淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-1601202002120400
中文論文名稱 利用有機膠模板製備新穎多孔性二氧化矽材料
英文論文名稱 Novel porous silica materials prepared by templating the organogels
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 108
學期 1
出版年 109
研究生中文姓名 張哲俊
研究生英文姓名 CHE-CHUN CHANG
學號 606400256
學位類別 碩士
語文別 中文
口試日期 2019-10-16
論文頁數 82頁
口試委員 指導教授-賴偉淇
委員-童世煌
委員-楊大毅
中文關鍵字 多孔性二氧化矽材料  二苯亞甲基山梨醇  有機膠模板  溶膠-凝膠法 
英文關鍵字 porous silica materials  DBS  organogels  sol-gel method 
學科別分類
中文摘要 本研究利用無機酸催化溶膠-凝膠法合成奈米等級的二氧化矽微球,研究分為兩部份:藉由添加二苯亞甲基山梨醇(DBS)奈米自主裝纖維,製備有機-無機奈米複合材料;將DBS當作有機膠模板,利用化學法及物理法去除模板製備多孔材料,進行儀器分析測試材料的多孔結構性質,並探討其官能基變化、流變性質、結構與形態、熱性質分析及比表面積分析。
材料經由傅氏轉換紅外線光譜儀(FTIR)鑑定得到二氧化矽之特徵峰,確認(Si-O-Si)鍵有接上也無其他混合反應後的峰值存在,圖譜中1084 cm-1、796 cm-1、463 cm-1可證實生成二氧化矽,且在長時間動態觀察發現DBS有助於加速溶膠凝膠反應的現象。在流變儀(Rheometer)分析中發現樣品有應變軟化的現象,經過長時間靜置後,含有DBS樣品彈性模數G’會慢慢地增加相較於未添加的樣品。穿透式電子顯微鏡(TEM)及掃描式電子顯微鏡(SEM)亦清楚地觀察到奈米級的二氧化矽粒子與DBS自組裝纖維,而DBS濃度影響纖維直徑的大小,兩者之間呈現正比關係,且清楚地觀察到二氧化矽粒子與DBS纖維的分佈情形,SEM圖中可看出DBS纖維對二氧化矽粒子有穿透與包覆之現象。進行熱重損失分析(TGA)判別各別樣品的裂解溫度(Td)、在不同溫度下熱重損失的概況及觀察DBS複合材料與二氧化矽凝膠之之差異。並由高溫熱前處理分析,確認去除模板及矽氧化合物,最後利用比表面積分析儀,量測去除DBS模板樣品的比表面積,含有DBS之模板樣品相較於未添加之樣品比表面積來的大,結果顯示0.3 wt%的DBS模板濃度的材料比表面積為518.61 (m2/g)較無模板之材料274.53 (m2/g)提升至原來的1.89倍,由此證實材料經過模板技術形成比表面積較大的多孔性材料。
英文摘要 In this study, mineral acid catalyzed sol-gel method is used to synthesize nanoporous silica microspheres.Our study is divided into two parts.The one for preparation of organic-inorganic nanocomposite material by adding self-assembly fibers of 1:3,2:4-dibenzylidenesorbitol (DBS).The other DBS organic gel was regarded as a template, removaling from chemical and physical method. The characterization of functional group, rheological properties, structure & morphology, thermal properties and specific surface area analysis were discussed.
By FTIR analysis, we obtain the characteristic peak of silica. It was confirmed that the (Si-O-Si) bond was connected and there was no peak after reaction. In long-term dynamic observation, it was found that DBS accelerated the sol-gel reaction. By Rheometer analysis, the sample have strain softening.After a long time, the elastic modulus G' of the sample containing DBS will slowly increase compared to the unadded sample.By TEM and SEM also clearly observed nano-sized silica particles and DBS self-assembled fibers. There is a proportional relationship between the two.The concentration of DBS affects the diameter of the fiber. The distribution of silica particles and DBS fibers are clearly observed. It can be seen from the SEM image that the DBS fiber penetrate and coat on the silica particles.By TGA analysis, It was performed to discriminate degradation temperature (Td) of each sample, an overview of the thermogravimetric loss at different temperatures of the composition, and observation of the difference between DBS composite and silica gel. To confirm removal of the template and the oxide compound with high temperature thermal pretreatment.By BET analysis, the DBS template sample was measured. The DBS template sample was larger than the unadded sample.The results showed that the specific surface area of 0.3 wt% DBS template was 518.61 (m2/g) and the sample of the pure silica gel was 274.53 (m2/g).It was raised to 1.89 times, which confirmed that the material was formed into a porous material having a large specific surface area by template technique.
論文目次 目錄
致謝 I
中文摘要 II
英文摘要 III
目錄 V
圖目錄 VII
表目錄 X
第一章 緒論 1
1-1前言 1
1-2研究目的 2
第二章 基礎理論 3
2-1流變學概念 3
2-1-1力學模型 3
2-1-2剪切黏度 5
2-1-3動態流變性質 6
2-2有機凝膠 7
2-3 DBS有機膠 9
2-4溶膠-凝膠法簡介 10
2.5 BET理論與計算式 12
第三章 文獻回顧 15
3-1製備奈米二氧化矽方法 15
3-2合成奈米二氧化矽粒子 15
3-2-1不同烷基團因素 16
3-2-2不同濃度因素 16
3-2-3環境pH值因素 16
3-3模板技術介紹與應用 21
3-4製備多孔性二氧化矽的技術 22
3-4-1軟性模板 23
3-4-2硬性模板 23
3-5多孔性二氧化矽材料的應用 27
3-5-1藥物釋放載體 27
3-5-2相變化材料 29
3-5-3光電裝置 30
3-6 DBS小分子簡介與應用 32
3-7利用有機膠模板製備多孔性材料 36
第四章 實驗 39
4-1實驗藥品 39
4-2實驗器材 40
4-3實驗流程 42
4-3-1製備二氧化矽與DBS複合材料 44
4-3-2去除DBS模板製備多孔性二氧化矽材料 44
4-4特性分析 45
4-4-1傅立葉轉換紅外線光譜儀-衰減全反射式 (FTIR-ATR) 45
4-4-2流變儀 (Rheometer) 45
4-4-3穿透式電子顯微鏡 (Transmission Electron Microscopy, TEM) 45
4-4-4掃描式電子顯微鏡 (Scanning Electron Microscopy, SEM) 45
4-4-5熱重損失分析儀 (Thermogravimetric Analysis, TGA) 46
4-4-6比表面積分析儀 (Specific Surface Area Analyzer) 46
第五章 結果與討論 47
5-1系統中樣品型態 47
5-2傅立葉紅外線光譜儀(FTIR)鑑定 49
5-2-1複合材料之分析 49
5-2-2 0 wt%系統長時間分析 54
5-2-3 0.5 wt%系統之分析 57
5-3流變性質測試 61
5-3-1二氧化矽凝膠(Silica gel)之振幅掃描 (Amplitude sweep) 61
5-3-2二氧化矽凝膠(Silica gel)與DBS之頻率掃描 (Frequency sweep) 62
5-4二氧化矽凝膠(Silica gel)與DBS表面結構與型態 64
5-5 TGA熱重性質分析 72
5-6比表面積分析儀 (Specific Surface Area Analyzer) 75
第六章 結論 77
第七章 參考文獻 78

圖目錄
圖2-1彈性模型圖[2] 3
圖2-2黏性模型圖[2] 4
圖2-3 Maxwell模型圖[2] 4
圖2-4 Voigt-Kelvin模型圖[2] 4
圖2-5牛頓與非牛頓流體之黏度-剪切速率圖[1] 5
圖2-6溶液分類圖 7
圖2-7有機凝膠機制示意圖[7] 8
圖2-8製備DBS機制圖[8] 9
圖2-9 DBS含量0.5 wt%在乙醇中的TEM圖 9
圖2-10在不同pH質範圍下二氧化矽聚合情形[17] 11
圖2-11物理吸脫附等溫曲線之型態分類[18] 14
圖2-12遲滯迴圈之型態分類[18] 14
圖3-1二氧化矽縮合速率與pH值關係及表面電性圖[30] 16
圖3-2 TEOS-EtOH-H2O成膠三相圖[32] 19
圖3-3開放與密閉系統中不同[H2O]/[TEOS]莫耳比之成膠對應圖 19
圖3-4不同乙醇濃度對[H2O]/[TEOS]莫耳比之成膠對應圖[32] 20
圖3-5酸催化樣品之XRD圖[20] 20
圖3-6軟性模板調控參數之相態示意圖[31] 23
圖3-7硬性模板製備MSN示意圖[31] 23
圖3-8多孔二氧化矽合成步驟示意圖[45] 24
圖3-9 (a) 190 nm脒乳膠, (b) 980 nm硫酸鹽乳膠之SEM圖[45] 24
圖3-10製備中空及實心二氧化矽微球流程示意圖[46] 25
圖3-11中空二氧化矽:乙醇/水體積比 (a) 0.59, (c) 0.53之SEM圖, (b) 0.59, (d) 0.53之TEM圖[46] 25
圖3-12氮氣吸附-脫附曲線及BJH粒徑分佈:乙醇/水體積比 (a) 0.59, (b)0.53 [46] 26
圖3-13製備PHSNP藥物釋放載體程序示意圖[47] 27
圖3-14 PHSNP的孔徑分佈之Cefradine (a)截留前, (b)截留後[47] 27
圖3-15 Cefradine在PHSNP中的體外釋放分佈[47] 28
圖3-16 (a) PHSNP, (b)含有cefradine的PHSNP之TGA圖[47] 28
圖3-17石蠟質量分率與滲透時間對應圖[48] 29
圖3-18 (a)石蠟, (b)複合材料之DSC-TGA圖[48] 29
圖3-19 (a)環氧樹脂, (b)環氧樹脂-20 nm CMS, (c)環氧樹脂- TMPS-4像圖[49] 30
圖3-20環氧樹脂與填料複合材料之TMA圖[49] 30
圖3-21 (a)矽橡膠, (b)矽橡膠-50 nm CMS, (c)矽橡膠- TMPS-4 像圖, (d) UV光譜:樣品固定於50 μm [49] 31
圖3-22矽橡膠與填料複合材料之TMA圖[49] 31
圖3-23 Yamasaki模型圖[51] 32
圖3-24純DBS在(a)偏光顯微鏡, (b)場發掃描式電子顯微鏡圖[58] 33
圖3-25 DBS/PPG系統中成膠時間與DBS濃度對應圖[58] 33
圖3-26 DBS/PPG系統中不同DBS濃度之彈性模數G’圖[58] 34
圖3-27不同掃描速率下,冷卻曲線(實線)與二次升溫曲線(虛線) (a) P-D/P1, (b) LCB P-D/P1 [59] 35
圖3-28多孔性結構之二氧化矽SEM圖[61] 36
圖3-29逐步反應示意圖[62] 37
圖3-30流變儀模數圖與2 wt% DBS在苯乙烯中成膠之像圖[62] 37
圖3-31含/不含DBS之PS吸附-脫附取線[62] 38
圖4-1實驗流程圖 42
圖4-2實驗流程示意圖 43
圖5-1左到右DBS添加量依序為 (0 wt%、0.1 wt%、0.3 wt%、0.5 wt%)
之Silica凝膠-3小時 47
圖5-2 DBS含量,左:0.75 wt%,右:0.5 wt%系統狀態圖 47
圖5-3左到右DBS添加量依序為 (0 wt%、0.1 wt%、0.3 wt%、0.5 wt%)
之Silica凝膠 48
圖5-4 Neat DBS之FTIR圖 49
圖5-5 Neat TEOS之FTIR圖 50
圖5-6 Neat TEOS、0 wt% DBS (5 days)、0 wt% DBS (30 days)之FTIR圖 50
圖5-7 Neat DBS、0.5 wt% DBS (30 days)、0 wt% DBS after (30 days) 之FTIR圖 51
圖5-8 Neat DBS、0.5 wt% DBS (4 days)、0.5 wt% DBS (26 days)之FTIR圖 52
圖5-9 0.5 wt% DBS (4 days)、0.5 wt% DBS (26 days)之FTIR圖 52
圖5-10 0 wt% DBS系統反應1、36天之ATR圖 54
圖5-11 0 wt% DBS系統反應9、13、17天之ATR圖 55
圖5-12 0 wt% DBS系統反應24、27天之ATR圖 55
圖5-13 0 wt% DBS系統反應30天之ATR圖 56
圖5-14 0.5 wt% DBS系統反應1、4小時之ATR圖 57
圖5-15 0.5 wt% DBS系統反應1、26天之ATR圖 58
圖5-16 0.5 wt% DBS系統反應9、11、13天之ATR圖 58
圖5-17 0.5 wt% DBS系統反應15、17天之ATR圖 59
圖5-18 0.5 wt% DBS系統反應24、26天之ATR圖 59
圖5-19二氧化矽凝膠之振幅掃描圖 61
圖5-20系統放置30天之頻率掃描圖 62
圖5-21系統放置60天之頻率掃描圖 63
圖5-22 DBS在乙醇中之TEM圖 64
圖5-23兩周後的二氧化矽粒子,(a):TEM、(b):SEM;
(a-1)、(b-1):平均粒徑分布圖 65
圖5-24 一個月後的二氧化矽粒子,(a):SEM、(a-1):平均粒徑分布圖 66
圖5-25兩周後的二氧化矽與DBS纖維,(a):TEM、(b):SEM;
(a-1)、(b-1):平均粒徑分布圖 67
圖5-26一個月後的二氧化矽與DBS纖維,(a):SEM、 (a-1):平均粒徑分布圖 68
圖5-27不同DBS含量 (a) 0 wt%, (b) 0.1 wt%, (c) 0.3 wt%, (d) 0.5 wt% 之SEM圖 69
圖5-28二氧化矽粒子與DBS之SEM圖 70
圖5-29去除DBS模板後二氧化矽之SEM圖 70
圖5-30二氧化矽粒子與DBS (左:低倍率,右:高倍率)之SEM圖 71
圖5-31二氧化矽粒子與DBS (左:低倍率,右:高倍率)之矽元素分佈圖 71
圖5-32二氧化矽粒子與DBS (左:低倍率,右:高倍率)之EDS圖 71
圖5-33不同溫度前處理Silica gel之TGA圖 72
圖5-34不同溫度前處理Silica gel (0.5 wt%)之TGA圖 73
圖5-35 DBS裂解溫度之TGA圖 73
圖5-36 DBS複合材料與二氧化矽凝膠之TGA圖 74
圖5-37 0、0.3、0.5 wt %之氮氣吸脫附曲線 75

表目錄
表2-1溶膠-凝膠法之優缺點 11
表3-1不同組份成膠狀態[24] 17
表3-2酸催化水解下四烷氧基矽烷Si(OR)4之k值[24] 18
表3-3成膠資訊列表[24] 18
表3-4不同類型的多孔材料[15] 22
表3-5不同DBS/PEG比例對照表[59] 35
表3-6不同組份對照表[59] 35
表4-1系統主組份對照表 43
表4-2 DBS含量對應表 43
表4-3階段成膠對應表 44
表5-1 DBS含量對應表 48
表5-2 DBS-SiO2主要官能基之特性峰[61] 53
表5-3 DBS纖維對二氧化矽粒徑時間變化 68
表5-4不同wt%下DBS自組裝纖維直徑範圍 69
表5-5 DBS裂解溫度表 73
表5-6不同重量百分比(wt%)模板濃度之比表面積 76

參考文獻 [1] J. Steffe, " Rheological methods in food process engineering, " 1996.
[2] 洪笠尊, 利用逆微胞法製備具有二氧化矽奈米粒子材料之結構與性質研究, 淡江大學化學工程與材料工程研究所, 碩士學位論文, 2014年
[3] W. Boersma, J. Laven, and H. Stein, " Shear thickening (dilatancy) in concentrated dispersions, " Aiche Journal, 1990, vol. 36, no. 3, pp. 321-332.
[4] M. Cross, " Relation between viscoelasticity and shear-thinning behaviour in liquids, " Rheologica Acta, 1979, vol. 18, no. 5, pp. 609-614.
[5] A. I. Isayev, and A.Y. Malkin, " Rheology concepts, methods and applications, " 2017.
[6] D. Abdallah, and R. Weiss, , " Organogels and Low Molecular Mass Organic Gelators, " Advanced Materials, 2000, vol. 12, no. 17, pp. 1237-1247.
[7] B. Okesola, V. Vieira, D. Cornwell, N. Whitelaw, and D. Smith, , " 1,3:2,4-Dibenzylidene-d-sorbitol (DBS) and its derivatives – efficient, versatile and industrially-relevant low-molecular-weight gelators with over 100 years of history and a bright future, " Soft Matter, 2015, vol. 11, no. 24, pp. 4768-4787.
[8] M. J. Meunier, Ann. Chim. Phys , 1891, vol. 22, pp. 412.
[9] A. Vioux, " Nonhydrolytic Sol−Gel Routes to Oxides, " Chemistry Of Materials, 1997, vol. 9, no. 11, pp. 2292-2299.
[10] R. Brenier, J. Mugnier, and E. Mirica, " XPS study of amorphous zirconium oxide films prepared by sol–gel, " Applied Surface Science, 1999, vol. 143, no. 1-4, pp. 85-91.
[11] C. Su, B. Hong, and C. Tseng, " Sol–gel preparation and photocatalysis of titanium dioxide, " Catalysis Today, 2004, vol. 96, no. 3, pp. 119-126.
[12] Y. Hui, D. Zishang, J. Zhonghua, and X. Xiaoping, " Sol-gel process kinetics for Si(OEt)4, " Non-Crystalline Solids, 1989, vol. 112, no. 1-3, pp. 449-453.
[13] L. Bourget, R. Corriu, D. Leclercq, P. Mutin, and A. Vioux, " Non-hydrolytic sol–gel routes to silica, " Non-Crystalline Solids, 1998, vol. 242, no. 2-3, pp. 81-91.
[14] J. N. Hay, and H. M. Raval, " Preparation of Inorganic Oxides via a Non-Hydrolytic Sol-Gel Route," Sol-Gel Science and Technology, vol. 13, pp. 109-112, 1998.
[15] M. Collinson, Sol-Gel Strategies for the Preparation of Selective, " Materials for Chemical Analysis, " Critical Reviews In Analytical Chemistry, 1999, vol. 29, no. 4, pp. 289-311.
[16] H. Podbielska, and A. Ulatowska-Jar˙Za, " Sol-gel technology for biomedical engineering," Technical Sciences, 2005, vol. 53, No. 3, pp. 267-271.
[17] R.K.Ilter, " The Chemistry of Silica ", Wiley,1979.
[18] M. Thommes, K. Kaneko, A. Neimark, J. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, and K. Sing, " Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) , " Pure And Applied Chemistry, 2015, vol. 87, no. 9-10, pp. 1051-1069.
[19] D. P. Debecker, and P. H. Mutin, " Non-hydrolytic sol-gel routes to heterogeneous catalysts, " Chem Soc Rev, 2012, vol. 41, no. 9, pp. 3624-3650.
[20] A. H. Elhaj Yousif, O.Y. Omer Alhussein and M.S. Ali Eltoum, " Characterization of Hydrolyzed Products of Tetra Ethoxy Silane Prepared by Sol-Gel Method, " Multidisciplinary Sciences and Engineering, 2015, vol. 6, no. 1.
[21] R. Caruso, and M. Antonietti, " Sol−Gel Nanocoating: An Approach to the Preparation of Structured Materials, " Chemistry Of Materials, 2001, vol. 13, no. 10, pp. 3272-3282.
[22] J. Pouxviel, and J. Boilot, " Kinetic simulations and mechanisms of the sol-gel polymerization, " Non-Crystalline Solids, 1987, vol. 94, no. 3, pp. 374-386.
[23] J. Ro, and I. Chung, " Sol-gel kinetics of tetraethylorthosilicate (TEOS) in acid catalyst, " Non-Crystalline Solids, 1989, vol. 110, no. 1, pp. 26-32.
[24] K.C. Chen, T. Tsuchiya, and J.D. Mackenzie, " SOL-GEL PROCESSING OF SILICA, " 1986, vol. 81, pp.227-237.
[25] L. P. Singh, S. K. Bhattacharyya, R. Kumar, G. Mishra, U. Sharma, G. Singh, and S. Ahalawat, " Sol-Gel processing of silica nanoparticles and their applications, " Colloid and Interface Science, 2014, vol. 214, pp. 17-37.
[26] A. Feinle, M. S. Elsaesser, and N. Husing, " Sol-gel synthesis of monolithic materials with hierarchical porosity, " Chem Soc Rev, 2016, vol. 45, no. 12, pp. 3377-3399.
[27] L. Chu, M. Tejedor-Tejedor, and M. Anderson, " Particulate sol-gel route for microporous silica gels, " Microporous Materials, 1997, vol. 8, no. 5-6, pp. 207-213.
[28] R. Ciriminna, A. Fidalgo, V. Pandarus, F. Béland, L. Ilharco,and M. Pagliaro, " The Sol–Gel Route to Advanced Silica-Based Materials and Recent Applications, " Chemical Reviews, 2013, vol. 113, no. 8, pp. 6592-6620.
[29] Ya-Yu Huang, Kan-Sen Chou, " Studies on the spin coating process of silica films, " Ceramics International, 2002.vol. 77. no. 2, pp. 187-204.
[30] B. Xia, L. Yan, Y. Li, S. Zhang, M. He, H. Li, H. Yan, and B. Jiang, " Preparation of silica coatings with continuously adjustable refractive indices and wettability properties via sol–gel method, " RSC Advances, 2018, vol. 8, no. 11, pp. 6091-6098.
[31] S. H. Wu, C. Y. Mou, and H. P. Lin, " Synthesis of mesoporous silica nanoparticles, " Chem Soc Rev, 2013, vol. 42, no. 9, pp. 3862-3875.
[32] S. Chang, and T. Ring, " Map of gel times for three phase region tetraethoxysilane, ethanol and water, " Non-Crystalline Solids, 1992, vol. 147-148, pp. 56-61.
[33] C. Chou, R. Changrani, P. Roberts, D. Sadler, J. Burdon, F. Zenhausern, S. Lin, A. Mulholland, N. Swami, and R. Terbrueggen, " A miniaturized cyclic PCR device—modeling and experiments, " Microelectronic Engineering, 2002, vol. 61-62, pp. 921-925.
[34] J. F. Jr, I. R. Wiechers, and R. Cook-Deegan, " The effects of business practices, licensing, and intellectual property on development and dissemination of the polymerase chain reaction: case study, " Biomedical Discovery and Collaboration, 2006, vol, no. 1, pp. 7.
[35] D. T. Nair, R. E. Johnson, L. Prakash, S. Prakash, and A. K. Aggarwal, " Rev1 employs a novel mechanism of DNA synthesis using a protein template, " Science, 2005, vol. 309, no. 5744, pp. 2219-2222.
[36] J. H. Jung, S. Shinkai, and T. Shimizu, " Organic supramolecular architectures and their sol-gel transcription to Silica nanotubes, " Chem Rec, 2003, vol. 3, no. 4, pp. 212-24.
[37] N. M. Sangeetha, " and U. Maitra, " Supramolecular gels: functions and uses, " Chem Soc Rev, 2005, vol. 34, no. 10, pp. 821-36.
[38] J. Jung, and S. Shinkai, " An odd–even relationship which appears in the aggregation modes of ‘gemini’-type cholesterol-based gelators and their transcription into silica gel, " The Royal Society of Chemistry, 2000, vol. 2, no. 12, pp. 2393-2398.
[39] J. Jung, K. Nakashima, and S. Shinkai, " Preparation of Ultrastable Mesoporous Silica Using a Phenanthroline-Appended Cholesterol Organogelator as a Template, " Nano Letters, 2001, vol. 1, no. 3, pp. 145-148.
[40] K. Sugiyasu, S.Tamaru, M. Takeuchi, D. Berthier, I. Huc, R. Odab, and S. Shinkai, " Double helical silica fibrils by sol–gel transcription of chiral aggregates of gemini surfactants," Chemical Communications, 2002, no. 11, pp. 1212-1213.
[41] J.Y. Zheng, " Synthesis of Mesoporous Silica Materials via Nonsurfactant Templated Sol-Gel Route by Using Mixture of Organic Compounds as Template, " Sol-Gel Science and Technology, 2002, vol. 24, pp. 81–88.
[42] N. Pinna and M. Niederberger, " Surfactant-free nonaqueous synthesis of metal oxide nanostructures," Angew Chem Int Ed Engl, 2008, vol. 47, no. 29, pp. 5292-304,.
[43] T. Iwasaki, T. Motoi, and T. Den, " Multiwalled carbon nanotubes growth in anodic alumina nanoholes," Applied Physics Letters, 1999, vol. 75, no. 14, pp. 2044-2046.
[44] H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, and T. Tamamura, " Square and Triangular Nanohole Array Architectures in Anodic Alumina, " Advanced Materials, 2001, vol. 13, no. 3, pp. 189-192.
[45] O. Velev, T.Jede, R. Lobo, and A. Lenhoff, " Microstructured Porous Silica Obtained via Colloidal Crystal Templates, " Chemistry Of Materials, 1998, vol. 10, no. 11, pp. 3597-3602.
[46] Z. Teng, Y. Han, J. Li , F. Yan, W. Yang, " Preparation of hollow mesoporous silica spheres by a sol–gel/emulsion approach," Microporous and Mesoporous Materials, 2009, vol. 127, no. 1-2, pp. 67-72.
[47] J.F. Chen, H.M. Ding, J. X. Wang, and L. Shao, " Preparation and characterization of porous hollow silica nanoparticles for drug delivery application," Biomaterials, 2004, vol. 25, no. 4, pp. 723-727.
[48] X. Zhou, H. Xiao, J. Feng, C. Zhang, and Y. Jiang, " Preparation and thermal properties of paraffin/porous silica ceramic composite," Composites Science and Technology, 2009, vol. 69, no. 7-8, pp. 1246-1249,.
[49] N. Suzuki, M. B. Zakaria, Y. D. Chiang, K. C. Wu, and Y. Yamauchi, " Thermally stable polymer composites with improved transparency by using colloidal mesoporous silica nanoparticles as inorganic fillers, "Phys Chem Chem Phys, 2012, vol. 14, no. 20, pp. 7427-7432.
[50] G. R. Titus, and J. L. Williams, High clarity polyolefin compositions and clarifying additive therein, " US Patent: 4,808,650", 1989.
[51] S. Yamasaki, and H. Tsutsumi, " The Dependence of the Polarity of Solvents on 1,3 : 2,4-Di-O-benzylidene-D-sorbitol Gel, " Bulletin Of The Chemical Society Of Japan, 1995, vol. 68, no. 1, pp. 123-127.
[52] T. J. Schamper, M. M. Perl, and J. D. Warren, " Clear Antipersperant Stick Gelled with Dbenzyldene Sorbitoland Containing A Guandine Compound as Gel Seaizer, and Process of Making Same, US Patent: 5,490,979", 1988.
[53] E. Wilder, K. Wilson, J. Quinn, D. Skrtic, and J. Antonucci, " Effect of an Organogelator on the Properties of Dental Composites, " Chemistry Of Materials, 2005, vol. 17, no. 11, pp. 2946-2952.
[54] R. N. Vachon, and H. R. R. Partin, " Adesive Applicator Crayon, " US Patent: 3,267,052", 1981.
[55] B. J. Kneafsey, J. Guthrie, and D. P. Melody, Semi-Solid Compositions for Removing Cured Product, " US Patent: 6,828,291 B2", 2004.
[56] N. Mohmeyer, P. Wang, H. Schmidt, S. Zakeeruddin, and M. Grätzel, " Quasi-solid-state dye sensitized solar cells with 1,3:2,4-di-O-benzylidene-d-sorbitol derivatives as low molecular weight organic gelators, " Materials Chemistry, 2004, vol. 14, no. 12, pp. 1905-1909.
[57] T. Kobayashi, Y. Kawashima, M. Yoshimura, M. Sugiura, T. Nobe, and S. Fujimoto, " Compositions for Recovering an Organic Material From an Oily Layer on A Body of Water, US Patent: 4,502,975 ", 1985.
[58] W. Lai, and C. Wu, " Studies on the self-assembly of neat DBS and DBS/PPG organogels, " Applied Polymer Science, 2010, vol. 115, no. 2, pp. 1113-1119.
[59] J. You, W. Yu, and C. Zhou, " Accelerated Crystallization of Poly(lactic acid): Synergistic Effect of Poly(ethylene glycol), Dibenzylidene Sorbitol, and Long-Chain Branching, " Industrial and Engineering Chemistry Research, 2014, vol. 53, no. 3, pp. 1097-1107.
[60] B. Zdravkov, J. Čermák, M. Šefara, and J. Janků, " Pore classification in the characterization of porous materials: A perspective, " Open Chemistry, 2007, vol. 5, no. 2, pp. 385-395.
[61] S. Li, G. Irvin, B. Simmons, S. Rachakonda, P. Ramannair, S. Banerjee, V. John, G. McPherson, W. Zhou, and A. Bose, " Structured materials syntheses in a self-assembled surfactant mesophase, " Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, vol. 174, no. 1-2, pp. 275-281.
[62] W. Lai, S. Tseng, S. Tung, Y. Huang, and S. Raghavan, " Nanostructured Polymers Prepared Using a Self-Assembled Nanofibrillar Scaffold as a Reverse Template, " Physical Chemistry B, 2009, vol. 113, no. 23, pp. 8026-8030.
[63] G. Sokrates, " Infrared and Raman characteristic group frequencies: tables and charts, " Colloid and Polymer Science, 2004, vol. 283, no. 2, pp. 235-235.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2025-02-11公開。
  • 同意授權瀏覽/列印電子全文服務,於2025-02-11起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信