§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1507202015483100
DOI 10.6846/TKU.2020.00427
論文名稱(中文) 應用於穿戴式電子裝置之熱電能量擷取具超低自我啟動電壓升壓轉換器
論文名稱(英文) Using Thermal Energy Source Boost Converter with Ultra-low Self-starting Voltage for Wearable Electronic Devices
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系碩士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 108
學期 2
出版年 109
研究生(中文) 陳治成
研究生(英文) Jhih-Cheng Chen
學號 606450046
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2020-06-29
論文頁數 74頁
口試委員 指導教授 - 楊維斌
委員 - 羅有龍
委員 - 施鴻源
委員 - 楊維斌
關鍵字(中) 熱電
能量擷取
超低電壓啟動
電荷幫浦
升壓轉換器
關鍵字(英) Thermoelectric
energy harvesting
ultra-low voltage start-up
charge pump
boost converter
第三語言關鍵字
學科別分類
中文摘要
穿戴式裝置自60年代發展至今,一直是人類文明不可忽視的區塊,由於過去受限於技術以及成本,往往都只限於國防、太空產業。直到2010年代,智慧型手機開始普及,許多大型企業紛紛投入穿戴式裝置的產品開發,讓一般名眾也能享受穿戴式裝置帶來的輔助功能以及便利生活。近年來,物聯網與5G行動網路技術的蓬勃發展,再次帶動了穿戴式以及耳戴式裝置研發,並且出現了〝智慧穿戴〞的名詞。受惠於製程技術的進步及聯網速度的提升,各大廠紛紛進行穿戴式裝置的軍備競賽,不斷的在裝置中加入各種功能與感測器。然而更好的運算效能以及更多的智慧功能換來的是更大的能源消耗,裝置續航力備受考驗。在穿戴式裝置的無線以及輕薄的條件限制下,環境能量擷取被廣泛的討論,如何使用環境中的能量,輔助甚至取代裝置中的電池,是現今主流研究方向。被拿出來討論研究的能量非常多種,常見包含振動、熱電、光能和射頻等能量。然而穿戴式裝置的出發點以人為本,不論是針對一般民眾的消費性穿戴式電子產品又或者是醫療用植入人體的穿戴式裝置,最直接能夠獲取的就是人類體溫,因此本論文將對熱電元件的原理背景以及電源管理電路做分析,目標設計一應用於穿戴式裝置的熱電能量升壓轉換器,並使用TSMC 90nm 1P9M CMOS製程做模擬及實現。電路主要分為升壓轉換器、超低壓啟動電路及電壓控制電路。為了能實現超低電壓啟動並進一步穩定轉換輸出電壓,本文也對過去文獻提出的解決方案做分析,並提出可以實現在50mV超低輸入電壓自我啟動。成功啟動升壓轉換器後,由閘極驅動器使用超低壓啟動電路及電壓控制電路產生之控制訊號對升壓轉換進行控制,最終透過三階段調節,可以提供1V的輸出電壓供後方電路使用。
英文摘要
Since its development in the 1960s, wearable devices have been an indispensable part of human civilization. Due to the limitations of technology and cost in the past, they were often only used in the military and space industries. Until the 2010s that smartphones became popular, and many large enterprises were investing in the development of wearable devices, allowing the general public to enjoy the accessibility and convenience of wearable devices. In recent years, the vigorous development of the Internet of Things and 5G mobile network technologies has once again driven the development of wearable and ear-worn devices, and the term "smart wear" has appeared. Benefiting from the progress of process technology and the improvement of the speed of networking, Developer have been engaged in the arms race of wearable devices, and constantly add a variety of functions and sensors in the device. However, better computing efficiency and more intelligent features in exchange for greater energy consumption, so the device's endurance is tested. Under the constraints of wireless and thin and lightweight conditions of wearable devices, environmental energy harvesting is widely discussed. How to use energy in the environment to aid or even replace batteries in the device is the mainstream research direction of today. There are many kinds of energy, including vibration, thermoelectricity, solar energy and radio frequency. However, the starting point of the wearable device is people-oriented. Whether it is a consumer wearable electronic product for the general public or a medical wearable device implanted in the human body, the most direct acquisition of energy is the human body temperature. Therefore, this paper will analyze the principle background of thermoelectric components and the power management circuit, the target design of a thermoelectric energy boost converter applied to wearable devices, and use the TSMC 90nm 1P9M CMOS process for simulation and implementation. The circuit is mainly divided into boost converter, ultra-low voltage starting circuit and voltage control circuit. In order to achieve ultra-low voltage start-up and further stabilize the conversion of output voltage, this paper also analyzes the solutions proposed in the past literature and proposes that it can achieve self-start-up at an ultra-low input voltage of 50mV. After the boost converter is successfully started, the gate driver uses the control signal generated by the ultra-low voltage start circuit and the voltage control circuit to control the boost conversion. Finally, through the three-stage adjustment, the proposed circuit can provide an output voltage of 1V for the rear circuit.
第三語言摘要
論文目次
目錄
誌謝	I
中文摘要	II
ABSTRACT	III
目錄	V
圖目錄	X
表目錄	XV
第一章 緒論	1
1.1研究背景	1
1.2研究動機	2
1.3論文架構	2
第二章 熱電能量擷取技術	3
2.1 熱電能量介紹	3
2.2 熱電效應	3
2.2.1塞貝克效應	4
2.2.2帕爾帖效應	5
2.2.3湯姆森效應	6
2.2.4熱點轉換效率與熱電優值關係	7
2.3 熱電獵能系統	8
2.4 熱電元件等效電路模型	9
第三章 電源管理電路概論	10
3.1 電源管理電路分類	10
3.1.1線性穩壓器	10
3.1.2線性穩壓器工作原理	11
3.1.3切換式電容穩壓器	13
3.1.4開關穩壓器	15
3.1.5降壓轉換器	17
3.1.6升壓轉換器	19
3.1.7升降壓轉換器	20
3.1.8電源管理電路比較	21
3.2 電路控制方式	22
3.2.1 脈波寬度調變	22
3.2.2 脈波頻率調變	24
3.3 導通模式	26
3.3.1連續電流模式	26
3.3.2不連續電流模式	27
3.3.3邊界模式	27
3.4開關穩壓器規格	28
3.4.1輸入電壓範圍	28
3.4.2輸出電壓範圍	28
3.4.3輸出電壓漣波	28
3.4.4開關頻率	30
3.4.5線性調節度	30
3.4.6負載調節度	30
3.4.7暫態響應	31
3.4.8轉換效能與損耗	32
3.4.9電磁干擾	34
第四章 超低壓啟動升壓轉換器	35
4.1超低壓啟動升壓轉換器介紹	35
4.1.1使用電池輔助啟動	36
4.1.2使用機械開關做為啟動元件	37
4.1.3使用LC振盪器做為啟動機制	38
4.1.4使用RF作為啟動機制	39
4.1.5使用電荷幫浦與環形振盪器啟動	40
第五章 電路設計	41
5.1系統架構設計	41
5.2升壓轉換器	42
5.3超低電壓自我啟動電路	44
5.3.1堆疊式數位邏輯	45
5.3.2多相位控制電荷幫浦	46
5.3.3超低電壓雙端環形振盪器	49
5.3.4超低電壓時脈產生器	50
5.4電壓調節電路	51
5.4.1零電流偵測器	51
5.4.2比較器	53
5.4.3脈波頻率調變電路	53
5.4.4電壓偵測器	55
5.4.5閘極驅動器	55
第六章 電路模擬與佈局	58
6.1堆疊式反向器及傳統CMOS反向器	58
6.2超低電壓環形振盪器	60
6.3超低電壓雙端環形振盪器	61
6.4多相位控制電荷幫浦	62
6.5超低電壓時脈產生器	62
6.6電壓偵測器	63
6.7全系統模擬結果	64
6.7.1 Pre-layout simulation Result	64
6.7.2 Post-layout simulation Result	67
6.8佈局平面圖	68
6.9預計規格列表	69
6.10效能比較表	69
第七章 量測考量	70
第八章 結論與未來展望	71
參考文獻	72
圖目錄
圖1.1 能量擷取電源管理架構	1
圖2.1 塞貝克效應示意圖	4
圖2.2 帕爾帖效應示意圖	5
圖2.3 半導體熱電元件結構圖	8
圖2.4 熱電晶片透視圖	8
圖2.5 熱電元件戴維寧等效模型	9
圖2.6 熱電元件串接升壓轉換器等效電路	9
圖3.1 線性穩壓器基本架構	11
圖3.2 低壓降線性穩壓器基本架構	11
圖3.3 升壓型切換式電容穩壓器	13
圖3.4 控制時脈 (CLK) 為低準位時的等效電路	14
圖3.5 控制時脈 (CLK) 為高準位時的等效電路	14
圖3.6 開關穩壓器基本架構	15
圖3.7 開關穩壓器基本操作時緒	16
圖3.8 降壓轉換器基本架構	17
圖3.9 功率開關MP導通時等效電路	17
圖3.10 功率開關MP截止時等效電路	18
圖3.11 升壓轉換器基本架構 	19
圖3.12 升降壓轉換器基本架構	20
圖3.13 脈波寬度調變電路	22
圖3.14 脈波寬度調變電路波型	23
圖3.15 脈波頻率調變電路	25
圖3.16 脈波頻率調變電路波型	25
圖3.17 降壓轉換器之連續導通模式狀態圖	26
圖3.18 降壓轉換器不連續導通狀態圖	27
圖3.19 輸出電壓漣波	29
圖3.20 輸出電壓負載變化暫態響應圖	32
圖3.21 效能轉換表示圖	33
圖4.1 利用電池輔助低壓啟動升壓轉換器系統架構	36
圖4.2 機械輔助啟動電路來啟動從熱電元件提取能量	37
圖4.3 使用LC振盪器之低壓啟動電路	38
圖4.4 使用RF低壓啟動機制	39
圖4.5使用電荷幫浦與環形振盪器之啟動電路架構	40
圖5.1 應用於穿戴式電子裝置熱電能量擷取之具超低自我啟動電壓升壓轉換器使用多相位電荷幫浦和超低壓差動環形振盪器	42
圖5.2 升壓轉換器架構	43
圖5.3 升壓轉換器操作情形	44
圖5.4 超低電壓自我啟動電路架構圖	44
圖5.5 (a)堆疊式反向器架構 (b)堆疊式反向器圖示	45
圖5.6 堆疊式反及閘	46
圖5.7 狄克森充電幫浦	47
圖5.8 交叉耦合電荷幫浦	47
圖5.9 充電幫浦單元損耗示意圖	48
圖5.10 多相位控制電荷幫浦	48
圖5.11 雙端延遲單元	49
圖5.12 超低電壓雙端環型振盪器電路	 49
圖5.13 時脈產生器	50
圖5.14 時脈產生器區塊	50
圖5.15 電壓調節電路	51
圖5.16 零電流偵測器	52
圖5.17 零電流偵測時序圖	52
圖5.18 比較器	53
圖5.19 脈波頻率調變電路	54
圖5.20 脈波頻率調變時序圖	54
圖5.21 電壓偵測器	55
圖5.22 閘極驅動器架構	55
圖5.23 啟動階段	56
圖5.24 過渡階段	56
圖5.25 調節穩壓階段	57
圖6.1 兩種反向器之NMOS的RDS變化	58
圖6.2 兩種反向器之PMOS的RDS變化	59
圖6.3 環形振盪器輸出波型圖	60
圖6.4 超低電壓雙端環形振盪器模擬結果	61
圖6.5 多相位控制電荷幫浦與交叉耦合電荷幫浦輸出結果	62
圖6.6 超低電壓時脈產生器輸出結果	63
圖6.7 電壓偵測器VIN對VOUT模擬圖	63
圖6.8 全系統在TT corner,27˚C模擬結果
      (輸出電壓、電感電流、控制訊號)	64
圖6.9 全系統在TT corner, 27˚C模擬結果(電流偵測、PFM訊號)	64
圖6.10 全系統在SS corner, 0˚C模擬結果
       (輸出電壓、電感電流、控制訊號)	65
圖6.11 全系統在SS corner, 0˚C模擬結果(電流偵測、PFM訊號)	65
圖6.12 全系統在FF corner, 75˚C模擬結果
       (輸出電壓、電感電流、控制訊號)	66
圖6.13 全系統在FF corner, 75˚C模擬結果(電流偵測、PFM訊號)	66
圖6.14 全系統在TT corner,27˚C模擬結果
       (輸出電壓、電感電流、控制訊號、PFM訊號)	67
圖6.15 電路佈局圖	68
圖7.1 量測環境示意圖	70
表目錄
表3.1電源管理電路之特性比較	21
表6.1 超低電壓環境下電晶體開關時等效RDS大小	59
表6.2 三種環型振盪器架構輸出規格比較	61
表6.3 預計規格列表	69
表6.4 效能比較表	69
參考文獻
[1]	李泰成譯。類比CMOS積體電路設計。台灣:東華書局,2013.
[2]	S. Bose and M. L. Johnston, "A Stacked-Inverter Ring Oscillator for 50 mV Fully-Integrated Cold-Start of Energy Harvesters," 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, 2018, pp. 1-5, doi: 10.1109/ISCAS.2018.8351445.
[3]	J. Kim, Y. Jun and B. Kong, "CMOS Charge Pump With Transfer Blocking Technique for No Reversion Loss and Relaxed Clock Timing Restriction," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 56, no. 1, pp. 11-15, Jan. 2009, doi: 10.1109/TCSII.2008.2008521.
[4]	Y. Tang, C. Wong, Y. Du, L. Du, Y. Li and M. F. Chang, "A fully integrated 28nm CMOS dual source adaptive thermoelectric and RF energy harvesting circuit with 110mv startup voltage," 2018 IEEE Custom Integrated Circuits Conference (CICC), San Diego, CA, 2018, pp. 1-4, doi: 10.1109/CICC.2018.8357082.
[5]	M. Coustans, F. Krummenacher and M. Kayal, "A Fully Integrated 60 mV Cold-Start Circuit for Single Coil DC–DC Boost Converter for Thermoelectric Energy Harvesting," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 10, pp. 1668-1672, Oct. 2019, doi: 10.1109/TCSII.2019.2922683.
[6]	M. Chen, H. Yu, G. Wang and Y. Lian, "A Batteryless Single-Inductor Boost Converter With 190 mV Self-Startup Voltage for Thermal Energy Harvesting Over a Wide Temperature Range," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 6, pp. 889-893, June 2019, doi: 10.1109/TCSII.2018.2869328.
[7]	S. H. Chen et al., "A Direct AC–DC and DC–DC Cross-Source Energy Harvesting Circuit with Analog Iterating-Based MPPT Technique with 72.5% Conversion Efficiency and 94.6% Tracking Efficiency," in IEEE Transactions on Power Electronics, vol. 31, no. 8, pp. 5885-5899, Aug. 2016.
[8]	Y. S. Hwang, C. C. Lei, Y. W. Yang, J. J. Chen and C. C. Yu, "A 13.56-MHz Low-Voltage and Low-Control-Loss RF-DC Rectifier Utilizing a Reducing Reverse Loss Technique," in IEEE Transactions on Power Electronics, vol. 29, no. 12, pp. 6544-6554, Dec. 2014.
[9]	P. H. Chen et al., "Startup Techniques for 95 mV Step-Up Converter by Capacitor Pass-On Scheme and VTH -Tuned Oscillator With Fixed Charge Programming," in IEEE Journal of Solid-State Circuits, vol. 47, no. 5, pp. 1252-1260, May 2012.
[10]	Y. K. Ramadass and A. P. Chandrakasan, "Minimum Energy Tracking Loop with Embedded DC-DC Converter Delivering Voltages down to 250mV in 65nm CMOS," 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, San Francisco, CA, 2007, pp. 64-587.
[11]	 H. H. Wu, C. L. Wei, Y. C. Hsu and R. B. Darling, "Adaptive Peak-Inductor-Current-Controlled PFM Boost Converter With a Near-Threshold Startup Voltage and High Efficiency," in IEEE Transactions on Power Electronics, vol. 30, no. 4, pp. 1956-1965, April 2015.
[12]	C. Y. Hsieh et al., "A battery-free 225 nW buck converter for wireless RF energy harvesting with dynamic on/off time and adaptive phase lead control," 2011 Symposium on VLSI Circuits - Digest of Technical Papers, Honolulu, HI, 2011, pp. 242-243.
[13]	Z. Luo, L. Zeng, B. Lau, Y. Lian and C. Heng, "A Sub-10 mV Power Converter With Fully Integrated Self-Start, MPPT, and ZCS Control for Thermoelectric Energy Harvesting," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 5, pp. 1744-1757, May 2018, doi: 10.1109/TCSI.2017.2757505.
[14]	A. Das, Y. Gao and T. T. Kim, "A 220-mV Power-on-Reset Based Self-Starter With 2-nW Quiescent Power for Thermoelectric Energy Harvesting Systems," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 1, pp. 217-226, Jan. 2017, doi: 10.1109/TCSI.2016.2606122.
[15]	S. Bose, T. Anand and M. L. Johnston, "A 3.5mV Input, 82% Peak Efficiency Boost Converter with Loss-Optimized MPPT and 50mV Integrated Cold-Start for Thermoelectric Energy Harvesting," 2019 IEEE Custom Integrated Circuits Conference (CICC), Austin, TX, USA, 2019, pp. 1-4, doi: 10.1109/CICC.2019.8780352.
[16]	E. J. Carlson, K. Strunz and B. P. Otis, "A 20 mV Input Boost Converter With Efficient Digital Control for Thermoelectric Energy Harvesting," in IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 741-750, April 2010, doi: 10.1109/JSSC.2010.2042251.
[17]	Y. K. Ramadass and A. P. Chandrakasan, "A batteryless thermoelectric energy-harvesting interface circuit with 35mV startup voltage," 2010 IEEE International Solid-State Circuits Conference - (ISSCC), San Francisco, CA, 2010, pp. 486-487, doi: 10.1109/ISSCC.2010.5433835.
[18]	P. Weng, H. Tang, P. Ku and L. Lu, "50 mV-Input Batteryless Boost Converter for Thermal Energy Harvesting," in IEEE Journal of Solid-State Circuits, vol. 48, no. 4, pp. 1031-1041, April 2013, doi: 10.1109/JSSC.2013.2237998.
[19]	J. Mu and L. Liu, "A 12 mV Input, 90.8% Peak Efficiency CRM Boost Converter With a Sub-Threshold Startup Voltage for TEG Energy Harvesting," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 8, pp. 2631-2640, Aug. 2018, doi: 10.1109/TCSI.2018.2789449.
[20]	Po-Hung Chen et al., "0.18-V input charge pump with forward body biasing in startup circuit using 65nm CMOS," IEEE Custom Integrated Circuits Conference 2010, San Jose, CA, 2010, pp. 1-
[21]	林胤丞, "具低電壓自我啟動之2.4GHz射頻能量擷取電路," 淡江大學電機工程學系碩士論文, Jun. 2016.
[22]	黃子昂, "應用於超音波系統變頻之單電感雙輸出穩壓器," 淡江大學電機工程學系碩士論文, Jun. 2017.
[23]	陳相澄, "低壓啟動兩階段升壓電路,"國立中興大學電機工程學系碩士論文, Jan. 2015.
[24]	柯., Ko, T., 孫., & Sun, K. (2013),"介觀下熱物理之單根高電阻三硒化二銻奈米線之量測方法與探討, "國立交通大學應用化學系碩博士論文
[25]	電源管理元件選擇指南(https://www.richtek.com/selection-guide/tw/selection-overview.html)
[26]	電源設計技術資訊網站(https://techweb.rohm.com.tw/knowledge/)
論文全文使用權限
校內
校內紙本論文延後至2022-07-16公開
同意電子論文全文授權校園內公開
校內電子論文延後至2022-07-16公開
校內書目立即公開
校外
同意授權
校外電子論文延後至2022-07-16公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信