§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1603201513201000
DOI 10.6846/TKU.2015.00433
論文名稱(中文) 小型晶片自動燒錄設備之模糊行為決策系統設計
論文名稱(英文) Fuzzy Behavior Decision System Design for Small-Sized Chip Automatic Programming Equipment
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系博士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 103
學期 1
出版年 104
研究生(中文) 楊玉婷
研究生(英文) Yu-Ting Yang
學號 896440020
學位類別 博士
語言別 繁體中文
第二語言別
口試日期 2015-01-27
論文頁數 110頁
口試委員 指導教授 - 翁慶昌
委員 - 陳博現
委員 - 王文俊
委員 - 李祖聖
委員 - 黃志良
委員 - 李祖添
委員 - 許駿飛
委員 - 翁慶昌
關鍵字(中) 自動燒錄設備
設備模擬器
行為決策
模糊系統
最佳化演算法
關鍵字(英) Automatic Programming Equipment
Equipment Simulator
Behavior Decision
Fuzzy System
Optimal Algorithm
第三語言關鍵字
學科別分類
中文摘要
本論文針對小型晶片自動燒錄設備,提出一個基於最佳化演算法之模糊行為決策系統來提升設備的產量,主要探討設備模擬器與行為決策系統的設計與實現。在設備模擬器的設計實現上,本論文針對小型晶片自動燒錄設備,設計實現一個模擬器來模擬設備的產量。並且依據不同的晶片燒錄時間,探討不同平台配置方式與不同燒錄器配置數量的產量變化。在行為決策系統的設計上,本論文提出一個基於最佳化演算法之模糊行為決策系統。首先,本論文針對小型晶片自動燒錄設備的特性,提出一個兩個輸入一個輸出的模糊系統架構,讓設備能夠依據目前各個燒錄器的狀態來決定下一個適當的動作。然後使用遺傳演算法(GA)與粒子群最佳化(PSO)二種最佳化演算法來自動選取一組較佳之模糊系統參數值,使得這個所對應的模糊行為策略系統可以讓設備具有較佳的產量。最後,由實驗的結果可以看出,針對不同的晶片燒錄時間,所實現的設備模擬器確實可以提供一個方法來決定一個適當的平台配置方式與一個適當的燒錄器數量。並且所設計的行為決策系統確實可以提升設備產量,並且減低異常狀況對產量所造成的影響。
英文摘要
In this dissertation, an optimal algorithm-based fuzzy behavior decision system is proposed for a small-sized chip automatic programming equipment to improve the production capacity of equipment. Two main designed topics of equipment simulator and behavior decision system are studied. In the equipment simulator design, a simulator is designed and implemented for the small-sized chip automatic programming equipment to simulate its production capacity. Moreover, depending on different programming time, the change of production capacity is studied for different platform configuration and different number of programmers. In the behavior decision system design, an optimal algorithm-based fuzzy behavior decision system is proposed to improve the production capacity. First of all, based on characteristics of the small-sized chip automatic programming equipment, a two-inputs-and-one-output fuzzy system structure is constructed. It allows the equipment to determine a next appropriate action based on the current status of each programmer. Then two optimal algorithms of GA and PSO are applied to automatically select a better parameter set so that the corresponding fuzzy behavior decision system can let the equipment have a better production capacity. Finally from the simulation results, we can see that the implemented simulator can indeed provide a method to decide an appropriate platform configuration and an appropriate number of programmers for different programming time. And the proposed method can indeed improve the production capacity and reduce the impact in some abnormal conditions.
第三語言摘要
論文目次
目錄 .............................................................................................................. I
圖目錄 ....................................................................................................... III
表目錄 ......................................................................................................VII
參數對照表............................................................................................... IX
第一章 緒論 ............................................................................................. 1
1.1 研究背景 ..................................................................................................... 1
1.2 研究目的 ..................................................................................................... 5
1.3 論文架構 ..................................................................................................... 8
第二章 設備模擬器 ................................................................................. 9
2.1 簡介 ............................................................................................................. 9
2.2 設備硬體架構與尺寸規格 ....................................................................... 10
2.3 動作流程 ................................................................................................... 12
2.4 設備模擬器系統架構 ............................................................................... 14
2.5 設備模擬驗證 ........................................................................................... 20
2.6 實驗與討論 ............................................................................................... 21
第三章 基於最佳化演算法之模糊行為決策系統 ............................. 38
3.1 簡介 ........................................................................................................... 38
3.2 模糊系統 ................................................................................................... 46
3.3 模糊系統參數的最佳化搜尋 ................................................................... 53
3.4 監督模組 ................................................................................................... 68
3.5 實驗與討論 ............................................................................................... 72
第四章 結論與未來展望 ....................................................................... 84
參考文獻 .................................................................................................... 88
附錄 ............................................................................................................ 93
研究著作 ..................................................................................................103
產學經歷 ..................................................................................................106
獲獎經歷 .........................................................................................108

圖目錄
圖 1.1、小型晶片自動燒錄設備整體架構 .............................................. 7
圖2.1、小型晶片自動燒錄設備硬體架構 ............................................ 10
圖2.2、Topline JEDEC 晶片盤[17] ....................................................... 11
圖2.3、取放系統的軸向示意圖 ............................................................ 12
圖2.4、原廠動作流程圖 ........................................................................ 13
圖2.5、設備模擬器系統架構圖 ............................................................ 14
圖2.6、桌板尺寸規格 ............................................................................ 15
圖2.7、晶片盤尺寸規格[16] .................................................................. 16
圖2.8、燒錄座尺寸規格 ........................................................................ 17
圖2.9、設備模擬器 ................................................................................ 20
圖2.10、晶片燒錄時間為0 秒的設備動作流程 .................................. 21
圖2.11、配置四台燒錄器及配置方式A 的桌板架構 ......................... 22
圖2.12、四台燒錄器及配置方式A於晶片燒錄時間10~120 秒之產量
圖 ................................................................................................. 23
圖2.13、配置四台燒錄器及配置方式B 的桌板架構 ......................... 24
圖2.14、四台燒錄器及配置方式B 於晶片燒錄時間10~120 秒之產量
圖 ................................................................................................. 24
圖2.15、配置四台燒錄器及配置方式C 的桌板架構 ......................... 25
圖2.16、四台燒錄器及配置方式C 於晶片燒錄時間10~120 秒之產量
圖 ................................................................................................. 25
圖2.17、四台燒錄器於三種配置方式之產量比較圖 .......................... 26
圖2.18、四台燒錄器的三種配置方式差異 .......................................... 26
圖2.19、配置八台燒錄器及配置方式A 的桌板架構 ......................... 27
圖2.20、八台燒錄器配置方式A於晶片燒錄時間10~120 秒之產量圖
..................................................................................................... 28
圖2.21、四台與八台燒錄器於配置方式A 的產量比較圖 ................. 28
圖2.22、配置八台燒錄器及配置方式B 的桌板架構 ......................... 29
圖2.23、八台燒錄器配置方式B 於晶片燒錄時間10~120 秒之產量圖
..................................................................................................... 29
圖2.24、四台與八台燒錄器於配置方式B 的產量比較圖 ................. 29
圖2.25、配置八台燒錄器及配置方式C 的桌板架構 ......................... 30
圖2.26、八台燒錄器配置方式C 於晶片燒錄時間10~120 秒之產量圖
..................................................................................................... 31
圖2.27、四台與八台燒錄器於配置方式B 的產量比較圖 ................. 31
圖2.28、八台燒錄器於三種配置方式之產量比較圖 .......................... 32
圖2.29、八台燒錄器的三種配置方式差異 .......................................... 32
圖2.30、燒錄器配置數量一至四台的位置與設備最大移動距離 ...... 35
圖2.31、一至四台燒錄器於晶片燒錄時間10~120 秒所獲得的提升比
例圖............................................................................................. 37
圖3.1、行為的決策系統整體架構 ........................................................ 40
圖3.2、包容結構(Subsumption Architecture, SA) [20] ......................... 40
圖3.3、FSA 機制結構範例 .................................................................... 41
圖3.4、BDA 系統範例[30] .................................................................... 42
圖3.5、DAMN 系統架構[35] ................................................................ 44
圖3.6、基於最佳化演算法之模糊行為決策系統架構圖 .................... 45
圖3.7、基於最佳化演算法之模糊行為決策系統-設備無異常架構圖46
圖3.8、輸入1 xA 的歸屬函數 .................................................................... 51
圖3.9、輸入2 xA 的歸屬函數 .................................................................... 51
圖3.10、輸出yA 的歸屬函數 .................................................................. 51
圖3.11、對應動作的選擇流程圖 .......................................................... 53
圖3.12、三角形歸屬函數 ...................................................................... 55
圖3.13、最佳參數集所對應模糊系統之輸入歸屬函數轉換範例 ...... 57
圖3.14、基於最佳化演算法之模糊行為決策系統架構圖 .................. 69
圖3.15、監督模組範例示意圖 .............................................................. 71
圖3.16、無異常設備實驗產量比較圖 .................................................. 73
圖3.17、無異常狀態時,工作十盤晶片盤的燒錄器晶片數量模擬圖74
圖3.18、無異常狀態時,設備產量與個別燒錄器產量模擬圖 .......... 75
圖3.19、異常狀態時,晶片燒錄時間70 秒未使用監督模組的燒錄器
晶片數量模擬圖 ........................................................................ 75
圖3.20、異常狀態時,未使用監督模組的設備產量與個別燒錄器產
量圖............................................................................................. 76
圖3.21、異常狀態時,晶片燒錄時間70 秒使用監督模組的燒錄器晶片數量模擬圖 ............................................................................ 76
圖3.22、異常狀態時,使用監督模組的設備產量與個別燒錄器產量
圖 ................................................................................................. 77
圖3.23、使用監督模組之產量增加數據圖 .......................................... 78
圖4.1、取放系統皮帶輪位置標示 ........................................................ 85
圖4.2、雙臂SCARA 機器手臂DexTRA [50] ...................................... 86
附錄圖1、晶片燒錄時間10 秒,四種決策方式的晶片數量模擬圖 . 93
附錄圖2、晶片燒錄時間20 秒,四種決策方式的晶片數量模擬圖 . 94
附錄圖3、晶片燒錄時間30 秒,四種決策方式的晶片數量模擬圖 . 94
附錄圖4、晶片燒錄時間40 秒,四種決策方式的晶片數量模擬圖 . 95
附錄圖5、晶片燒錄時間50 秒,四種決策方式的晶片數量模擬圖 . 95
附錄圖6、晶片燒錄時間60 秒,四種決策方式的晶片數量模擬圖 . 96
附錄圖7、晶片燒錄時間70 秒,四種決策方式的晶片數量模擬圖 . 96
附錄圖8、晶片燒錄時間80 秒,四種決策方式的晶片數量模擬圖 . 97
附錄圖9、晶片燒錄時間90 秒,四種決策方式的晶片數量模擬圖 . 97
附錄圖10、晶片燒錄時間100 秒,四種決策方式的晶片數量模擬圖98
附錄圖11、晶片燒錄時間110 秒,四種決策方式的晶片數量模擬圖98
附錄圖12、晶片燒錄時間120 秒,四種決策方式的晶片數量模擬圖99
附錄圖13、GA 的適應值變化情況 ..................................................... 100
附錄圖14、PSO 演算法的適應值變化情況 ....................................... 102

表目錄
表 1.1、大型晶片自動燒錄設備 .............................................................. 4
表1.2、小型晶片自動燒錄設備 .............................................................. 5
表2.1、設備模擬器驗證實驗之參數設計表 ........................................ 21
表2.2、四台燒錄器及配置方式A 於晶片燒錄時間10~120 秒之產量
表 ................................................................................................. 23
表2.3、四台燒錄器及配置方式B 於晶片燒錄時間10~120 秒之產量
表 ................................................................................................. 24
表2.4、四台燒錄器及配置方式C 於晶片燒錄時間10~120 秒之產量
表 ................................................................................................. 25
表2.5、八台燒錄器及配置方式A 於晶片燒錄時間10~120 秒之產量
表 ................................................................................................. 28
表2.6、八台燒錄器及配置方式B 於晶片燒錄時間10~120 秒之產量
表 ................................................................................................. 29
表2.7、八台燒錄器及配置方式C 於晶片燒錄時間10~120 秒之產量
表 ................................................................................................. 30
表2.8、晶片燒錄時間與燒錄器配置數量計算參數 ............................ 35
表2.9、不同燒錄器數量之產量比較表 ................................................ 36
表2.10、一至四台燒錄器於晶片燒錄時間10~120 秒所獲得的產量與
產量差異 .................................................................................... 36
表2.11、一至四台燒錄器於晶片燒錄時間10~120 秒所獲得產量提升
比例............................................................................................. 37
表3.1、模糊行為決策系統的模糊規則庫 ............................................ 52
表3.2、模糊行為決策與原廠動作流程之產量比較表 ........................ 53
表3.3、GA 與PSO 演算法使用的參數列表 ........................................ 72
表3.4、無異常設備之四種決策方法實驗結果(單位:UPH) ............. 73
表3.5、異常狀態時,不同燒錄器燒錄70 秒的實驗數據表 .............. 77
表3.6、晶片燒錄時間10~120 秒,不同燒錄器發生異常的實驗數據
表 ................................................................................................. 78
表3.7、GA 與PSO 於不同燒錄時間獲得的搜尋結果 ........................ 80
表3.8、晶片燒錄時間50 秒,第三台燒錄器異常狀態時,不同br所
獲得產量的實驗結果及晶片數量模擬圖 ................................ 83
參考文獻
[1] 洪琦茹,蟻群演算法於單機多目標排程問題之應用,碩士論文,工業工程管理學系,元智大學,2005。(梁韵嘉)
[2] S. Chand and H. Schneeberger, “Single machine scheduling to minimize weighted earliness subject earliness subject to no tardy jobs,” Theory and Methodology, vol. 34, iss. 2, pp. 221-230, 1986.
[3] D. Biskup, “Single-machine scheduling with learning considerations,” European Journal of Operational Research Society, vol. 115, iss. 1, pp. 173-178, 1999.
[4] A. Bachman and A. Janiak, “Scheduling jobs with position-dependent processing times,” Journal of the Operational Research Society, vol. 55, pp. 257-264, 2004.
[5] J.B. Wang and M.Z. Wang, “Single-machine scheduling with nonlinear deterioration,” Optimization Letters, vol. 6, iss. 1, pp. 87-98, 2012.
[6] D. Oron, “Single machine scheduling with simple linear deterioration to minimize total absolute deviation of completion time,” Computers and Operations Research, vol. 35, iss. 6, pp. 2071-2078, 2008.
[7] C.L. Zhao and H.Y. Tang, “Single machine scheduling with general job-dependent aging effect and maintenance activities to minimize makespan,” Applied Mathematical Modeling, vol. 34, iss. 3, pp. 837-841, 2010.
[8] A. Setamaa-Karkkainen, K. Miettinen, and J. Vuori, “Heuristic for a new multiobjective scheduling problem,” Optimization Letters, vol. 1, iss. 3, pp. 213-225, 2006.
[9] L. Tang and P. Liu, “Tow-machine flowshop scheduling problems involving a batching machine with transportation or deterioration consideration,” Applied Mathematical Modeling, vol. 33, iss. 2, pp. 1187-1199, 2009.
[10] V.S. Gordon and V.A. Strusevich, “Single machine scheduling and due data assignment with positionally dependent processing times,” Journal of the Operational Research Society, vol. 198, pp. 57-65, 2009.
[11] 美國 DataIO:http://dataio.com/en-us/featuredsolutions.aspx
[12] 日本sun-s:http://www.sun-s.jp/global/company/index.html
[13] 日本 MINATO:http://www.minato.co.jp/oldsite/index_e.html
[14] 台灣力浦電子:http://www.leaptronix.com/
[15] 台灣岱鐠科技:http://www.dediprog.com/
[16] Topline IC Tray:http://www.topline.tv/tray.html 
[17] Topline IC Tray:
http://www.topline.tv/drawings/pdf/trays/Tray_JEDEC_Matrix_IC_Tray_ALL.pdf
[18] J.S. Albus, “Outline for a theory of intelligence,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 21, no. 3, pp. 473-509, 1991.
[19] N.J. Nilsson, “Shakey the robot,” Technical Report, pp. 325, 1984.
[20] R.A. Brooks, “A robust layered control system for a mobile robot,” IEEE Journal of Robotics and Automation, vol. 2, iss. 1, pp. 14-23, 1986.
[21] J. Simpson, C.L. Jacobsen, and M.C. Jadud, “Mobile robot control: The subsumption architecture and occam-pi,” Communicating Process Architecture, pp. 225-236, 2006.
[22] J. Kosecka and R. Bajcsy, “Discrete event systems for autonomous mobile agents,” Proceedings Intelligent Robotic Systems, pp. 21-31, 1993.
[23] K. Cai and W.M. Wonham, “Supervisor localization: A top-down approach to distributed control of discrete-event systems,” IEEE Transactions on Automatic Control, vol. 55, iss. 3, pp. 605-618, 2010.
[24] A. Jayasiri, G.K.I. Mann, and R.G. Gosine, “Behavior coordination of mobile robotics using supervisory control of fuzzy discrete event systems,” System, Man, and Cybernetics, vol. 41, iss. 5, pp. 1224-1238, 2011.
[25] J. Kosecka, H.I. Christensen, and R. Bajcsy, “Experiments in behavior composition,” Robotics and Autonomous Systems, vol. 19, pp. 287-297, 1997.
[26] L. Riano, “Automatically composing and parameterizing skills by evolving finite state automata,” Robotics and Autonomous Systems, vol. 60, iss. 4, pp. 639-650, 2012.
[27] Y.T. Yang, A. Quitmeyer, B. Hrolenok, H. Shang, D.B. Nguyen, T. Balch, T. Medina, C. Sherer, and M. Hybinette, “Ant hunt: Towards a validated model of live ant hunting behavior,” IAAA International FLAIRS Conference, pp. 110-115, 2012.
[28] A. Bhatia, L.E. Kavraki, and M.Y. Vardi, “Sampling-based motion planning with temporal goals,” IEEE International Conference on Robotics and Automation, pp. 2689-2696, 2010.
[29] C. Finucane, G. Jing, and H. Kress-Gazit, “LTLMoP: Experimenting with language, temporal logic and robot control,” IEEE International Conference on Intelligent Robots and System, pp. 1988-1993, 2010.
[30] S. Kristensen, Sensor Planning with Bayesian Decision Analysis, PhD thesis, Department of Medical Informatics and Image Analysis, Aalborg University, 1996.
[31] R.C. Arkin, “Motor schema based navigation for a mobile robot: An approach to programming by behavior,” IEEE International Conference on Robotics and Automation, pp. 264-271, 1987.
[32] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” International Journal of Robotics Research, vol. 5, iss. 1, pp. 90-98, 1986.
[33] R.C. Arkin and D. MacKenzie, “Temporal coordination of perceptual algorithms for mobile robot navigation,” IEEE Transactions on Robotics and Automation, vol. 10, iss. 3, pp. 276-286, 1994.
[34] J. Llinas and D.L. Hall, “An introduction to multi-sensor data fusion,” Proceedings of the IEEE Circuits and Systems, vol. 6, pp. 537-540, 1998.
[35] J.K. Rosenblatt, “DAMN: A distributed architecture for mobile navigation,” AAAI Spring Symposium on Implemented Software Architecture for Physical Agents, pp. 563-568, 1995.
[36] T. Takagi and M. Sugeno, “Fuzzy identification of system and its applications to modeling and control,” IEEE Transaction on Systems, Man, and Cybernetics, vol. SMC-15, iss. 1, pp. 116-132, 1985.
[37] C.H. Hyun, C.W. Park, and S. Kim, “Takagi-Sugeno fuzzy model based indirect adaptive fuzzy observer and controller design,” Information Sciences, vol. 180, iss. 11, pp. 2314-2327, 2010.
[38] A. Saffiotti, “Fuzzy logic in autonomous robotics: Behavior coordination,” 6th IEEE Internal Conference on Fuzzy System, pp. 573-578, 1997.
[39] C.C. Wong and C.C. Chen, “A GA-based method for constructing fuzzy systems directly from numerical data,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 30, iss. 6, pp. 904-911, 2000.
[40] Y. Shi and R.C. Eberhart, “Fuzzy adaptive particle swarm optimization,” Proceedings of the 2001 Congress on Evolutionary Computation, vol. 1, pp. 101-106.
[41] J.H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, MI, 1975.
[42] J.H. Holland, “Genetic Algorithms,” Scientific American, pp. 66-72, 1992.
[43] D.E. Goldberg, Genetic Algorithm in Search, Optimization and Machine Learning, Addision-Wesley, Reading, MA, 1989.
[44] J.J. Grefenstette, “Optimization of control parameters for genetic algorithms,” IEEE Transaction on Systems, Man, and Cybernetics, vol. 6, iss. 1, pp. 122-128, 1986.
[45] Z. Yuanpong, M. Zhengkun, and X. Minghai, “Dynamic load balancing based on roulette wheel selection,” Proceedings of International Conference on Communications, Circuits, and Systems, vol. 3, pp. 1732-1734, 2006.
[46] R.C. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” International Symposium on Micro Machine and Human Science, pp. 39-43, 1995.
[47] J. Kennedy, “Particle swarm optimization,” Encyclopedia of Machine Learning, pp. 760-766, 2010.
[48] R.C. Eberhart and Y. Shi, “Particle swarm optimization: Developments, applications and resources,” Proceedings of the 2001 Congress on Evolutionary Computation, vol. 1, pp. 81-86, 2001.
[49] C.C. Wong, H.Y. Wang, and S.A. Li, “PSO-based motion fuzzy controller design for mobile robot,” International Journal of Fuzzy Systems, vol. 10, no. 1, pp. 284-292, 2008.
[50] L. Campos, F. Bourbonnais, I.A. Bonev, and P. Bigras, “Development of a five-bar parallel robot with large workspace,” ASME 2010 International Design Engineering Technical Conferences, vol. 2, pp. 917-922, 2010.
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信