淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-1508201909162300
中文論文名稱 基於人工智慧之居家照護異常行為分析
英文論文名稱 Abnormal Behavior Detection base on AI Techniques for Home Care
校院名稱 淡江大學
系所名稱(中) 資訊工程學系碩士在職專班
系所名稱(英) Department of Computer Science and Information Engineering
學年度 107
學期 2
出版年 108
研究生中文姓名 朱浩維
研究生英文姓名 Hao-Wei Zhu
學號 706410148
學位類別 碩士
語文別 中文
第二語文別 英文
口試日期 2019-06-14
論文頁數 48頁
口試委員 指導教授-張志勇
委員-廖文華
委員-游國忠
中文關鍵字 機器學習  居家照護  隱性不規則行為  無監督式學習 
英文關鍵字 MACHINE LEARNING  HOME CARE  IMPLICIT IRREGULAR BEHAVIOR  UNSUPERVISED IS LEARNING 
學科別分類 學科別應用科學資訊工程
中文摘要 在高齡化的現代社會,獨居老人逐漸增加,居家照護就顯得相對的重要,。雖然在現今的科技中已經開發了許多數值型的檢測裝置來對於身體問題做明確的數值檢測,但是一個人的身體健康狀況單憑數值型的檢測裝置來評斷是不夠的,而且數值型裝置是無法檢查出存在於日常生活行為當中的隱性問題,日常生活行為異常所造成且無法靠硬體裝置所檢測出來的身體狀況。
本論文透過在家中已佈置好的感測Sensor所收集的行為資料來對獨自居住在家中的老年人的每天生活行為做隱性不規則的行為分析,藉由分群演算法基於機器學習中的無監督式學習方法,來對於居家老年人的日常生活行為間的關係做探討與以及異常行為日的分群,藉由特徵提取以及多維度轉換方式,分析出每天的行為間差異,用以檢測隱性不規則的異常行為日。


英文摘要 In the aging modern society, the number of elderly living alone has gradually increased, and home care has become relatively important. Although many numerical detection devices have been developed in today's technology to make explicit numerical tests for physical problems, it is not enough for a person's physical health to be judged by a numerical type of detection device alone, and the numerical device cannot Check out the hidden problems that exist in daily life behaviors, the physical conditions that are caused by abnormal behaviors in daily life and cannot be detected by hardware devices.
This paper makes a hidden and irregular behavior analysis of the daily life behavior of the elderly living alone in the home through the behavior data collected by the Sensor in the home. The group algorithm is based on the machine learning. Supervised learning method to explore the relationship between daily life behaviors of

the elderly and the grouping of abnormal behavior days. Through feature extraction and multi-dimensional transformation, the daily behavioral differences are analyzed to detect recessiveness. Irregular abnormal behavior day.
論文目次 目錄 IV
圖目錄 VI
第一章、簡介 1
第二章、相關研究 3
第三章、研究方法 8
3-1. 數據收集 8
3-2. 環境假設 8
3-3. 特徵提取 11
3-4. 多維度轉換 13
3-5. Null值填補 16
3-6. 距離計算 18
3-7. Hierarchical Clustering 21
第四章、研究結果 28
4-1. 實驗結果 28
4-2. 實驗結果比較 31
第五章、結論與未來工作 34
參考文獻 35
附錄-英文論文 38

圖1. 輸入資料格式 8
圖2. 每日行為字串轉換 10
圖3. 每日行為區段分隔 13
圖4. 多維度轉換 14
圖5. 多維度映射 15圖6 . MList 16
圖7 . MList 空值填補 19
圖8. 距離計算 21
圖9. 多維座標 25
圖10. 群集聚合 26
圖11.群集分群 26
圖12. Hierarchical Clustering 27
圖13. ABDT algorithm 10日行為資料實驗 29
圖14. ABDT algorithm 10日行為資料實驗分群圖 29
圖15. ABDT algorithm 365日行為資料實驗 30
圖16. ABDT algorithm 365日行為資料實驗分群圖 31
圖17. ABDT 分群圖 33
圖18. 360日分群準確率 33

參考文獻 [1]Cuijuan Shang , Chih-Yung Chang , Guilin Chen , Shenghui Zhao , JiazaoLin,“Implicit Irregularity Detection using Unsu-pervised Learning on Daily Behaviors”, IEEE Access, Early Access Article , pp. 1-1, 01 February 2019
[2] F. Zhou, J. Jiao, S. Chen, and D. Zhang, "A case-driven ambient intelligence system for elderly in-home assistance applications," IEEE Trans. Syst. Man and Cybern., vol. 41, no. 2, pp. 179-189, Mar. 2011.
[3] J. J. Liu et al., "BreathSens: A Continuous On-Bed Respiratory Monitoring System With Torso Localization Using an Unobtru-sive Pressure Sensing Array," IEEE J. Biomed. Health Inform., vol. 19, no. 5, pp. 1682-1688, Sep. 2015.
[4] T. S. Barger, D. E. Brown, and M. Alwan, "Health-status moni-toring through analysis of behavioral patterns," IEEE Trans. Syst. Man and Cybern., vol. 35, no. 1, pp. 22-27, Jan. 2005.
[5] D. Naranjo-Hernández, L. M. Roa, J. Reina-Tosina, and M. Á. Estudillo-Valderrama, "SoM: A smart sensor for human activity monitoring and assisted healthy ageing," IEEE Trans. Biomed. Eng., vol. 59, no. 11, pp. 3177-3184, Nov. 2012.
[6] C. Tsirmpas, A. Anastasiou, P. Bountris, and D. Koutsouris, "A new method for profile generation in an intemet of things envi-ronment: An application in ambient-assisted living," IEEE In-ternet of Things J., vol. 2, no. 6, pp. 471-478, Dec. 2015.
[7] Nazábal, P. García-Moreno, A. Artés-Rodríguez, and Z. Ghah-ramani, "Human activity recognition by combining a small num-ber of classifiers," IEEE J. Biomed. Health Inform., vol. 20, no. 5, pp. 1342-1351, Sep. 2016.
[8] Y. Chen, L. Yu, K. Ota, and M. Dong, "Robust activity recognition for aging society," IEEE J. Biomed. Health Inform., vol. 22, no. 6, pp. 1754-1764, Nov. 2018.
[9] L. Chen, J. Hoey, C. D. Nugent, D. J. Cook, and Z. Yu, "Sen-sor-based activity recognition," IEEE Trans. Syst. Man and Cybern., vol. 42, no. 6, pp. 790-808, Nov. 2012.
[10] C. Zhu, and W. Sheng, "Realtime recognition of complex human daily activities using human motion and location data," IEEE Trans. Biomed. Eng., vol. 59, no. 9, pp. 2422-2430, Sep. 2012.
[11] G. Valenza et al., "Wearable monitoring for mood recognition in bipolar disorder based on history-dependent long-term heart rate variability analysis," IEEE J. Biomed. Health Inform., vol. 18, no. 5, pp. 1625-1635, Sep. 2014.
[12] N. Dey, A. S. Ashour, F. Shi, S. J.s Fong, and R. S. Sherratt, "Developing residential wireless sensor networks for ECG healthcare monitoring," IEEE Trans. Consumer Electron., vol. 63, no. 4, pp. 442-449, Nov. 2017.
[13] L. Fanucci et al., "Sensing devices and sensor signal processing for remote monitoring of vital signs in CHF patients," IEEE Trans. Instrum. Measu., vol. 62, no. 3, pp. 553-569, Mar. 2013 ,
[14] A. M. Nia et al., "Energy-efficient long-term continuous personal health monitoring," IEEE Trans. Multi-Scale Comput. Syst., vol. 1, no. 2, pp. 85-98, Apr. 2015.
[15] M. Yu, A. Rhuma, S. Naqvi, L. Wang, and J. Chambers, "A posture recognition-based fall detection system for monitoring an elderly person in a smart home environment," IEEE Trans. Inf. Technol. Biomed., vol. 16, no. 6, pp. 1274-1286, Dec. 2012.
[16] J. Wang et al., "An enhanced fall detection system for elderly person monitoring using consumer home networks," IEEE Trans. Consumer Electron., vol. 60, no. 1, pp. 23-29, Feb. 2014.
[17] B. R. Greene, S. J. Redmond, and B. Caulfield, "Fall risk as-sessment through automatic combination of clinical fall risk factors and body-worn sensor data," IEEE J. Biomed. Health Inform., vol. 21, no. 3, pp. 725-731, Mar. 2017.
[18] Q. Guan, C. Li, X. Guo, and B. Shen, "Infrared signal based ederly fall detection for in-home monitoring," 9th Int. Conf. Intell. Hu-man-Machine Syst. Cybern., pp. 373-376, 2017.
[19] D. Elbert et al., "An approach for detecting deviations in daily routine for long-term behavior analysis", 5th Int. Conf. Pervasive Comput. Technol. Healthcare, pp. 426-433, 2011.
[20] A. R. M. Forkan et al., "A context-aware approach for long-term behavioural change detection and abnormality prediction in am-bient assisted living," Pattern Recognit., vol. 48, no. 3, pp. 628-641, Mar. 2015.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2024-08-27公開。
  • 同意授權瀏覽/列印電子全文服務,於2024-08-27起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2487 或 來信 dss@mail.tku.edu.tw