淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1508200610024000
中文論文名稱 俱全反射之微反射鏡片製作
英文論文名稱 Fabricaton of the micro-reflector with total reflection
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系碩士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 94
學期 2
出版年 95
研究生中文姓名 蘇楠清
研究生英文姓名 Nan-Ching Su
學號 693340373
學位類別 碩士
語文別 中文
口試日期 2006-05-26
論文頁數 67頁
口試委員 指導教授-林清彬
委員-蔡有仁
委員-張子欽
中文關鍵字 聚二甲基矽氧烷  紫外光硬化  電鑄  反射率 
英文關鍵字 Polydimethylsiloxane  UV curable  electroforming  reflection 
學科別分類 學科別應用科學機械工程
中文摘要 本研究係以黃光微影製程並使用氫氧化鉀蝕刻(100)晶面的矽作為非等向性溼式蝕刻之製程,製備俱{111}面與(100)面夾54.74度的倒四角錐體矽模仁;並利用聚二甲基矽氧烷(PDMS)翻印矽模仁,由於PDMS之易拉伸性質而將PDMS施予單軸向拉伸以改變結構尺寸上及{111}面與(100)面夾角角度的改變;利用紫外光硬化技術將拉伸的PDMS之結構轉印,並使用電鑄技術將俱有倒四角錐體結構的UV膠翻印以當作高分子熱壓的模仁;最後將熱壓的高分子做光學檢測,並得到光的繞射圖形。
英文摘要 In this thesis, the Si mold containing inverted pyramid patterns with 54.74 degree between {111} planes and (100) plane was manufactured by photolithography process and Si (100) was prepared with KOH etching process for the anisotropic wet etching process. The polydimethylsiloxane was used to reprinted the structure of the si mold. Because polydimethylsiloxane was elongated easily, polydimethylsiloxane was forced to elongate single-axially to change the degree of the angle between {111} planes and (100) plane and the dimension of the structure. By using UV curing technology, the structure of the elongated PDMS would be reprinted. And then the electroforming technology was used to reprinted the UV curing agent with the structure of the inverted pyramid patterns for being the mold of polymer hot embossing. Finally, polymer was used for optical test and get diffraction pattern of the photo.
論文目次 總目錄
總目錄…………………………………………………………………I
圖目錄…………………………………………………………………III
表目錄…………………………………………………………………VI
中文摘要………………………………………………………………VII
英文摘要………………………………………………………… VIII
壹、導論………………………………………………………………1
1-1 前言……………………………………………………………1
1-2 文獻回顧………………………………………………………4
1-2-1濕蝕刻原理……………………………………………4
1-2-2 軟微影…………………………………8
1-2-3 電鑄原理………………………………………………9
1-3研究範疇………………………………………………………13
貳、實驗設計……………………………………………………22
2-1實驗材料………………………………………………………22
2-2實驗設備………………………………………………………22
2-3實驗步驟………………………………………………………23
2-3-1矽模仁製作……………………………………………23
2-3-2 PDMS 翻印矽模仁……………………………………25
2-3-3 PDMS 拉伸……………………………………………26
2-3-4 UV膠轉印……………………………………………26
2-3-5電鑄模仁………………………………………………27
2-3-6雙軸向拉伸……………………………………………29
2-3-6熱壓成型………………………………………………29
2-3-7光學測試………………………………………………29
參、結果與討論…………………………………………37
3-1 矽晶圓之金字塔形模仁製作………………………………37
3-1-1 矽晶圓蝕刻與倒四角錐形成機制……………………37
3-1-2 矽晶圓蝕刻後之金字塔缺陷形成…………………38
3-2 PDMS翻印矽模仁結構及UV膠翻印………………………39
3-3 拉伸試片形狀之PDMS拉伸與UV硬化及電鑄翻印………41
肆、結論……………………………………………………………60
伍、參考文獻………………………………………………………61





圖目錄
圖1-1 熱壓成型與射出成型之示意圖……………………………….16
圖1-2 LIGA製程技術示意圖…………………………………………16
圖1-3 等向性濕蝕刻之示意圖………………………………...….…..17
圖1-4 矽的晶格結構之示意圖………………………………………..17
圖1-5 常用立方晶體面之米勒指標……………..……………………18
圖1-6 濕蝕刻反應機制…………………..……………………………18
圖1-7 PDMS當模仁並利用紫外光硬化成型技術之流程…..................19
圖1-8 電鑄原理與基本架構..................................................................20
圖1-9 不同高深寬比之結構,電鑄時模穴內的質傳定性模式...........20
圖1-10 一維擴散位移之單位流量的變化............................................21
圖1-11 改善電鑄層均勻性之裝置........................................................21
圖2-1 光罩30×30μm的正方形且線寬為2μm的間距之陣列............30
圖2-2 未蝕刻之矽晶片..........................................................................30
圖2-3 藉由OM得知是否蝕刻完畢........................................................31
圖2-4 矽模仁製作之示意圖.................................................................32
圖2-5 PDMS翻印矽模結構之機構示意圖.............................................33
圖2-6 PDMS拉伸機構示意圖:(a)數位式測微頭;(b)滑塊;(c)彈簧;(d)圓棒;(e)頂銷置入處...........................................................34
圖2-7 UV膠轉印之流程示意圖.............................................................35
圖2-8 雷射光路徑俯視圖......................................................................36
圖3-1 俱倒四角錐體結構之矽模仁之SEM圖......................................43
圖3-2 微小金字塔結構缺陷之四面體與八面體之SEM圖..................44
圖3-3 氫氣導致微小金字塔缺陷的機制示意圖..................................45
圖3-4 氫氣泡與矽晶圓之界面關係(a)斥水(b)親水..........................45
圖3-5 PDMS翻印矽模仁結構之SEM圖.................................................46
圖3-6 UV膠翻印未拉伸的PDMS結構之SEM圖.................................47
圖3-7 UV過度曝光未拉伸的PDMS之PDMS SEM圖(曝光時間30秒) ...48
圖3-8 UV過度曝光拉伸的PDMS之UV膠 SEM圖(曝光時間30秒) .... 49
圖3-9 UV曝光拉伸的PDMS之UV膠 SEM圖(UV膠試片中間) .............50
圖3-10 UV曝光拉伸的PDMS之UV膠 SEM圖(UV膠試片邊界) ............51
圖3-11 試片拉伸變化示意圖;上圖為PDMS拉伸前的示意圖,下圖為PDMS拉伸固定後的示意圖.................................................52
圖3-12 UV曝光拉伸的PDMS之UV膠 SEM圖.......................................53
圖3-13經ㄧ次拉伸之電鑄模仁 OM圖...................................................54
圖3-14 二次拉伸之UV SEM圖................................................................55
圖3-15 經二次拉伸之電鑄模仁 OM圖.................................................56
圖3-16 經二次拉伸且電鑄之熱壓的高分子 SEM圖...........................57
圖3-17 Si模熱壓的高分子之繞射數位照…………………...............58
圖3-18 二次拉伸後鎳模熱壓的高分子之繞射數位照........................59

表目錄
表1-1 MEMS領域之微製造技術分類表.................................................15


參考文獻 1.M. Madou,“Fundamentals of Microfabrication”, New York, CRC Press,1997.
2.Julian W. Garder, “Microsensors Principles and Applications”, Wiley.
3.邱燦賓,施敏,“電子束微影技術.” 科學發展月刊 28 (2000) pp.423-434
4.楊啟榮,“微機電LIGA製程技術簡介.” 科儀新知 19 (1998) pp.4-17
5.吳清祈、鍾震桂,“微機電系統技術簡介.”科儀新知 18 (1996) pp.26-40
6.楊啟榮,”微機電製程領域之精密電鑄技術.”
7.周俊宏,微細加工技術在金屬相關產業之應用,出版商:ITIS
8.梁靜秋、姚勁松, “LIGA技術基礎研究”, 光學精密工程, 8卷1期,pp.38-41.
9.楊錫杭編著,“微機械加工概論”, 初版,全華,2002
10.A. Schmidt, W. Ehrfeld, H. Lehr, L. Müller, F. Reuther, M. Schmidt, & Th. Zetterer,“Aligned Double Exposure in Deep X-ray Lithography.” Microelectronic Engineering 30 (1996) pp.235-238
11.S.Achenbach, J. Mohr, & F. J. Pantenburg, “Application of Scanning Probe Microscopy for the determination of the structural accuracy of high aspect ratio microstructures.”Microelectronic Engineering 53 (2000) pp.637-640.
12.W. Ehrefld, & H. Lehr, “Deep X-ray Lithography for the Production of Three-Dimensional Microstructures From Metals, Polymers and Ceramics.” Radiation Physics and Chemistry 45 (1995)pp.349-365
13.S. Ballandras, S. Basrour, L. Robert, S. Megtert, P. Blind, M. Rouillay, P.Bernéde, & d W. Daniau, “Microgrippers fabricated by the LIGA technique .” Sensors and Actuators A 58 (1997) pp.265-272
14.Schwartz & H. R. Robbins, “Chemical etching of silicon-IV. Etching technology.” Journal of the Electrochemical Society 123 (1976) pp.1903-1909
15.A. F. Bogenschutz, W. Krusemark, K.H. Locherer, & W. ussinger, “Activation energies in the chemical etching if semiconductors in HNO3-HF-CH3COOH.” Journal of the Electrochemical Society Solid Stat 114 (1997) pp. 970-973
16.H.R. Robbins & B. Schwartz, “Chemical etching of silicon-I. The system HF, HNO3, H2O, and HC2C3O2.” Journal of the Electrochemical Society 106 (1959) pp.505-508
17.H.R. Robbins & B. Schwartz, “Chemical etching of silicon-II. The system HF, HNO3, H2O, and HC2C3O2.” Journal of the Electrochemical Society 107 (1960) pp.108-111
18.B. Schwartz & H. R. Robbins, “Chemical etching of silicon-III. A temperature study in the acid system.” Journal of the Electrochemical Society 108 (1961) pp.365-372
19.A. F. Bogensch¨utz, W. Krusemark, K.H. L¨ocherer, & W. Mussinger, “Activation energies in the chemical etching of semiconductors in HNO3-HF-CH3COOH.” Journal of the Electrochemical Society : Solid State 114 (1967) pp.970–973
20.M. Madou, “Fundamentals of Microfabrication,” New York, CRC Press,2002
21.M. Shikida, T. Masuda, D. Uchikawa, & K. Sato, “Surface roughness of single-crystal silicon etched by TMAH solution.” Sensors and Actuators A: Physical 90 (2001) pp.223–231
22.A. Merlos, M. Acero, M.H. Bao, J. Bausells & J. Esteve,” TMAH/IPA anisotropic etching characteristics.” Sensors and Actuators A: Physical 37-38 (1993 )pp.737–743.
23.O.J. Glembocki, E.D. Palik, G.R. de Guel & D.L. Kendall, “Hydration model for the molarity dependence of the etch rate of Si in aqueous alkali hydrosides.” Journal of the Electrochemical Society 138 (1991) pp.1055–1063
24.Theo Baum & David J Schiffrin, ”AFM study of surface finish improvement by ultrasound in the anisotropic etching of Si (100)in KOH for micromachining app塗lications.” Journal of Micromechanics and Microengineering 7 (1997) pp.338-342
25.http://ezphysics.nchu.edu.tw/prophys/ael/lecturenote/2_1.pdf
26.K.E.Petersen, 1982,” Silicon as a mechanical material ”, Proc. IEEE, vol.70,pp.420.
27.H.Seidel, L.Gsepregi, A.Henberger & H.Baumgartel,”
Anisotropic etching of crystalline silicon in alkaline sduties.” ibid 137 (1990) pp.3612-
28.D. R. Ciarlo, “Corner compensation structures for (110) oriented silicon”, IEEE Micro Robots and Teleoperators Workshop, pp. 6/1-4, (1987).
29.J.S. Judge, “Etching for Pattern Definition.” PV 76-3, Electrochemical Society Inc., Pennington, 1976.
30.W. Lang, “Silicon microstructuring technology.” Materials science and engineering R17 (1996) pp.1–55
31.I. Zubel & M. Kramkowska, “The effect of isopropyl alcohol on etching rate and roughness of (1 0 0) Si surface etched in KOH and TMAH solutions.” Sensors and Actuators A: Physical 93 (2001) pp.138–147
32.K.R. Williams & R.S. Muller, “Etch rate for micromachining processes.” Journal of the Electrochemical Society 137 (1996) pp.3612–3632
33.Z. Yang, “Ultra-fast anisotropic silicon etching with resulting mirror surfaces in ammonia solution.” Transducers 01 (2001) pp.608–611
34.P. Krause & E. Obermeier, “Etch rate and surface roughness of deep narrow U-grooves in (1 1 0)-oriented silicon.” journal of Micromechanics and Microengineering 5 (1995) pp.112–114
35.J.B. Price, in: H.R. Hoff, P.R. Burgess (Eds.), Semiconductor Silicon, The Electrochemical Society Softbound Proceedings Series, Princeton, New Jersey, 1973, p.339
36.I. Zubel, “Silicon anisotropic etching in alkaline solutions III: on the possibility of spatial structures forming in the course of Si(1 0 0) anisotropic etching in KOH and KOH + IPA solutions.” Sensors and Actuators A: Physical 84 (2000) pp.116–125
37.I. Zubel, I. Barycka, K. Kotowska & M. Kramkowska, “Silicon anisotropic etching in alkaline solutions IV: the effect of organic and inorganic agents on silicon anisotropic etching process.” Sensors and Actuators A: Physical 87 (2001) pp.163–171
38.Irena Zubel & Malgorzata Kramkowska, “The effect of isopropyl alcohol on etching rate and roughness of (100) Si surface etched in KOH and TMAH solutions.” Sensors and Actuators A: Physical 93 (2001) pp.138-137
39.E.D. Palik, H.F. Gray & P.B. Klein, “A Raman study of etching silicon in aqueous KOH.” Journal of the Electrochemical Society 130 (1983) pp.956–959
40.I. Zubel & M. Kramkowska, “The effect of alcohol additives on etching characteristics in KOH solutions.” Sensors and Actuators A: Physical 101 (2002) pp.255–261
41.Chii-Rong Yang, Po-Ying Chen, Yuang-Cherng Chiou & Rong-Tsong Lee,” Effects of mechanical agitation and surfactant additive on silicon anisotropic etching in alkaline KOH solution.” Sensors and Actuators A: Physical 119 (2005) pp.263–270
42.T. Baum & D.J. Schiffrin, “AFM study of surface finish improvement by ultrasound in the anisotropic etching of Si(1 0 0) in KOH for micromachining applications.” Journal of Micromechanics and Microengineering 4 (1997) pp.338–342
43.K. Ohwada, Y. Negoro, Y. Konaka & T. Oguchi, “Groove depth uniformization in (1 1 0) Si anistropic etching by ultrasonic wave and application to accelerometer fabrication.” in: Proceedings of the IEEE MicroElectro-Mech.System Workshop (MEMS’95), Yokohama, Japan (1995) pp.100–105
44.V. Karanassios, J.T. Sharples & A. Nathan, “In situ ultrasound-assisted etching of(1 0 0)Si wafers by KOH.” Sens. Mater. 9 (7) (1997) pp.427–436
45.J. Chen, L. Liu, Z. Li, Z. Tan & Q. Jiang, “Study of anisotropic etching of (1 0 0) Si with ultrasonic agitation.” Sensors and Actuators A: Physical 96 (2002) pp.152–156
46.Jan A. Dziuban, “Microwave enhanced fast anisotropic etching of monocrystalline silicon.” Sensors and Actuators A: Physical 85 (2000) pp.133-138
47.Won Mook Choi & O. Ok Park,“A soft-imprint technique for direct fabrication of submicron scale patterns using a surface-modified PDMS mold.” Microelectronic Engineering 70 (2003) pp.131–136
48.田中正三郎著、賴耿陽譯著,”應用電化學.” 復漢出版社,89 (1994)
49.Stenen D. Leith & Daniel T. Schwartz, “High-Rate Through-Mold Electrodeposition of Thick (>200ìm) Ni-Fe MEMS Components with Uniform Composition.” Journal of Microelectromechanical System 8 (1999) pp.384-392.
50.陳宏澤“界面活性劑在金屬脫脂及酸洗方面之應用.”金屬表面技術雜誌,71 (1981).
51.N. Masuko, T. Osaka & Y. Ito, “Electrochemical technology innovation and new technologies.” Newark: Gordon & Breach 1996
52.P.R. Choudhury, Handbook of microlithography, micromahining, and microfabrication, 2, SPIE Press (1997)
53.S. K. Griffiths, R. H. Nilson, R. W. Bradshaw, A. Ting, W. D. Bonivert, J. T. Hachman & J. M. Hruby, SPIE, 3511, 364(1998)
54.Zen-Jei Wei, Yung-Yun Wang, Chi-Chao Wan & Chein-Ho Huang, “Study of wetters in nickel electroforming of 3D microstructures.” Materials Chemistry and Physics 63 (2000)pp.235-239
55.W. Prapaitrakul, A. Shwikhat, A.D. King Jr.” The influence of pH on gas solubilities in aqueous solutions of sodium octanoate at 25°C.” Journal of colloid and interface science 115 (1987) pp.443-449
56.K. Parker, AESF SUR/FIN 1984, Session B.
57.F. T. Weng, “A study of cathode agitation in ultrasonic-aided microelectroforming.” International Journal of Advanced Manufacturing Technology 25 (2005) pp.909-912
58.Hsiharng Yang & Shung-Wen Kang, “Improvement of thickness uniformity in nickel electroforming for the LIGA process.”International Journal of Machine Tools & Manufacture 40 (2000) pp.1065–1072
59.Younan Xia & George M.Whitesides,”Soft lithography.” Annual review of materials science 28 (1998) pp.153-184
60.K.C. Chan, W.K. Chan & N.S. Qu,”Effect of current waveform on the deposit quality of electroformed nickels.” Journal of Materials Processing Technology 89-90 (1999) pp.447-450
61.S A Campbell, K Coopert, L Dixont, R Earwakert, S N Ports & D J Schiffrins,”Inhibition of pyramid formation in the etching of Si p(100) in aqueous potassium hydroxide-isopropanol.” Journal of Micromechanics and Microengineering 5 (1995) pp.209-218

論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2007-08-17公開。
  • 同意授權瀏覽/列印電子全文服務,於2007-08-17起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信