§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1508201203092900
DOI 10.6846/TKU.2012.00605
論文名稱(中文) 真空式與直接接觸式薄膜蒸餾於海水淡化之滲透通量模擬
論文名稱(英文) Modeling on the distillate fluxes of DCMD and VMD in desalination
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 100
學期 2
出版年 101
研究生(中文) 廖子霈
研究生(英文) Tzu-Pei Liao
學號 699400411
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2012-07-16
論文頁數 83頁
口試委員 指導教授 - 鄭東文
委員 - 童國倫
委員 - 莊清榮
委員 - 黃國楨
委員 - 李篤中
關鍵字(中) 薄膜蒸餾
海水淡化
真空式
模擬
關鍵字(英) Direct Contact Membrane Distillation
vacuum
Polarization phenomena
第三語言關鍵字
學科別分類
中文摘要
本研究之目的為模擬計算直接接觸式薄膜蒸餾與真空式薄膜蒸餾於海水淡化之滲透通量,並比較其性能差異,透過改變不同的操作參數(進料流量、溫度、濃度)來探討各參數對於濾速之影響,以此做進一步討論最適化操作下之操作條件。
結果顯示本研究結合各項海水物性變數並由Dusty-Gas model模擬之滲透通量相當吻合實驗值。溫度極化效應對MD系統影響甚鉅,而VMD系統雖然其極化現象較易獲得改善而有效提高滲透通量,但在VMD系統會因滲透通量的上升而增加其操作成本。成本評估成果顯示,DCMD系統比VMD系統較適合達到經濟規模的設置。
在DCMD,增大物料流率可降低溫度極化及濃度極化現象,其中增大進料側流率會提高熱使用效率,但濾液側流率增大會因透膜熱傳導量增加而降低熱使用效率。
英文摘要
The objectives of this study included the flux estimation of DCMD and VMD in seawater desalination and their comparisons, and aimed to investigate the optimal operating conditions for seawater desalination. The operating parameters in the simulation included the feed flow rate, temperature and concentration.
    The simulation results based on considering the combination of Dusty-Gas model with the seawater properties agree very well with the experimental data. The results also show that the temperature polarization has a significant influence on the flux. The polarization phenomena in the VMD system can be easier improved to increase the distillate flux. However, the operating cost of VMD increases with the increase of distillate flux. The cost evaluation shows that the DCMD system is more economic than the VMD system.
Both the temperature and concentration phenomena can be reduced by increasing the flow rates in the DCMD system. It is noted that increasing the feed side flow rate also enhances the thermal efficiency, while increasing the flow rate in distillate side will raise the heat conduction through the membrane and result in lowering the thermal efficiency.
第三語言摘要
論文目次
目錄
第一章	緒論	1
1.1前言		1
1.2薄膜分離程序	2
1.3薄膜蒸餾	8
第二章	文獻回顧	11
2.1薄膜蒸餾相關研究	11
2.2薄膜蒸餾法之種類	14
2.3薄膜之性質	16
2.4影響滲透通量的因素	18
2.5提高滲透通量的方法	20
第三章	理論計算	30
3.1理論分析之假設	30
3.2質量傳送	32
3.3熱量傳送	36
3.4極化現象之影響	38
3.5熱質傳經驗方程式	42
第四章	結果與討論	47
4.1模擬系統	47
4.2平板系統DCMD之滲透通量模擬	49
4.3VMD系統之滲透通量模擬	56
4.4各參數對溫度極化之影響	62
4.5各參數對濃度極化之影響	64
4.6各操作條件對熱使用效率之影響	67
4.7成本估算	70
第五章	結論	73
符號說明		75
參考文獻		78

圖目錄
圖 1.1	薄膜分離程序之分類……………………………………………………7
圖 2.1	DCMD 示意圖…………………………………………………24
圖 2.2	AGMD 示意圖…………………………………………………24
圖 2.3	SGMD 示意圖………………………………………………25
圖 2.4	VMD 示意圖………………………………………………25
圖 2.5	提高濾速之方法………………………………………………26
圖 2.6	逆洗程序示意圖………………………………………………27
圖 2.7	流體亂流產生器………………………………………………28
圖 2.8	氣液兩相的流動型態……………………………………………29
圖 3.1	DCMD系統熱質傳示意圖………………………………………44
圖 3.2	DCMD質傳阻力示意圖…………………………………………45
圖 3.3	Multipore size model之電路阻力類比示意圖……………………45
圖 3.4	DCMD熱傳阻力示意圖…………………………………………46
圖 4.1	薄膜蒸餾理論計算流程圖………………………………………49
圖 4.2	DCMD平板於不同進料溫度之純水滲透通量………………………51
圖 4.3	DCMD平板於不同進料流量之純水滲透通量……………………51
圖 4.4	DCMD平板於不同進料濃度之滲透通量………………………………53
圖 4.5	DCMD平板於不同進料濃度與極化係數關係……………………53
圖 4.6	DCMD平板於不同進料溫度之滲透通量………………………………54
圖 4.7	DCMD平板於不同進料速度與進料溫度之滲透通量…………………55
圖 4.8	VMD平板於不同進料溫度之純水滲透通量與DCMD比較……………………57
圖 4.9	VMD平板於不同進料溫度之純水滲透通量與DCMD比較…………57
圖 4.10	VMD 平板於不同真空側壓力之純水滲透通量………………………58
圖 4.11	VMD平板於不同進料濃度之滲透通量………………………………59
圖 4.12	VMD平板於不同進料溫度之滲透通量………………………………60
圖 4.13	VMD平板於不同進料溫度之滲透通量………………………………61
圖 4.14	DCMD平板海水於不同進料速度之TPC………………………………63
圖 4.15	VMD平板海水於不同進料速度之TPC………………………………63
圖 4.16	DCMD平板海水於不同進料速度之CPC………………………………65
圖 4.17	DCMD平板海水於不同進料溫度之CPC………………………………65
圖 4.18	VMD平板海水於不同進料溫度之CPC………………………………66
圖 4.19	DCMD平板海水於不同物料溫度之熱使用效率……………………68
圖 4.20	DCMD平板海水於不同物料流量之熱使用效率……………………69
圖 4.21	DCMD平板海水於不同物料溫度之下cost關係圖……………………71
圖 4.22	VMD平板海水於不同進料溫度及總壓cost關係圖………………71
圖 4.23	DCMD平板海水於不同物料流量之cost………………………………72
圖 4.24	VMD平板海水於不同進料溫度與流量cost關係圖……………72

表目錄
表1.1	不同操作程序之驅動力分類…………………………………………6 
表4.1	平板薄膜性質說明………………………………………………………48
參考文獻
Abdel-Ghani, M. S., “Cross-flow ultrafiltration of an aqueous polymer foam solution produced by gas sparging”, Journal of Membrane Science, 171, 105-117, (2000).
Al-Obaidani, S., Curcio, E., Macedonio, F., Di Profio, G., Al-Hinai, H. and Drioli, E., “Potential of membrane distillation in seawater desalination: Thermal efficiency, sensitivity study and cost estimation”, Journal of Membrane Science, 323, 85-98, (2008).
Baird, M. H. I., Duncan, G. J., Smith, J. I. and Taylor, J., “Heat transfer in pulsed turbulent flow”, Chemical Engineering Science, 21, 197-199, (1966).
Bellara, S. R., Cui, Z. F. and Pepper, D. S., “Gas sparging to enhance permeate flux in ultrafiltration using hollow fibre membranes”, Journal of Membrane Science, 121, 175-184, (1996).
Bendiksen, K. H., “An experimental investigation of the motion of long bubbles in inclined tubes”, International Journal of Multiphase Flow, 10, 467-483, (1984).
Bird, R. B., Stewart, W. E. and Lightfoot, E. N., Transport phenomena, 2nd ed., Wiley, (2002).
Cabassud, C ,Wirth, D , “Membrane distillation for water desalination: How to choose an appropriate membrane”, Desalination, 157 , 307–314 (2003).
Cabassud, C., Laborie, S. and Laine, J. M., “How slug flow can improve ultrafiltration flux in organic hollow fibres”, Journal of Membrane Science, 128, 93-101, (1997).
Cath, T. Y., Adams, V. D. and Childress, A. E., “Experimental study of desalination using direct contact membrane distillation: a new approach to flux enhancement”, Journal of Membrane Science, 228, 5-16, (2004).
Cheng, T. W., H. M. Yeh and J. H. Wu, “Effects of gas slugs and inclination angle on the ultrafiltration in tubular membrane module”, Journal of Membrane Science, 158, 223-234 (1999).
Cheng, T.-W., “Influence of inclination on gas-sparged cross-flow ultrafiltration through an inorganic tubular membrane”, Journal of Membrane Science, 196, 103-110, (2002).
Cheng, T. W., Yeh, H. M. and Gau, C. T., “Resistance analyses for ultrafiltration in tubular membrane module”, Separation Science and Technology, 32, 2623, (1997).
Cheryan, M., Ultrafiltration and Microfiltration Handbook, 2nd ed., Technomic Publishing Inc., Pennsylvania, (1998).
Chong, R., Jelen, P. and Wang, W., “The effect of cleaning agents on a noncellulosic ultrafiltration membrane”, Separation Science and Technology, 20, 393-402, (1985).
Cui, Z. F. and Wright, K. I. T., “Gas-liquid two-phase cross-flow ultrafiltration of BSA and dextran solutions”, Journal of Membrane Science, 90, 183-189, (1994).
Cui, Z. F. and Wright, K. I. T., “Flux enhancements with gas sparging in downwards crossflow ultrafiltration: performance and mechanism”, Journal of Membrane Science, 117, 109-116, (1996).
Capobianchi, Massimo, Thomas F., Irvine Jr., Narinder K., Tutu , George Alanson, Greene,” A new technique for measuring the Fickian diffusion coeffcient in
binary liquid solutions” ,Experimental Thermal and Fluid Science, 18, 33-47, (1998).
Criscuoli, A., Carnevale, M. C. and Drioli, E., “Evaluation of energy requirements in membrane distillation”, Chemical Engineering and Processing: Process Intensification, 47, 1098-1105, (2008).
Essemiani, K., Ducom, G., Cabassud, C. and Line, A., “Spherical cap bubbles in a flat sheet nanofiltration module: experiments and numerical simulation”, Chemical Engineering Science, 56, 6321-6327, (2001).
Fane, A. G., Fell, C. J. D. and Suki, A., “The effect of ph and ionic environment on the ultrafiltration of protein solutions with retentive membranes”, Journal of Membrane Science, 16, 195-210, (1983).
Findley, M. E., “Vaporization through porous membranes”, I&EC Process Design and Development, 6, 226-230, (1967).
Findley, M. E., Tanna, V. V., Rao, Y. B. and Yeh, C. L., “Mass and heat transfer relations in evaporation through porous membranes”, AIChE Journal, 15, 483-489, (1969).
Gazagnes, L., Cerneaux, S., Persin, M., Prouzet, E. and Larbot, A., “Desalination of sodium chloride solutions and seawater with hydrophobic ceramic membranes”, Desalination, 217, 260-266, (2007).
Geankoplis, C. J., Transport Process and Unit Operation, 4th ed., Pearson Education, (2003).
Ghosh, R. and Cui, Z. F., “Mass transfer in gas-sparged ultrafiltration: upward slug flow in tubular membranes”, Journal of Membrane Science, 162, 91-102, (1999).
Gryta, M., “Influence of polypropylene membrane surface porosity on the performance of membrane distillation process”, Journal of Membrane Science, 287, 67-78, (2007).
Gryta, M., “Alkaline scaling in the membrane distillation process”, Desalination, 228, 128-134, (2008a).
Gryta, M., “Fouling in direct contact membrane distillation process”, Journal of Membrane Science, 325, 383-394, (2008b).
Gryta, M., Tomaszewska, M., Grzechulska, J. and Morawski, A. W., “Membrane distillation of NaCl solution containing natural organic matter”, Journal of Membrane Science, 181, 279-287, (2001).
Gryta, M., Tomaszewska, M. and Morawski, A. W., “Membrane distillation with laminar flow”, Separation and Purification Technology, 11, 93-101, (1997).
Gray, S, Zhanga, J.H., Li, J. D., Duke, M., Xie, Z. , “Performance of asymmetric hollow fibre membranes in membrane distillation under various configurations and vacuum enhancement”, Journal of Membrane Science 362 ,517–528 (2010).
Gupta, B. B., Blanpain, P. and Jaffrin, M. Y., “Permeate flux enhancement by pressure and flow pulsations in microfiltration with mineral membranes”, Journal of Membrane Science, 70, 257-266, (1992).
Gupta, B. B., Howell, J. A., Wu, D. and Field, R. W., “A helical baffle for cross-flow microfiltration”, Journal of Membrane Science, 102, 31-42, (1995).
Hall Taylor, N., Hewitt, G. F. and Lacey, P. M. C., “The motion and frequency of large disturbance waves in annular two-phase flow of air-water mixtures”, Chemical Engineering Science, 18, 537-552, (1963).
Hsu, S. T., Cheng, K. T. and Chiou, J. S., “Seawater desalination by direct contact membrane distillation”, Desalination, 143, 279-287, (2002).
Ke, H., Hwang, H. J., Woo, M. W., Moon, I. S. ,” Production of drinking water from saline water by direct contact membrane distillation (DCMD)”, Journal of Industrial and Engineering Chemistry, 17, 41–48, (2011).
Incropera, F. P. and Dewitt, D. P., Fundamentals of heat and mass transfer, 5th ed., Wiley, (2002).
Iversen, S. B., Bhatia, V. K., Dam-Johansen, K. and Jonsson, G., “Characterization of microporous membranes for use in membrane contactors”, Journal of Membrane Science, 130, 205-217, (1997).
Kim, B. S. and Chang, H. N., “Effects of periodic backflushing on ultrafiltration Performance”, Bioseparation, 2, 9-23, (1991).
Kroner, K. H. and Nissinen, V., “Dynamic filtration of microbial suspensions using an axially rotating filter”, Journal of Membrane Science, 36, 85-100, (1988).
Lawson, K. W. and Lloyd, D. R., “Review Membrane distillation”, Journal of Membrane Science, 124, 1-25, (1997).
Lee, C. K., Chang, W. G. and Ju, Y. H., “Air slugs entrapped cross-flow filtration of bacterial suspensions”, Biotechnology Bioengineering, 41, 525-530, (1993).
Lai, C. L., Liou, R. M., Chen, S. H., Huang, G. W., Lee, K. R.,” Preparation and characterization of plasma-modified PTFE membrane and its application in direct contact membrane distillation”, Desalination, 267,184–192, (2011).
Cheng L. H., Wu P. C., Chen J. G., “Modeling and optimization of hollow fiber DCMD module for desalination”, Journal of Membrane Science, 318,154–166, (2008).
Martinez-Diez, L. and Vazquez-Gonzalez, M. I., “Temperature and concentration polarization in membrane distillation of aqueous salt solutions”, Journal of Membrane Science, 156, 265-273, (1999a).
Martinez-Diez, L., Florido-Diaz, F. J. and Vazquez-Gonzalez, M. I., “Study of evaporation efficiency in membrane distillation”, Desalination, 126, 193-198, (1999b).
Martinez, L., M., J. and Rodriguez-Maroto, “Membrane thickness reduction effects on direct contact membrane distillation performance”, Journal of Membrane Science, 312, 143-156, (2008).
Martinez, L. and Rodriguez-Maroto, J. M., “Characterization of membrane distillation modules and analysis of mass flux enhancement by channel spacers”, Journal of Membrane Science, 274, 123-137, (2006).
Mercier-Bonin, M., Lagane, C. and Fonade, C., “Influence of a gas/liquid two-phase flow on the ultrafiltration and microfiltration performances: case of a ceramic flat sheet membrane”, Journal of Membrane Science, 180, 93-102, (2000a).
Mercier-Bonin, M., C. MAranges, C. Lafforgue and C. Fonade, “Hydrodynamics of slug flow applied to cross-flow filtration in narrow tubes”, AIChE Journal, 46, 476-488 (2000b).
Mercier, M., Fonade, C. and Lafforgue-Delorme, C., “How slug flow can enhance the ultrafiltration flux in mineral tubular membranes”, Journal of Membrane Science, 128, 103-113, (1997).
Michaels, A. S., “New separation technique for the CPI”, Chemical Engineering and Processing: Process Intensification, 64, 31-35, (1968).
Millward, H. R., Bellhouse, B. J. and Walker, G., “Screw-thread flow promoters: an experimental study of ultrafiltration and microfiltration performance”, Journal of Membrane Science, 106, 269-279, (1995).
Mulder, M., “Basic principles of membrane technology”, Trans.): Springer, (1996).
Perry, R. H., Perry's chemical engineers' handbook, 8th ed., McGraw-Hill, New York, (2008).
Phattaranawik, J., Jiraratananon, R., A.G. Fane, C. Halim, “Mass flux enhancement using spacer filled channels in direct contact membrane distillation” Journal of Membrane Science, 187, 193–201,(2001).
Phattaranawik, J., Jiraratananon, R. and Fane, A. G., “Heat transport and membrane distillation coefficients in direct contact membrane distillation”, Journal of Membrane Science, 212, 177-193, (2003a).
Phattaranawik, J., Jiraratananon, R. and Fane, A. G., “Effect of pore size distribution and air flux on mass transport in direct contact membrane distillation”, Journal of Membrane Science, 215, 75-85, (2003b).
Schofield, R. W., Membrane distillation, Doctor of PHilosophy Thesis, The University of New South Wales, (1989).
Schofield, R. W., Fane, A. G. and Fell, C. J. D., “Heat and mass transfer in membrane distillation”, Journal of Membrane Science, 33, 299-313, (1987).
Schofield, R. W., Fane, A. G., Fell, C. J. D. and Macoun, R., “Factors affecting flux in membrane distillation”, Desalination, 77, 279-294, (1990).
Sirkar K.K., Fei He, Jack Gilron, “Effects of antiscalants to mitigate membrane scaling by direct contact membrane distillation”, Journal of Membrane Science,345 , 53–58 (2009).
Smith, J. M., Van Ness, H. C. and Abbott, M. M., Introduction to chemical engineering thermodynamics, 4th ed., McGraw-Hill, (2001).
Smith, S. R. and Cui, Z. F., “Gas-slug enhanced hollow fibre ultrafiltration--an experimental study”, Journal of Membrane Science, 242, 117-128, (2004).
Smolders, K. and Franken, A. C. M., “Terminology of Membrane Distillation”, Desalination, 72, 249-262, (1989).
Srisurichan, S., Jiraratananon, R. and Fane, A. G., “Mass transfer mechanisms and transport resistances in direct contact membrane distillation process”, Journal of Membrane Science, 277, 186-194, (2006).
Stephanie Laborie,Jean-Pierre Mericq, Corinne Cabassud, “Vacuum membrane distillation of seawater reverse osmosis brines” Water research , 44 , 5260-5273 (2010).
Sharqawy, M. H., Lienhard V, J. H., Zubair, S. M., ” Thermophysical properties of seawater: a review of existing correlations and data”, Desalination and Water Treatment, 16, 354–380, (2010).
Safavi, M. , Mohammadi, T. , “High-salinity water desalination using VMD”, Chemical Engineering Journal ,149, 191–195, (2009).
Taha, T. and Cui, Z. F., “CFD modelling of gas-sparged ultrafiltration in tubular membranes”, Journal of Membrane Science, 210, 13-27, (2002).
Taylor, G. I., “Stability of a viscous liquid contained between two rotating cylinders”, Phil.Trans. Roy. Soc., 233, 298, (1923).
Tomaszewska, M., Gryta, M. and Morawski, A. W., “A study of separation by the direct-contact membrane distillation process”, Separations Technology, 4, 244-248, (1994).
Tun, C. M., Fane, A. G., Matheickal, J. T. and Sheikholeslami, R., “Membrane distillation crystallization of concentrated salts--flux and crystal formation”, Journal of Membrane Science, 257, 144-155, (2005).
Van der Waal, M. J. and Racz, I. G., “Mass transfer in corrugated-plate membrane modules. I. Hyperfiltration experiments”, Journal of Membrane Science, 40, 243-260, (1989).
Wang, X., Zhang, L. Yang, H. Chen, H., “Feasibility research of potable water production via solar-heated hollow fiber membrane distillation system” , Desalination, 247, 403–411, (2009).
Youm, K. H., Fane, A. G. and Wiley, D. E., “Effects of natural convection instability on membrane performance in dead-end and cross-flow ultrafiltration”, Journal of Membrane Science, 116, 229-241, (1996).
Yun, Y., Ma, R., Zhang, W., Fane, A. G. and Li, J., “Direct contact membrane distillation mechanism for high concentration NaCl solutions”, Desalination, 188, 251-262, (2006).
韓知融, “鹽水濃度與組成對直接接觸式薄膜蒸餾膜結垢之影響”, 淡江大學化學工程與材料工程研究所碩士論文, (2009).
陳威州, “流動型態對直接接觸式薄膜蒸餾滲透通量之影響”, 淡江大學化學工程與材料工程研究所碩士論文, (2010).
簡文洋, “渠道型式對直接接觸式薄膜蒸餾效能影響之研究”, 淡江大學化學工程與材料工程研究所碩士論文, (2011).
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信