淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1512201508261800
中文論文名稱 球對稱黑洞時空中的重力微子場
英文論文名稱 Gravitino fields in the spherically symmetric black hole spacetime
校院名稱 淡江大學
系所名稱(中) 物理學系博士班
系所名稱(英) Department of Physics
學年度 104
學期 1
出版年 105
研究生中文姓名 陳俊宏
研究生英文姓名 Chun-Hung, Chen
電子信箱 ownmyownmy@hotmail.com
學號 899210057
學位類別 博士
語文別 英文
口試日期 2015-12-09
論文頁數 86頁
口試委員 指導教授-曹慶堂
委員-劉國欽
委員-秦一男
委員-吳建宏
委員-陳江梅
中文關鍵字 重力微子場  微擾方程  黑洞  準正則模 
英文關鍵字 gravitino field  perturbation theory  black hole  quasinormal mode 
學科別分類
中文摘要 在本論文內,我們考慮了高維度史瓦西黑洞時空中的重力微子微擾場。在研究重力微子微擾的課題中,通常會引進 Newman-Penrose 方法,不過這個方法只適用在四維的時空中,而不能直接推廣到高維度時空,所以我們採用了另外一種較為直接的觀點來研究這個課題。我們首先研究旋量-向量場在N維球膜中的本徵值問題,並得到一個完整態。利用這些本徵值與本徵態分離了維度史瓦西黑洞時空中的重力微子微擾運動方程式的球對稱部分,並定義了運動方程式中的不變量,進而得到徑向方程式。我們討論了徑向方程式中的有效位勢,並研究了重力微子在高維史瓦西黑洞時空中的吸收機率以及準正則模的相關課題。
英文摘要 In this thesis we consider the gravitino perturbation on a general dimensional Schwarzschild black hole spacetime. The analysis of gravitino fields in curved spacetimes is usually carried out by using the Newman-Penrose formalism, which is useful in four dimensional cases but cannot be generalized to higher dimensions in a straightforward manner. We consider a more direct approach to derive the radial equations. We start this study by finding a complete set of spinor-vector eigenmodes on an N-sphere which includes the "non TT eigenmodes" and the "TT eigenmodes". We separate the angular part of the gravitino equations of motion by these eigenmodes. With the consideration of the gauge symmetry, we write down the Schrödinger like radial equations for the gauge invariant variables. We then discuss the effective potentials. Lastly, we obtain the quasinormal modes and the absorption probabilities of the gravitino field in D dimensional Schwarzschild black hole spacetimes.
論文目次 Contents
Abstract i
Acknowledgments iii
Contents iv
List of Tables vi
List of Figures vii
Chapter 1: Introduction 1
1.1 Quantum eld theory in curved spacetime . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Organization to the thesis . . . . . . . . . . . . . . . . . . . . . . . . 5
Chapter 2: The eigenmodes of spin elds on spheres 7
2.1 Notation on SN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Brief review of spinor elds on SN . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Eigenmodes on S2 . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Odd N cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Even N cases . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Overview of the spinor-vector eigenmodes on SN . . . . . . . . . . . . 16
2.4 Spinor-vector non TT eigenmodes on SN . . . . . . . . . . . . . . . . 18
2.5 Spinor-vector TT eigenmode I on SN . . . . . . . . . . . . . . . . . . 20
2.5.1 Odd N cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.2 Even N cases . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6 Spinor-vector TT Modes II on SN . . . . . . . . . . . . . . . . . . . . 26
2.6.1 Odd N cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6.2 Even N cases . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Chapter 3: The radial equation of the gravitino eld on a D-dimensional
Schwarzschild black hole spacetime 28
3.1 Massless Rarita-Schwinger equation . . . . . . . . . . . . . . . . . . . 29
3.2 The radial equation related to the non TT eigenmodes on SN . . . . 32
3.2.1 The equation of motion . . . . . . . . . . . . . . . . . . . . . . 32
3.2.2 Gauge invariant variable . . . . . . . . . . . . . . . . . . . . . 37
3.2.3 The radial equation . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.4 The e ective potential . . . . . . . . . . . . . . . . . . . . . . 43
3.3 The radial equation related to the TT eigenmodes on SN . . . . . . . 48
3.3.1 The equation of motion . . . . . . . . . . . . . . . . . . . . . . 48
3.3.2 The radial equation . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.3 The e ective potential . . . . . . . . . . . . . . . . . . . . . . 52
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Chapter 4: Gravitino absorption probability in the D dimensional
Schwarzschild spacetime 54
4.1 Low energy region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.1.1 For the spinor perturbation potential . . . . . . . . . . . . . . 55
4.1.2 For the spinor-vector perturbation potential . . . . . . . . . . 58
4.2 WKB approximation for the general energy region . . . . . . . . . . . 59
4.2.1 For the spinor perturbation potential . . . . . . . . . . . . . . 60
4.2.2 For the spinor-vector perturbation potential . . . . . . . . . . 64
Chapter 5: Quasi normal mode 66
5.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 The QNM for the gravitino eld with spinor perturbation potentials . 68
5.3 The QNM for the gravitino eld with spinor-vector perturbation potentials
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Chapter 6: Conclusions 76
Chapter A: The Gauge symmetry of the (A)dS Schwarzschild space-
time 80
Bibliography 83

List of Tables
5.1 Low-lying (n l, with l = j􀀀3=2, and D = 4; 5) gravitino quasinormal
mode frequencies using the WKB methods on the spinor perturbation
potential V1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Low-lying (n l, with l = j􀀀3=2, and D = 6; 7) gravitino quasinormal
mode frequencies using the WKB methods on the spinor perturbation
potential V1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3 Low-lying (n l, with l = j􀀀3=2, and D = 8; 9) gravitino quasinormal
mode frequencies using the WKB methods on the spinor perturbation
potential V1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4 Low-lying (n l, with l = j 􀀀 1=2, and D = 5; 6; 7; 8) gravitino
quasinormal mode frequencies using the WKB methods on the spinorvector
perturbation potential V1. . . . . . . . . . . . . . . . . . . . . 75
List of Figures
3.1 The gravitino e ective potentials V1;2 for j = 1
2 , D = 5 to D = 8, the
spinor perturbation case. . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2 The gravitino e ective potentials V1;2 when D = 5, j = 1
2 in the spinor
perturbation case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 The gravitino e ective potentials V1;2 for j = 3
2 , D = 4 to D = 8, the
spinor perturbation case. . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4 The gravitino e ective potentials V1;2 for j = 3
2 , D = 9 to D = 11, the
spinor perturbation case. . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.5 The gravitino e ective potentials V2 for j = 3
2 , D = 21 to D = 22, the
spinor perturbation case. . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.6 The gravitino e ective potentials for higher D when j 5
2 , the spinor
perturbation case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.7 The gravitino e ective potentials V1;2 for j = 1
2 , D = 4 to D = 9, the
spinor-vector perturbation case. . . . . . . . . . . . . . . . . . . . . . 53
3.8 The gravitino e ective potentials V1;2 for j = 3
2 , D = 4 to D = 9, the
spinor-vector perturbation case. . . . . . . . . . . . . . . . . . . . . . 53
4.1 Gravitino e ective potentials and absorption probabilities in the 4D
Schwarzschild spacetime, spinor perturbation case. . . . . . . . . . . . 61
4.2 Gravitino e ective potentials and absorption probabilities in the higher
dimensional Schwarzschild spacetime for j = 1
2 , spinor perturbation case. 62
4.3 Gravitino e ective potentials and absorption probabilities in the 5D
Schwarzschild spacetime, spinor perturbation case. . . . . . . . . . . . 63
4.4 Gravitino e ective potentials and absorption probabilities in the 6D
Schwarzschild spacetime, spinor perturbation case. . . . . . . . . . . . 63
4.5 Gravitino absorption probabilities in the higher dimensional Schwarzschild
spacetime, spinor perturbation case. . . . . . . . . . . . . . . . . . . . 64
4.6 Gravitino e ective potentials and absorption probabilities on the 5D
Schwarzschild spacetime, spinor-vector perturbation case. . . . . . . . 65
4.7 Gravitino e ective potentials and absorption probabilities on the 6D
Schwarzschild spacetime, spinor-vector perturbation case. . . . . . . . 65
5.1 Gravitino QNM frequencies, spinor perturbation case. . . . . . . . . . 69
5.2 Variation of the QNM frequencies with dimensions for x l and n = 0. 70
5.3 Gravitino QNM frequencies, spinor-vector perturbation case. . . . . . 74
viii
參考文獻 Bibliography
[1] Greiner. Relativistic Quantum Machanics, wave equation. Springer.
[2] Peter O'Donnell. Introduction to 2-Spinor in general relativity. World Scienti c,
2003.
[3] John Stewart. Advanced General Relativity. Cambridge University Press, 1993.
[4] A. Coley, R. Milson, V. Pravda, and A. Pradov a. Class. Quantum Grav. 21,
L35-L42, 2004.
[5] Alan Coley and Sigbj rn Hervik. Class. Quantum Grav. 27, 015002, 2010.
[6] John A. Thorpe. J. Math. Phys. 10, No.1, 1969.
[7] Valeri P. Frolov. Prog. Theor. Phys. Suppl.172:210-219, 2008.
[8] W. Miller. Symmetry and Separation of Variable. Cambridge University Press,
1977.
[9] Valeri P. Frolov, Pavel Krtous, and David Kubiznak. JHEP, 0702:005, 2007.
[10] Marco Cariglia, Pavel Krtous, and David Kubiznak. Phys. Rev. D 84, 024004,
2011.
[11] S. Chandrasekhar. The Mathematical Theory of Black Holes. Oxford University
Press, New York, 1983.
[12] P. C. Aichelburg and R. Guven. Phys. Rev. D 24, 2066, 1981.
[13] G. F. Torres del Castillo and G. Silva-Ortigoza. Phys. Rev. D 46, 5395, 1992.
[14] H. T. Cho. Phys. Rev. D 68, 024003, 2003.
[15] N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali. Phys. Lett. B 429, 263,
1998.
[16] H. Kodama and A. Ishibashi. Prog. Theor. Phys. 110, 701, 2003.
[17] H. T. Cho, A. S. Cornell, J. Doukas, and Wade Naylor. Phys. Rev. D 75, 104005,
2007.
[18] Steven Weinberg. The quantum theory of elds. Cambridge University Press,
1995.
[19] ATLAS Collaboration. Phys. Lett. B 716, 1, 2012.
[20] W. Rarita and J. Schwinger. Phys. Rev. 60, 61, 1941.
[21] Savas Dimopoulos and Greg Landsberg. Phys. Rev. Lett. 87, 161602, 2001.
[22] R. Camporesi and A. Higuchi. Journal of Geometry and Physice 20, 1-18, 1996.
[23] Mark A. Rubin and Carlos R. Ord onez. J. Math. Phys. 25, 2888, 1984.
[24] Leonard E. Parker and David J. Toms. Quantum eld theory in curved spacetime.
Cambridge University Press, 2009.
[25] G. F. Torres del Castillo and G. Silva-Ortigoza. Phys. Rev. D 42, 4082, 1990.
[26] C. H. Chen, H. T. Cho, A. S. Cornell, G. Harmsen, and Wade Naylor. Chin. J.
Phys. 53, 110101, 2015.
[27] Fred Cooper, Avinash Khare, and Uday Sukhatme. Supersymmetry in quantum
mechanics. Physics Reports 251, 267-385, 1995.
[28] Carl M. Bender and Steven A. Orszag. Advanced Mathematical Methods for
Scientists and Engineers. Springer, 1999.
[29] H. Kodama. On the lecture given at the 4th Aegean Summer School,
arXiv:0712.2703, 2007.
[30] W. G. Unruh. Phys. Rev. D 14, 3251, 1976.
[31] S. Iyer and C. M. Will. Phys. Rev. D 35, 3621, 1987.
[32] H. T. Cho, A. S. Cornell, Jason Doukas, and Wade Naylor. Phys. Rev. D 77,
016004, 2008.
[33] R. A. Konoplya. Phys. Rev. D 68, 024018, 2003.
[34] S. L. Detweiler. Sources of Gravitational Radiation. Cambridge University Press,
1979.
[35] P. C. Argyes, S. Dimopoulos, and J. March-Russell. Phys. Latt. B 441, 96, 1998.
[36] S. B. Giddings and S. D. Thomas. Phys. Rev. D 65, 056010, 2002.
[37] A. S. Cornell, Wade Naylor, and Misao Sasaki. JHEP, 0602:012, 2006.
[38] Gary W. Gibbons, Marek Rogatko, and Agnieszka Szyplowska. Phys. Rev. D
77, 064024, 2008.
[39] S. Hollands. Commun. Math. Phys. 216, 635-661, 2001.
[40] H. T. Cho, A. S. Cornell, Jason Doukas, and Wade Naylor. Phys. Rev. D 77,
041502, 2008.
[41] W. Chen, H. Lu, and C.N. Pope. Class. Quant. Grav. 23, 5323-5340, 2006.
[42] Marco Cariglia, Pavel Krtous, and David Kubiznak. Phys. Rev. D 84, 024004,
2011.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2015-12-17公開。
  • 同意授權瀏覽/列印電子全文服務,於2015-12-17起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2487 或 來信 dss@mail.tku.edu.tw