Heteroskedasticity Time Series Model for Speculative Prices and Rates of Return”, Review of Economics and Statistics, Vol. 69, Page 542-547.

Bollerslev,T., Engle, R. F., and Wooldridge, J. M. (1988).”A capital asset pricing model with time-varying covariances”, Journal of Political Economy, Vol.96,
Page 116-131.

Bollerslev, T. (1990)”Modeling the coherence in short-run nominal exchange
rates: A multivariate generalized ARCH approach”, Review of Economics
and Statistics, Vol.72,Page 498-505.

Bollerslev, T., Chou, R. and Kroner, K. (1992). ” ARCH modeling in finance”,
Journal of Econometrics, Vol.52, Page 5-59.

Bondesson, L. (1975).” Normal distribution, gamma distribution and quadratic
polynomial statistics”, Scandinavian Journal of Statistics,Vol.2,Page 138-144.

Boudoukh, J., Richardson, M.,and Whitelaw, R. (1997).” Investigation of a class of volatility estimation”, Journal of Derivatives, Vol. 4, Page 63-71.

Brooks, C. and James Chong (2001)” The Cross-Currency Hedging Performance of Implied Versus Statistical Forecasting Models”, Journal of Futures Markets, Vol.21-11, Page 1043-1069.

Cecchetti, S.G., Cumby, R.E., and Figlewski, S. (1988) “Estimation of Optimal
Futures Hedge”, Review of Economics and Statistics, Vol.70, Page 623-630.

Chen, Sheng-Syan, Lee, C.F., Shrestha, Keshab, (2003) ”Futures hedge ratios: a review”, Quarterly Review of Economics and Finance, Vol.43 , Page 433-465

Clements, M., and Hendry, D. (1998) ”Forecasting economic time series”, New York : Cambridge University Press.

Ederington, L. H., (1979) “The Hedging Performance of the New Future Markets”, Journal of Finance, Vol. 34, Page 157-170

Engle, R. F. (1982) “Autoregressive conditional heteroscedasticity with estimates
of the variance of U.K. inflation”, Econometrica , Vol.50, Page 987-1008.

Engle, R. F., and Bollerslev, T. (1986) “Modeling the persistence of conditional
variances”, Econometric Reviews, Vol.5, Page 1-50.

Fama, E. F., (1965)“The Behavior of Stock Market Prices”, Journal of Business, Vol.38, Page 34-105.

Gagnon, L. and Lypny, G. (1995).” Hedging short-term interest risk under time varying distributions”, Journal of Futures Markets, Vol.15,Page 767–783.

Goldenberg, D. (1988) “Trading frictions and futures price movements”, Journal
of Financial and Quantitative Analysis, Vol.23, Page 465-483.

Guermat, C., and Harris, R. D. F. (2002) ”Robust conditional variance estimation and value at risk”, Journal of Risk, Vol.4, Page 25-41.

Howard, C. T. and L. J. D’Antonio,(1984) “A Risk-Return Measure of Hedging Effectiveness” , Journal of Financial and Quantitative Analysis , Vol.19, Page 101-112.

Hsin, C. W., J. Kuo , and C. F. Lee,(1984) “A new measure to compare the hedging effectiveness of foreign currency futures versus options” , Journal of Futures Markets, Vol.14, Page 685-707.

Huber, P. (1981) “Robust statistics”, New York: Wiley.

Johnson, Leland L. (1960) “The Theory of Hedging and Speculation in Commodity Futures”, The Reviews of Economic Studies, Vol.27-3, Page 139-151.

JP Morgan. (1996) “Riskmetrics™ Technical document”, 4th ed. New York: JP
Morgan.

Kano, Y. (1994). “Consistency property of elliptical probability density functions”,
Journal of Multivariate Analysis, Vol.51 , Page 139-147.

Kroner, K. F. and Sultan, J. (1991) ” Exchange rate volatility and time varying
hedge ratios”, Pacific-Basin Capital Markets Research, Vol.2, Page 397-412.

Kroner , K. F. and Sultan, J. (1993) “Time-Varying Distributions and Dynamic Hedging with Foreign Currency Futures”, The Journal of Financial and Quantitative Analysis, Vol.4, Page 535-551.

Lin, J. W., Najand, M., and Yung, K. (1994).”Hedging with currency futures: OLS vs. GARCH”, Journal of Multinational Financial Management, Vol.4,Page 45–67.

Markowitz, H., (1952) “Portfolio Selection”, Journal of Finance, Vol.7-1, Page 77-91.

Myers (1991) “Estimating Time-Varying Optimal Hedge Ratios on Futures Markets”, Journal of Futures Markets, Vol.11-1, Page 39-53.

Nelson, D., and Foster, D. (1996).” Asymptotic filtering theory for univariate ARCH models”, Econometric , Vol.62, Page 1-41.

Park, T. H., and Switzer, L. N. (1995). ” Bivariate GARCH estimation of the optimal
hedge ratios for stock index futures: A note”, Journal of Futures Markets, Vol.15, Page 61-67.

Schwarz, G., (1978) “Estimating the Dimension of a Model”, Annual Statistics, Vol. 6, Page 461-464.

Solnik, B. (2000) “International investments”, 4th ed. Boston: Addison Wesley Longman Inc.

Spanos, A. (1999). ”Probability theory and statistical inference”, 2nd ed. New York : Cambridge University Press.

Stein , J.L. (1961) “The Simultaneous Determination of Spot and Futures Prices”, The American Economic Review, Vol. 51, Page 1012-1025.

Tong, W.H.S. (1996).”An examination of dynamic hedging”, Journal of International Money and Finance, Vol.15, Page 19-35.

Working, H. (1953) “Futures Trading and Hedging”, American Economic Review, Vol. 43-3, Page 314-343.

Working, H. (1962) ” New Concepts Concerning Futures Markets and Prices”, The American Economic Review, Vol. 52, Page 431 -459.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2005-06-27公開。
  • 同意授權瀏覽/列印電子全文服務,於2005-06-27起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信