淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1512202013424200
中文論文名稱 利用X光能譜技術研究螢光粉末Sr2SiO4: Eu3+之電子和原子結構
英文論文名稱 The Electronic and Atomic Structures of Sr2SiO4: Eu3+ Phosphor Powder Studied by X-ray Spectroscopies
校院名稱 淡江大學
系所名稱(中) 物理學系博士班
系所名稱(英) Department of Physics
學年度 109
學期 1
出版年 110
研究生中文姓名 鄭世燕
研究生英文姓名 Shi-Yan Zheng
學號 805214011
學位類別 博士
語文別 中文
口試日期 2020-12-10
論文頁數 94頁
口試委員 指導教授-彭維鋒
委員-薛宏中
委員-杜昭宏
委員-彭維鋒
委員-李志甫
委員-邱昭文
中文關鍵字 三價銪離子摻雜於矽酸鍶螢光粉末  X光吸收近邊結構  延伸X光吸收精細結構  X光發射光譜  光致發光光譜  X光繞射  一般結構分析系統 
英文關鍵字 Trivalent Europium Doped Strontium Silicate Phosphor Powder  XANES  EXAFS  XES  PL  XRD  GSAS 
學科別分類
中文摘要 採用溶膠凝膠法(Sol-gel Method)製備螢光粉末樣品Sr2SiO4: Eu3+ (SSO: xEu3+, x= 1.0, 2.0及5.0 %),研究其晶體結構、發光機製、電子/原子結構以及能隙性質並獲得這些性能間的關聯性。
X光粉末繞射分析顯示SSO: xEu3+螢光粉末中皆含有斜方晶系結構α'-SSO與單斜晶系結構β-SSO混合相。當SSO: xEu3+螢光粉末受紫外光 (= 250 nm, ~4.96 eV)激發時,其可發出黃色 (~590 nm)、橙色 (~613 nm)及紅色 (~652 與 703 nm) 波段的可見光。這些可見光主要由 4f-4f 電子躍遷而產生,其涉及基體晶格中活化劑Eu3+的多重激發5D0 7FJ (J= 1, 2, 3及4)能級躍遷。
Sr K-edge及Eu L3-edge的X光吸收近邊結構(X-ray Absorption Near Edge Structure, XANES)/延伸X光吸收精細結構(Extended X-ray Absorption Fine Structure, EXAFS),O K-edge XANES及K X光發射光譜(X-ray Emission Spectroscopy, XES)研究發現,樣品發光機製與 Eu3+-O2-耦合局域電子/原子結構以及基體晶格的能隙緊密相關。
由於合成的SSO: xEu3+螢光粉末的基體晶格間隙中形成類Eu2O3結構,其充當提供者(Donors)雜質,有利於電子從O 2p-Eu 4f /5d未佔據態(主要為O 2p-Eu 5d未佔據態)向第一激發態5D0發生非輻射遷移,之後再促使電子通過輻射躍遷從第一激發態5D0躍遷至基態7FJ,該電荷遷移過程是Eu3+離子摻雜濃度增加時樣品其光致發光光譜(Photoluminescence Spectroscopy, PL)強度增強的主要原因。
通過以上研究顯示,SSO: xEu3+螢光粉對於近紫外晶片而言不失為一種優良的光轉換候選螢光粉,並可廣泛應用在基於紫外發光二極體上。
英文摘要 A series of Eu3+-activated strontium silicate phosphors, Sr2SiO4:xEu3+ (SSO:xEu3+, x= 1.0, 2.0 and 5.0 %), were synthesized by a sol-gel method, and their crystalline structures, photoluminescence (PL) behaviors, electronic/atomic structures and bandgap properties were studied. The correlation among these characteristics was further established. X-ray powder diffraction analysis revealed the formation of mixed orthorhombic α'-SSO and monoclinic β-SSO phases of the SSO:xEu3+ phosphors. When SSO:xEu3+ phosphors are excited under ultraviolet (UV) light (= 250 nm, ~4.96 eV), they emit yellow (~590 nm), orange (~613 nm) and red (~652 and 703 nm) PL bands. These PL emissions typically correspond to 4f-4f electronic transitions that involve the multiple excited 5D0 7FJ levels (J= 1, 2, 3 and 4) of Eu3+ activators in the host matrix. This mechanism of PL in the SSO:xEu3+ phosphors is strongly related to the local electronic/atomic structures of the Eu3+-O2- associations and the bandgap of the host lattice, as verified by Sr K-edge and Eu L3-edge X-ray absorption near-edge structure (XANES)/extended X-ray absorption fine structure, O K-edge XANES and Kα X-ray emission spectroscopy. In the synthesis of SSO:xEu3+ phosphors, interstitial Eu2O3-like structures are observed in the host matrix that act as donors, providing electrons that are nonradiatively transferred from the O 2p-Eu 4f/5d states (mostly the O 2p-Eu 5d states) to the 5D0 levels, facilitating the recombination of electrons that have transitioned from the 5D0 level to the 7FJ level in the bandgap. This mechanism is primarily responsible for the enhancement of PL emissions in the SSO: xEu3+ phosphors. This PL-related behavior indicates that SSO: xEu3+ phosphors are good light-conversion phosphor candidates for use in near-UV chips and can be very effective in UV-based light-emitting diodes.
論文目次 致謝 .......................................................................................................... i
摘要 ........................................................................................................ iii
目錄 ........................................................................................................ vi
圖目錄 .................................................................................................. viii
表目錄 .................................................................................................... xi
第一章、緒論 ......................................................................................... 1
1-1. 稀土發光材料(Rare-earth Luminescent Materials) .................. 1
1-2. 文獻回顧及研究動機 .............................................................. 3
1-3. 本論文研究內容及其安排 ...................................................... 6
第二章、實驗原理及技術 ..................................................................... 8
2-1. 同步輻射(Synchrotron Radiation)簡介 ................................... 8
2-2. X光吸收光譜(X-ray Absorption Spectroscopy)簡介 .......... 13
2-2-1. X光吸收光譜基本原理 ................................................ 14
2-2-2. X光吸收精細結構 ........................................................ 16
2-2-3. X光吸收光譜量測 ........................................................ 21
2-2-4. X光吸收光譜數據分析 ............................................... 24
2-3. X光發射光譜(X-ray Emission Spectroscopy)簡介 ............. 29
2-4. 光致發光光譜(Photoluminescence Spectroscopy)簡介 ........ 32
2-5. X光繞射(X-ray Diffraction)簡介 ......................................... 33
2-6. GSAS擬合軟體簡介 ............................................................ 35
第三章、螢光粉末Sr2SiO4: Eu3+之電子與原子結構研究 ............... 36
3-1. 矽酸鍶(Sr2SiO4)晶體結構簡介 ............................................. 36
3-2. 樣品簡介 ................................................................................ 40
3-3. 光致發光之發射光譜量測 .................................................... 41
3-4. XRD量測與GSAS擬合 ...................................................... 47
3-5. X光吸收光譜量測 ............................................................... 54
3-5-1. O K-edge XANES .......................................................... 55
3-5-2. Eu L3-edge XANES ....................................................... 58
3-5-3. Sr K-edge XANES ......................................................... 61
3-5-4. Eu L3-edge EXAFS ........................................................ 64
3-5-5. Sr K-edge EXAFS .......................................................... 68
3-6. X光發射光譜量測 ............................................................... 73
第四章、總結與展望 ........................................................................... 79
4-1. 總結 ........................................................................................ 79
4-2. 展望 ........................................................................................ 80
參考文獻 ............................................................................................... 82
圖目錄
圖1-1 螢光粉發光過程示意圖 .......................................................... 1
圖2-1 同步輻射光源波長及能量範圍示意圖 .................................. 8
圖2-2 臺灣NSRRC同步輻射光源結構示意圖 ............................. 10
圖2-3 同步輻射與一般光源強度曲線比較示意圖 ........................ 11
圖2-4 同步輻射與物質相互作用示意圖 ........................................ 13
圖2-5 光子能量與吸收截面關係示意圖 ........................................ 15
圖2-6 X光吸收過程:(a)電子躍遷示意圖(b)以主量子數命名的各吸收邊示意圖 ........................................................................................... 16
圖2-7 X光吸收精細結構範例譜圖 ............................................... 17
圖2-8 多重與單一散射路徑示意圖:(a)多重散射(b)單一散射 .. 19
圖2-9 X光電子平均自由路徑與其能量關係圖 ........................... 19
圖2-10 以同步輻射光量測的XAS實驗裝置示意圖 ..................... 22
圖2-11 三種光譜量測方法 ............................................................... 24
圖2-12 X光吸收光譜數據分析流程圖 ........................................... 26
圖2-13 產生X光發射光譜的基本過程能態原理示意圖 .............. 30
圖2-14 由XAS與XES獲得的能隙示意圖 ................................... 31
圖2-15 X光晶體繞射光路示意圖 .................................................. 34
圖3-1 SSO晶體結構示意圖 ........................................................... 37
圖3-2 SSO中9配位Sr2與10配位Sr1周遭對稱性及Sr-O鍵長展示圖 ....................................................................................................... 38
圖3-3 SSO: Eu3+ 螢光粉末之原子結構示意圖 ............................... 39
圖3-4 SSO: xEu3+ 螢光粉末之光致發光光譜 ................................. 46圖3-5 典型的Eu 4f-4f間電子躍遷及活化劑Eu3+發射黃橙紅光譜的能階示意圖 ........................................................................................... 47
圖3-6 SSO: xEu3+ 螢光粉末、基體SSO及起始原料SCO、SiO2、 Eu2O3之X光繞射圖。下方圖為5.0 %樣品經GSAS擬合後的精修圖。 ....................................................................................................... 53
圖3-7 歸一化後SSO: xEu3+ 螢光粉末、基體SSO及起始原料Eu2O3之O K-edge XANES能譜圖。右上內插圖為樣品SSO: xEu3+ 及基體SSO扣除背景後主吸收峰強度。 .......................................... 57
圖3-8 歸一化後SSO: xEu3+ 螢光粉末及起始原料Eu2O3的Eu L3-edge XANES能譜圖。右上內插圖為樣品SSO: xEu3+ 及起始原料Eu2O3扣除背景後主吸收峰強度,右下內插圖展示5.0 % 樣品d-間距(222)存在立方相Eu2O3的HRTEM影像並展示其相應選定區域的電子繞射圖。 ....................................................................................... 60

圖3-9 歸一化後SSO: xEu3+ 螢光粉末及基體SSO之Sr K-edge XANES能譜圖。右上內插圖為樣品及基體扣除背景後主吸收峰強度。 ....................................................................................................... 63
圖3-10 SSO: xEu3+螢光粉末及起始原料Eu2O3之Eu L3-edge EXAFS的傅立葉變換和擬合圖,圖中空心小圓圈部分為擬合後的結果,實線為傅立葉變換後的結果,右上內插圖為k空間圖。 ....................................................................................................... 67
圖3-11 SSO: xEu3+ 螢光粉末及基體SSO 之Sr K-edge EXAFS的傅立葉變換和擬合圖,圖中空心小圓圈部分為擬合後的結果,實線為傅立葉變換後的結果,右上內插圖為k空間圖,右下內插圖為第一配位層放大圖。 ........................................................................... 72
圖3-12 TPS-45A光束線佈局示意圖 ............................................... 74
圖3-13 XES量測實驗裝置光路佈局示意圖 .................................. 74
圖3-14 歸一化後SSO: xEu3+螢光粉末、 基體SSO及起始原料Eu2O3之O Kα XES與K-edge XANES 能譜圖。右上內插圖為通過目測歸一化後的O Kα XES與K-edge XANES邊前上升沿圖譜方向並分別做實線外推至基線從而獲得VBM和CBM。下方圖為樣品的O Kα XES與K-edge XANES能譜和基體SSO相減之結果。 ................. 78
表目錄
表3-1 SSO: xEu3+ 螢光粉末樣品分類列表 ..................................... 40
表3-2 經GSAS擬合後獲得的β-SSO與α'-SSO重量百分比及其高低溫相比 ............................................................................................... 51
表3-3 经GSAS擬合後获得的β-SSO與α'-SSO晶格參數 ............ 52
表3-4 SSO: xEu3+ 螢光粉末及起始原料Eu2O3之Eu L3-edge EXAFS的傅立葉變換之配位數N、無序度因數σ2及Eu-O平均鍵長R等擬合結果參數表。 ................................................................................... 66
表3-5 SSO: xEu3+ 螢光粉末及基體SSO之Sr K-edge EXAFS的傅立葉變換之第一配位層配位數N1 /N2、無序度因數σ12/σ22及Sr1-O/Sr2-O平均鍵長R1/R2等擬合結果參數表。 ................................... 71
參考文獻 [1]C. Ronda, Rare Earth Phosphors: Fundamentals and Applications (Elsevier Science Ltd, 2001).
[2]G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer-Verlag Berlin Heidelberg, 1994).
[3]A. Kitai, Luminescent Materials and Applications (John Wiley & Sons Ltd, 2008).
[4]C. Ronda, Luminescence: From Theory to Application (Wiley-VCH Verlag Gmbh, 2007).
[5]劉行仁,世界科技研究與發展 25, 79 (2003).
[6]李建宇,稀土發光材料及其應用 (北京:化學工業出版社,2003).
[7]N. Holonyak and S. F. Bevacqua, Applied Physics Letters 1, 82 (1962).
[8]S. Nakamura, T. Mukai, and M. Senoh, Applied Physics Letters 64, 1687 (1994).
[9]潘政薇,何洪,宋秀峰,趙昕冉,和傅仁利,矽酸鹽學報 37, 1590 (2009).
[10] D. B. Chaudhari, P. Z. Zambare, and O. H. Mahajan, IOSR-JAP. 9, 37 (2017).
[11] K. Korthout, K. V. Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, Physical Review B 84, 085140 (2011).
[12] M. Ayvacikli, A. Ege, S. Yerci, and N. Can, Journal of Luminescence 131, 2432 (2011).
[13] Y. S. Hu, W. D. Zhuang, J. H. Hao, X. W. Huang, and H. Q. He, Open Journal of Inorganic Chemistry 2, 6 (2012).
[14] T. M. Tolhurst, P. Strobel, P. J. Schmidt, W. Schnick, and A. Moewes, Chemistry of Materials 29, 7976 (2017).
[15] S. K. Gupta, S. Nigam, A. K. Yadav, M. Mohapatra, S. N. Jha, C. Majumder, and D. Bhattacharyya, New Journal of Chemistry 39, 6531 (2015).
[16] Y. M. Qiao, X. B. Zhang, X. Ye, Y. Chen, and H. Guo, Journal of Rare Earths 27, 323 (2009).
[17] T. L. Barry, Journal of the Electrochemical Society 115, 1181 (1968).
[18] S. H. M. Poort, W. Janssen, and G. Blasse, Journal of Alloys and Compounds 260, 93 (1997).
[19] N. Lakshminarasimhan and U. V. Varadaraju, Journal of the Electrochemical Society 152, H152 (2005).
[20] J. H. Lee and Y. J. Kim, Materials Science and Engineering B 146, 99 (2008).
[21] J. H. Lee and Y. J. Kim, Journal of Ceramic Processing Research 10, 81 (2009).
[22] Z. J. Wang, Z. P. Yang, Q. L. Guo, P. L. Li, and G. S. Fu, Chinese Physics B 18, 2068 (2009).
[23] S. K. Gupta, M. Mohapatra, S. Kaity, V. Natarajan, and S. V. Godbole, Journal of Luminescence 132, 1329 (2012).
[24] A. Nag and T. R. N. Kutty, Journal of Materials Chemistry 14, 1598 (2004).
[25] H. Nagabhushana, D. V. Sunitha, S. C. Sharma, B. D. Prasad, B. M. Nagabhushana, and R. P. S. Chakradhar, Journal of Alloys and Compounds 595, 192 (2014).
[26] B. S. Prathibha, M. S. Chandrashekara, B. M. Naghabhushan, and H. Nagabhushan, International Journal of Innovations in Engineering and Technology 6, 190 (2015).
[27] H. Feng, Y. Yang, X. G. Zhang, Y. C. Xu, and J. Y. Guan, Superlattices and Microstructures 78, 150 (2015).
[28] Y. Wei, H. Jia, H. Xiao, M. M. Shang, C. C. Lin, C. C. Su, T. S. Chan, G. G. Li and J. Lin, The Royal Society of Chemistry 7, 1899 (2017).
[29] F. R. Elder, A. M. Gurewitsch, R. V. Langmuir, and H. C. Pollock, Physical Review 71, 829 (1947).
[30] 馬禮敦和楊福家,同步輻射應用概論 (上海:復旦大學出版社,2001).
[31] W. Philip, An Introduction to Synchrotron Radiation: Techniques and Applications (John Wiley & Sons Ltd, 2011).
[32] D. Attwood, Soft X-rays and Extreme Ultraviolet Radiation:Principles and Applications (Cambridge University Press, 1999).
[33] D. H. Tomboulian and P. L. Hartman, The Physical Review 102, 1423 (1956).
[34] K. D. Liss and K. Chen, MRS Bulletin 41, 435 (2016).
[35] C. H. Fan and Z. T. Zhao, Synchrotron Radiation in Materials Science:Light Sources, Techniques, and Applications (Wiley-VCH Verlag Gmbh, 2018).
[36] https://www.nsrrc.org.tw/english/lightsource.aspx (臺灣新竹同步輻射研究中心網站)
[37]http://www.ihep.cas.cn/dkxzz/bsrf/kepuyuandi/201006/t20100629_2889660.html (北京同步輻射裝置網站)
[38] 曾昭權,雲南大學學報(自然科學版) 30, 477 (2008).
[39] 王其武和劉文漢,X射線吸收精細結構及其應用 (北京:科學出版社,1994).
[40] G. Bunker, Introduction to XAFS: A Practical Guide to X-ray Absorption Fine Structure Spectroscopy (Cambridge University Press, 2010).
[41] D. E. Sayers, E. A. Stern, and F. W. Lytle, Physical Review Letters 27, 1204 (1971).
[42] C. T. Chantler, Journal of Physical and Chemical Reference Data 29, 597 (2000).
[43] J. Stöhr, NEXAFS Spectroscopy (Springer-Verlag, 1992).
[44] 謝尚憲,利用X光能譜及中子散射技術研究單晶材料鍶鐵氧和鎳錳鈦氧之電子和磁結構 (淡江大學物理學系博士論文,2018).
[45] J. J. Rehr and R. C. Albers, Reviews of Modern Physics 72, 621 (2000).
[46] S. Mobilio, F. Boscherini, and C. Meneghini, Synchrotron Radiation: Basic,Methods and Applications (Springer-Verlag Berlin Heidelberg, 2015).
[47] E. A. Stern, Physical Review B 10, 3027 (1974).
[48] C. S. Hwang, F. Y. Lin, C. H. Lee, K. L. Yu, C. H. Hsieh, P. K. Tseng, J. T. Lin, and W. F. Pong, Review of Scientific Instruments 69, 1230 (1998).
[49] K. Oura, V.G. Lifshits, A. A. Saranin, A. V. Zotov, and M. Katayama, Surface Science: An Introduction (Springer-Verlag Berlin Heidelberg, 2003).
[50] G. Friedbacher and H. Bubert, Surface and Thin Film Analysis: A Compendium of Principles, Instrumentation, and Applications, 2nd, Completely Revised and Enlarged Edition (Wiley-VCH, 2011).
[51] D. C. Koningsberger and R. Prins, X-ray Absorption: Principles, Application, Techniques of EXAFS, SEXAFS, and XANES (Wiley Chichester, 1988).
[52] B. K. Teo, EXAFS: Basic Principles and Data Analysis (Springer-Verlag Berlin Heidelberg, 1986).
[53] 麥振洪,同步輻射光源及其應用 (北京:科學出版社,2013).
[54] A. Kotani and S. Shin, Reviews of Modern Physics 73, 203 (2001).
[55] B. Y. Wang, H. T. Wang, L. Y. Chen, H. C. Hsueh, X. Li, J. H. Guo, Y. Luo, J. W. Chiou, W. H. Wang, P. H. Wang, K. H. Chen, Y. C. Chen, L. C. Chen, C. H. Chen, J. Wang, and W. F. Pong, Carbon 107, 857(2016).
[56] C. H. Chuang, Y. F. Wang, Y. C. Shao, Y. C. Yeh, D. Y. Wang, C. W. Chen, J. W. Chiou, S. C. Ray, W. F. Pong, L. Zhang, J. F. Zhu, and J. H. Guo, Sci. Rep. 4, 4525(2014).
[57] 徐敘瑢和蘇勉曾, 發光學與發光材料 (北京:化學工業出版社, 2004).
[58] 張中太和張俊英, 無機光致發光材料及應用 (北京:化學工業出版社,2005).
[59] 孫家躍,杜海燕和胡文祥, 固體發光材料 (北京:化學工業出版社,2003).
[60] B. D. Cullity and S. R. Stock, Elements of X-ray Diffraction (Pearson Education Limited, 2014).
[61] B. Fultz and J. Howe, Transmission Electron Microscopy and Diffractometry of Materials (Spinger Heidelberg New York Dordrecht London, 2012).
[62] A. C. Larson and R. B. Von Dreele, GSAS: General Structure Analysis System, (Los Alamos National Laboratory Report LAUR 86-748, 1994).
[63] M. Catti, G. Gazzoni, and G. Ivaldi, Acta Crystallography C39, 29 (1983).
[64] M. Catti, G. Gazzoni, G. Ivaldi, and G. Zanini, Acta Crystallography B39, 674 (1983).
[65] Z. G. Xia, Z. H. Xu, M. Y. Chen, and Q. L. Liu, Dalton Transactions 45, 11214 (2016).
[66] J. H. Yang, L. L. Yang, W. Y. Liu, Y. J. Zhang, H. G. Fan, Y. X. Wang, H. L. Liu, J. H. Lang, and D. D. Wang, Journal of Alloys and Compounds 454, 506 (2008).
[67] Y. X. Gu, Q. H. Zhang, Y. G. Li, and H. Z. Wang, Journal of Alloys and Compounds 509, L109 (2011).
[68] L. L. Hench and J. K. West, Chemical Reviews 90, 33 (1990).
[69] 陳俞仲, 錫酸鹽M2SnO4(M=Ca, Sr, Zn)螢光粉之合成與螢光特性研究 (成功大學材料科學及工程學系博士論文, 2005).
[70] L. Zhou and B. Yan, Journal of Physics and Chemistry of Solids 69, 2877 (2008).
[71] S. Ray, P. Pramanik, A. Singha, and A. Roy, Journal of Applied Physics 97, 094312 (2005).
[72] 王肖芳,張弛,和鄧朝勇,發光學報 37, 1037 (2016).
[73] D. Singh, S. Sheoran, and V. Tanwar, Advanced Materials Letters 8, 656 (2017).
[74] S. M. Antao and I. Hassan, Canadian Mineralogist 47, 1245 (2009).
[75] A. C. Larson and R. B. Von Dreele, GSAS: General Structure Analysis System, (Los Alamos National Laboratory Report LAUR 86-748, 2004).
[76] B. H. Toby, Journal of Applied Crystallography 34, 210 (2001).
[77] https://www.materialsproject.org/ (Materials Project 網站)
[78] L. C. Ju, C. Cai, Q. Q. Zhu, J. Y. Tang, L. Y. Hao, and X. Xu, Journal of Materials Science: Materials in Electronics 24, 4516 (2013).
[79] Table of Periodic Properties of the Elements, (Sargent-Welch Scientific, Skokie, IL, 1980).
[80] http://efd.nsrrc.org.tw/EFD.php?num=227 (臺灣新竹同步輻射研究中心網站)
[81] O. Müller, D. Lützenkirchen-Hecht, and R. Frahm, Review of Scientific Instruments 86, 093905 (2015).
[82] K. C. Mishra, M. E. Hannah, A. Piquette, V. Eyert, P. C. Schmidt, and K. H. Johnson, ESC Journal of Solid State Science and Technology 1, R87 (2012).
[83] Y. S. Won and S. S. Park, Journal of Physics and Chemistry of Solids 71, 1742 (2010).
[84] L. C. Ju, X. Xu, L. Y. Hao, Y. Lin, and M. H. Lee, Journal of Materials Chemistry C 3, 1567 (2015).
[85] H. Jiang, P. Rinke, and M. Scheffler, Physical Review B 86, 125115 (2012).
[86] A. N. Kravtsova, A. A. Guda, J. Goettlicher, A. V. Soldatov, V. K. Taroev, A. A. Kashaev, L. F. Suvorova, and V. L. Tauson, Journal of physics: Conference Series 712, 012096 (2016).
[87] H. Y. Chen, R. Y. Yang, S. J. Chang, and Y. K. Yang, Materials Research Bulletin 47, 1412 (2012).
[88] G. P. Dong, X. D. Xiao, X. F. Liu, B. Qian, Q. Zhang, G. Lin, Z. J. Ma, D. P. Chen, and J. R. Qiu, Journal of the Electrochemical Society 156, J347 (2009).
[89] H. B. Liang, H. He, Q. H. Zeng, S. B. Wang, Q. Su, Y. Tao, T. D. Hu, W. Wang, T. Liu, J. Zhang, and X. Y. Hou, Journal of Electron Spectroscopy and Related Phenomena 124, 67 (2002).
[90] S. Krishnamurthy, C. Mcguinness, L. S. Dorneles, M. Venkatesan, J. M. D. Coey, J. G. Lunney, C. H. Patterson, K. E. Smith, T. Learmonth, P. A. Glane, T. Schmitt, and J. H. Guo, Journal of Applied Physics 99, 08M111 (2006).
[91] W. L. Huang, J. Labis, S. C. Ray, Y. R. Liang, C. W. Pao, H. M. Tsai, C. H. Du, W. F. Pong, J. W. Chiou, M. H. Tsai, H. J. Lin, J. F. Lee, Y. T. Chou, J. L. Shen, C. W. Chen, and G. C. Chi, Applied Physics Letters 96, 062112 (2010).
[92] L. Pauling, Journal of the American Chemical Society 54, 3570 (1932).
[93] H. O. Pritchard and H. A. Skinner, Chemical Reviews 55, 745 (1955).
[94] S. Basu, D. K. Patel, J. Nuwad, V. Sudarsan, S. N. Jha, D. Bhattacharyya, R. K. Vatsa, and S. K. Kulshreshtha, Chemical Physics Letters, 561-562, 82 (2013).
[95] K. W. Huang, W. T. Chen, C. I. Chu, S. F. Hu, H. S. Sheu, B. M. Cheng, J. M. Chen, and R. S. Liu, Chemistry of Materials, 24, 2220 (2012).
[96] Y. F. Wang, Y. C. Shao, S. H. Hsieh, Y. K. Chang, P. H. Yeh, H. C. Hsueh, J. W. Chiou, H. T. Wang, S. C. Ray, H. M. Tsai, C. W. Pao, C. H. Chen, H. J. Lin, J. F. Lee, C. T. Wu, J. J. Wu, Y. M. Chang, K. Asokan, K. H. Chae, T. Ohigashi, Y. Takagi, Y. Yokoyama, N. Kosugi, and W. F. Pong, Scientific Reports, 8, 7758(2018).
[97] E. Finley, A. M. Tehraani, and J. Brgoch, The Journal of Physical Chemistry C, 122, 16309(2018).
[98] V. Kumar, S. Bishnoi, R. K. Kotnala, and S. Chawla, Journal of Luminescence, 179, 100(2016).
[99] S. K. Gupta, P. S. Ghosh, A. Arya, and V. Natarajan, RSC Advances, 4, 51244(2014).
[100] C. L. Dong, J. W. Chiou, H. M. Tsai, H. W. Fu, H. J. Lin, C.T. Chen, and W. F. Pong, Synchrotron Radiation News 30, 24 (2017).
[101] http://tpsbl.nsrrc.org.tw/bd_page.aspx?lang=en&pid=1053&port=
45A (臺灣新竹同步輻射研究中心網站)
[102] 邵禹成,強關聯錳氧化物薄膜及釓基金屬團簇富勒烯之電子及原子結構研究 (淡江大學物理學系博士論文,2017).
[103] H. Pan, X. Li, J. P. Zhang, L. Guan, H. X. Su, Z. P. Yang, and F. Teng, J. Appl. Biomater. Funct. Mater. 14, S62 (2016).
[104] R. Gillen, S. J. Clark, and J. Robertson, Physical Review B. 87, 125116 (2013).
[105] A. V. Prokofiev, A. I. Shelykh, and B. T. Melekh, Journal of Alloys and Compounds 242, 41 (1996).
[106] L. R. Lewis and H. G. M. Edwards, Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line, (Taylor & Francis Group, LLC, 2001).
[107] M. Handke and M. Urban, Journal of Molecular Structure 79, 353 (1982).
[108] K. J. Zhou 和丁洪,物理 39, 324 (2010).
[109] L. J. P. Ament, M. V. Veenendaal, T. P. Devereaux, J. P. Hill, and J. V. D. Brink, Reviews of Modern Physics 83, 705 (2011).
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2020-12-25公開。
  • 同意授權瀏覽/列印電子全文服務,於2020-12-25起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2487 或 來信 dss@mail.tku.edu.tw