§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1507202009553400
DOI 10.6846/TKU.2020.00418
論文名稱(中文) 以改質活性碳為顆粒電極之三維電極程序處理含硝基苯的廢水
論文名稱(英文) Granular activated carbon loaded with copper as particle electrodes in three-dimensional electrochemical process for treating nitrobenzene-containing wastewater
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 水資源及環境工程學系碩士班
系所名稱(英文) Department of Water Resources and Environmental Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 108
學期 2
出版年 109
研究生(中文) 陳子懿
研究生(英文) Tzu-Yi Chen
學號 608480157
學位類別 碩士
語言別 英文
第二語言別 繁體中文
口試日期 2020-07-03
論文頁數 47頁
口試委員 指導教授 - 李奇旺
委員 - 彭晴玉
委員 - 陳孝行
關鍵字(中) 三維電化學
吸附
活性碳
顆粒電極
硝基苯
化學需氧量
銅負載
關鍵字(英) three-dimensional electrochemical
Adsorption
Granular activated carbon (GAC)
Particle electrode
Nitrobenzene (NB)
COD removal
Copper loaded GAC
第三語言關鍵字
學科別分類
中文摘要
利用三維電極系統去除含NB廢水。該系統由銥銠合金包覆的鈦板作為陽極,碳板作為陰極以及負載銅的活性碳作為顆粒電極所組成。首先探討pH以及銅溶液濃度對活性碳上銅負載比例的影響。對於三維電極系統,探討了攪拌方式,系統的電氧化能力(包括二維系統,新鮮活性碳的三維系統以及銅負載活性碳的三維系統),電壓梯度(0.9375, 1.875, 3.125, 6.25, 9.375 V/cm),以及反應時間對硝基苯去除效率的影響。
  結果顯示,在濃度為3g/L的銅溶液濃度以及pH 3的條件下能達到17.1 mg/g的負載比例。以機械攪拌方式並以新鮮活性碳作為顆粒電極的三維電極系統能達到96%的去除效率。以機械攪拌方式並以銅負載活性碳作為顆粒電極的三維電極系統能達到76%的去除效率。雖然新鮮活性碳的去除效率較高但單就電氧化能力而言,銅負載活性碳的去除效率高出新鮮活性碳8%。改變電壓梯度以及提高反應時間並不會提高去除效率,並在電壓梯度為1.875 V/cm反應時間為60分鐘時候能達到最好的去除效率。
英文摘要
NB-containing wastewater was treated using a three-dimensional electrode system (3DE) consisting of a titanium plate coated with ruthenium and iridium as an anode, a carbon plate as a cathode and granular activated carbon loaded with copper as particle electrodes (Cu-GAC). For the Cu-GAC, the effects of pH and concentration of copper solution on copper-loading ratio were investigated. For the 3DE, the stirring effect, the electro-oxidation capacity (including the 2DE and 3DE with virgin GAC and Cu-GAC as particle electrodes), voltage gradient (0.9375, 1.875, 3.125, 6.25, 9.375 V/cm) and reaction time on NB removal efficiency were investigated.
The results show that the maximum loading ratio of 17.1 mg Cu/g GAC was achieved at copper concentration of 3 g/L and pH 3. A removal efficiency of 96% and 76% can be achieved by the 3DE with virgin GAC and Cu-GAC, respectively. Although the removal efficiency of virgin GAC was higher, the removal efficiency of Cu-GAC as particle electrodes was 8% higher in terms of the electro-oxidation capacity alone. The change of voltage gradient and the increase of reaction time do not improve the removal efficiency. The best removal efficiency was achieved when the voltage gradient is 1.875 V/cm and the reaction time is 60 min.
第三語言摘要
論文目次
CONTENTS
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
中文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Literature reviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Three-dimensional electrochemical process (3DE) . . . . . . . . . . . . 4
2.1.1 Comparison of 3D and 2D systems . . . . . . . . . . . . . . . . 4
2.1.2 3D system configuration . . . . . . . . . . . . . . . . . . . . . . 7
2.2 GAC and GAC loaded with metal . . . . . . . . . . . . . . . . . . . . . 10
2.3 Effects of voltage gradient . . . . . . . . . . . . . . . . . . . . . . . . . 13
3 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1 Materials and Chemicals . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.1 Reactor of Cu-loading GAC production . . . . . . . . . . . . . . 15
3.2.2 3DE reactor system . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Experiment methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.1 Pre-treatment of GAC . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.2 Effects of copper concentration and reaction pH on the loading
of copper onto GAC . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.3 Effects of adsorption and electro-oxidation . . . . . . . . . . . . 20
3.3.4 Effect of mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.5 Effect of electro-oxidation . . . . . . . . . . . . . . . . . . . . . 21
3.3.6 Effect of Voltage gradient . . . . . . . . . . . . . . . . . . . . . 21
3.3.7 Effect of reaction time . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Analytical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1 Copper loaded on GAC . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 COD removal by vaporization . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 COD removal by adsorption and electro-oxidation . . . . . . . . . . . . 28
4.4 COD removal by electro-oxidation . . . . . . . . . . . . . . . . . . . . . 31
4.5 COD removal by voltage gradient . . . . . . . . . . . . . . . . . . . . . 33
4.6 COD removal by reaction time . . . . . . . . . . . . . . . . . . . . . . . 36
5 Conclusions and suggestions . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 Suggestions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

LIST OF TABLES
2.1 Comparison of pollutant removal efficiency of 3DE & 2DE . . . . . . . 6
2.2 Loaded GAC with different metals . . . . . . . . . . . . . . . . . . . . 11
3.1 Chemicals and brands used in this study . . . . . . . . . . . . . . . . . 15
4.1 The copper loading ratio as a function of initial copper ions concentrations. 23
4.2 The t-test for removal efficiency of COD with different voltage gradient. 34

LIST OF FIGURES
3.1 Schematic diagram of the experimental set-up used for copper loading
reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Schematic diagram of the experimental set-up used for 3DE reactor . . 18
3.3 The electrode plates of the 3DE reactor. (a) Anode side without cov
ered, (b) Cathode side with covered. . . . . . . . . . . . . . . . . . . . 18
4.1 The copper loaded ratio as a function of pH. Initial copper ions con
centration = 3 g/L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 The copper speciation as a function of pH. Modeled using Mineql+. . . 25
4.3 SEM images 3000 X of Cu-GAC. (a) Cu-GAC SEM image, (b) Element
mapping images for copper. . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4 The evaporation of NB under aeration. Experimental conditions: Aer
ation rate = 1.5 L/min, initial COD concentration = 2900 ∼ 3200 mg/L. 27
4.5 The evaporation of NB using magnet stirring. Experimental conditions:
Mechanic mixing (600 rpm), initial COD concentration = 2900 ∼ 3200
mg/L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.6 COD removal efficiency in single batch experiment for various processes,
including 2DE, 3DE process as well as adsorption. Voltage gradient =
1.875 V/cm (2DE and 3DE), Virgin GAC as particle electrodes (3DE
and adsorption) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.7 COD removal efficiency by 3DE and adsorption processes with virgin
GAC being repeatedly used three times, Voltage gradient = 1.875 V/cm. 30
4.8 COD removal efficiency for 2DE and 3DE with virgin GAC and Cu-GAC
as particle electrodes. Both virgin GAC and Cu-GAC were impregnated
at saturation NB for more than 24 hours before the experiments. Voltage
gradient = 1.875 V/cm. . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.9 COD removal efficiency by 3DE with virgin GAC and Cu-GAC as par
ticle electrodes. The virgin GAC and Cu-GAC being repeatedly used
three times. Both virgin GAC and Cu-GAC were impregnated at sat
uration NB for more than 24 hours before the experiments. Voltage
gradient = 1.875 V/cm. . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.10 COD removal efficiency under various voltage gradient with Cu-GAC
in 3DE system. These values are 1.5, 3, 5, 10 and 15 V. . . . . . . . . . 34
4.11 Energy consumption under various voltage gradient. These values are
represented 1.5, 3, 5, 10 and 15 V. . . . . . . . . . . . . . . . . . . . . . 35
4.12 COD removal efficiency by 3DE with Cu-GAC. Reaction time 120 min,
Voltage gradient = 1.875 V/cm. . . . . . . . . . . . . . . . . . . . . . . 37
4.13 COD removal efficiency by 3DE with Cu-GAC being repeatedly used
three times. Reaction time 120 min/times, Voltage gradient = 1.875
V/cm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
參考文獻
REFERENCES
[1]  Jitendra J. Shah and Hanwant B. Singh. Distribution of volatile organic chemicals in outdoor and indoor air.Environmental  Science  and  Technology, 22(12):1381–1388, 1988.
[2]  Xiaoli Wang, Yu Li, Yizhe Wang, Ting Wang, Qian Gao, and Xianyuan Du. New evidence  for  the  importance  of  Mn  oxides  contributed  to nitrobenzene adsorption onto the surficial sediments in Songhua River, China.Journal of Hazardous Materials, 172(2-3):755–762, 2009.
[3]  Meng chang He, Yan Sun, Xing ru Li, and Zhi feng Yang.  Distribution patterns of  nitrobenzenes and polychlorinated biphenyls  in  water,  suspended particulate matter  and  sediment  from  mid-  and down-stream of  the  Yellow  River  (China). Chemosphere, 65(3):365–374, 2006.
[4]  Priyanka, V. Subbaramaiah, Vimal Chandra Srivastava, and Indra Deo Mall. Catalytic oxidation of nitrobenzene by copper loaded activated carbon.Separation and Purification Technology, 125:284–290, 2014.
[5]  Lei Zhao, Jun Ma, Zhi Zhong Sun, and Xue Dong Zhai. Catalytic ozonation for the degradation of nitrobenzene in aqueous solution by ceramic honeycomb-supported manganese.Applied Catalysis B: Environmental, 83(3-4):256–264, 2008.
[6]  Zhen Guang Yan, Zhi Sheng Zhang, Hong Wang, Feng Liang, Ji Li, Hong Ling Liu, Cheng Sun, Li Jun Liang, and Zheng Tao Liu.  Development of aquatic life criteria for nitrobenzene in China.Environmental Pollution, 162:86–90, 2012.
[7]  Carlos A. Mart ́ınez-Huitle and Sergio Ferro. Electrochemical oxidation of organic pollutants for the wastewater treatment:  Direct and indirect processes, 2006. 
[8]  Chao  Zhang,  Yonghai  Jiang,  Yunlin  Li,  Zhongxin  Hu,  Lei  Zhou,  and  Minghua Zhou.   Three-dimensional electrochemical process for wastewater treatment:  A general review.Chemical Engineering Journal, 228:455–467, 2013.
[9]  Minghua Zhou,  Lecheng Lei,  Zucheng Wu,  Xiangjuan Ma,  Yanqing Cong,  Qian Ye, Dahui Wang, Ya Xiong, Chun He, Taicheng An, Xihai Zhu, Hans T Karlsson, Wuping Kong, Bo Wang, Hongzhu Ma, Lin Gu, Wei Liu, Zhihui Ai, Lizhi Zhang, Bo Wang, Wuping Kong, and Hongzhu Ma. Electrochemical treatment of anionic surfactants in synthetic wastewater with three-dimensional electrodes.Journal of Hazardous Materials, 65(7):81–88, 2006.
[10]  Wei Liu, Zhihui Ai, and Lizhi Zhang. Design of a neutral three-dimensional electro-Fenton system with foam nickel as particle electrodes for wastewater treatment. Journal of Hazardous Materials, 243:257–264, 2012.
[11]  Bo  Wang,  Wuping  Kong,  and  Hongzhu  Ma.   Electrochemical treatment  of  paper mill wastewater using three-dimensional electrodes with Ti/Co/SnO2-Sb2O5anode.Journal of Hazardous Materials, 146(1-2):295–301, 2007.
[12]  Lingyong Wei, Shaohui Guo, Guangxu Yan, Chunmao Chen, and Xiaoyan Jiang. Electrochemical  pretreatment of  heavy  oil  refinery  wastewater  using  a  three-dimensional electrode reactor.Electrochimica Acta, 55(28):8615–8620, 2010.
[13]  P. K. Malik. Dye removal from wastewater using activated carbon developed from sawdust:  Adsorption equilibrium and kinetics.Journal  of  Hazardous  Materials, 113(1-3):81–88, 2004.
[14]  R.   Berenguer,   J.   P.   Marco-Lozar,   C.   Quijada,   D.   Cazorla-Amor ́os,   and E.  Morall ́on.Electrochemical regeneration  and  porosity  recovery  of  phenol-saturated granular activated carbon in an alkaline medium.Carbon, 48(10):2734–2745, 2010.
[15]  Ljubisa  R.  Radovic,  Carlos  Moreno-Castilla,  and  Jos ́e  Rivera-Utrilla.   Carbon materials as adsorbents in aqueous solutions.Chemistry and  Physics  of  Carbon, 27:227–405, 12 2000.
[16]  C. B. Molina, J. A. Casas, J. A. Zazo, and J. J. Rodr ́ıguez. A comparison of Al-Fe and Zr-Fe pillared clays for catalytic wet peroxide oxidation.Chemical Engineering Journal, 118(1-2):29–35, 2006.
[17]  Qinghan Meng, Ling Liu, and Huaihe Song.  Copper-doped mesoporous activated carbons as electrode material for electrochemical capacitors.Journal of  Applied Electrochemistry, 36(1):63–67, 2006.
[18]  Francisco Alonso, Yanina Moglie, Gabriel Radivoy, and Miguel Yus.  Click chemistry  from organic  halides,  diazonium  salts  and  anilines  in  water  catalysed  by copper nanoparticles on activated carbon.Organic and Biomolecular Chemistry, 9(18):6385–6395, 2011.
[19]  Shuqiang Jiao and Derek J. Fray. Development of an inert anode for electrowinning in calcium chloride-calcium oxide melts.Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 41(1):74–79, 2010.
[20]  Minghua Zhou and Lecheng Lei.  The role of activated carbon on the removal of p-nitrophenol in an integrated three-phase electrochemical reactor.Chemosphere, 65(7):1197–1203, 2006.
[21]  Ya  Xiong,  Peter  J.  Strunk,  Hongyun  Xia,  Xihai  Zhu,  and  Hans  T.  Karlsson. Treatment  of dye wastewater  containing acid orange  II  using a  cell with three-phase three-dimensional electrode.Water Research, 35(17):4226–4230, 2001.
[22]  Minghua Zhou, Wei Wang, and Meiling Chi.  Enhancement on the simultaneous removal of nitrate and organic pollutants from groundwater by a three-dimensional bio-electrochemical reactor.Bioresource Technology, 100(20):4662–4668, 2009. 
[23]  Shahin Ghafari,  Masitah Hasan,  and Mohamed Kheireddine Aroua.  Nitrate re- mediation in a novel upflow bio-electrochemical reactor (UBER) using palm shell activated  carbon  as  cathode  material.Electrochimica  Acta,  54(17):4164–4171, 2009.
[24]  Seyyedalireza  Mousavi,   Shaliza  Ibrahim,   Mohamed  Kheireddine  Aroua,   and Shahin Ghafari. Development of nitrate elimination by autohydrogenotrophic bacteria in bio-electrochemical reactors - A review.Biochemical Engineering Journal, 67:251–264, 2012.
[25]  F.  Coeuret.   The  fluidized  bed  electrode  for  the  continuous  recovery  of  metals. Journal of Applied Electrochemistry, 10(6):687–696, 1980.
[26]  Long Yan, Hongzhu Ma, Bo Wang, Yufei Wang, and Yashao Chen. Electrochemical treatment of petroleum refinery wastewater with three-dimensional multi-phase electrode.Desalination, 276(1-3):397–402, 2011.
[27]  Jin Anotai, Chia Chi Su, Yi Chun Tsai, and Ming Chun Lu.  Effect of hydrogen peroxide on aniline oxidation by electro-Fenton and fluidized-bed Fenton processes. Journal of Hazardous Materials, 183(1-3):888–893, 2010.
[28]  D. Hutin and F. Coeuret.  Experimental study of copper deposition in a fluidized bed electrode.Journal of Applied Electrochemistry, 7(6):463–471, 1977.
[29]  K. Scott.  Metal recovery using a moving-bed electrode.Journal of Applied Electrochemistry, 11(3):339–346, 1981.
[30]  Xitao Liu, Xie Quan, Longli Bo, Shuo Chen, Yazhi Zhao, and Ming Chang. Temperature measurement of GAC and decomposition of PCP loaded on GAC and GAC-supported  copper  catalyst  in  microwave irradiation.Applied  Catalysis  A:General, 264(1):53–58, 2004.
[31]  Hamed Mohammadi, Abdolazim Alinejad, Mahsa Khajeh, Mohammad Darvish-motevalli, Maryam Moradnia, Ashraf Mazaheri Tehrani, Gholamreza Hosseindost, Mohammad Reza Zare, and Nezamaddin Mengelizadeh.  Optimization of the 3D electro-Fenton  process  in  removal  of  acid  orange  10  from  aqueous  solutions  by response surface methodology.Journal of Chemical Technology & Biotechnology, 94(10):3158–3171, 2019.
[32]  Bhumica Agarwal and Chandrajit Balomajumder.  Degradation of lignin in ionic liquid  with  HCl  as  catalyst.Environmental  Progress  &  Sustainable  Energy, 35(3):809–814, 2015.
[33]  Dedy Mahardika, Hak Soon Park, and Kwang Ho Choo. Ferrihydrite-impregnated granular  activated  carbon  (FH@GAC)  for  efficient  phosphorus  removal  from wastewater secondary effluent.Chemosphere, 207:527–533, 2018.
[34]  K. Santhy and P. Selvapathy.  Removal of reactive dyes from wastewater by adsorption on coir pith activated carbon.Bioresource Technology, 97(11):1329–1336, 2006.
[35]  Xinyang  Li,  Yue  Wu,  Wei  Zhu,  Fangqing  Xue,  Yi  Qian,  and  Chengwen  Wang. Enhanced electrochemical oxidation of synthetic dyeing wastewater using SnO2-Sb-doped  TiO2-coated  granular  activated  carbon  electrodes  with  high hydroxyl radical yields.Electrochimica Acta, 220:276–284, 2016.
[36]  Jih-Hsing  Chang,  Tsong-Jen  Yang,  and  Cheng-Hung  Tung.Performance  of nano-  and  nonnano-catalytic  electrodes  for  decontaminating  municipal  wastewater.Journal of Hazardous Materials, 163(1):152–157, apr 2009.
[37]  S. Biniak, M. Paku la, G. S. Szyma ́nski, and A. ́Swiatkowski.  Effect of activated carbon surface oxygen- and/or nitrogen-containing groups on adsorption of cop- per(II) ions from aqueous solution.Langmuir, 15(18):6117–6122, 1999.
[38]  Xu Zhao, Angzhen Li, Ran Mao, Huijuan Liu, and Jiuhui Qu.  Electrochemical removal  of  haloacetic acids  in  a  three-dimensional electrochemical  reactor  with Pd-GAC particles as fixed filler and Pd-modified carbon paper as cathode.Water Research, 51:134–143, 2014.
[39]  Weifang  Chen,  Robert  Parette,  Jiying  Zou,  Fred  S.  Cannon,  and  Brian  A.Dempsey.  Arsenic removal by iron-modified activated carbon.Water  Research, 41(9):1851–1858, 2007.
[40]  Yi Hsuan Chou,  Jui Hsuan Yu,  Yang Min Liang,  Pin Jan Wang,  Chi Wang Li, and Shiao Shing Chen.  Recovery of Cu(II) by chemical reduction using sodium dithionite.Chemosphere, 141:183–188, 2015.
[41]  Grigori Zelmanov and Raphael Semiat. Boron removal from water and its recovery using  iron  (Fe+3)  oxide/hydroxide-based  nanoparticles  (NanoFe)  and  NanoFe-impregnated granular activated carbon as adsorbent.Desalination,  333(1):107–117, 2014.
[42]  Krishna R. Reddy and Madhusudhana R. Karri. Effect of voltage gradient on integrated electrochemical remediation of contaminant mixtures.Land Contamination and Reclamation, 14(3):685–698, 2006.
[43]  Jih  Hsing  Chang,  Amanda  V.  Ellis,  Cheing  Tong  Yan,  and  Cheng  Hung  Tung. The electrochemical phenomena and kinetics of EDTA-copper wastewater reclamation by electrodeposition and ultrasound.Separation and Purification Technology, 68(2):216–221, 2009.
[44]  Lingyan Zhu, Baoling Ma, Lei Zhang, and Li Zhang. The study of distribution and fate of nitrobenzene in a water/sediment microcosm.Chemosphere, 69(10):1579–1585, 2007.
[45]  D.  O.  Lambeth  and  G.  Palmer.   The kinetics  and mechanism of reduction  of electron transfer proteins and other compounds of biological interest by dithionite. Journal of Biological Chemistry, 248(17):6095–6103, 1973.
[46]  Nicolas Geoffroy and George P. Demopoulos. Reductive precipitation of elemental selenium from selenious acidic solutions using sodium dithionite.Industrial  and Engineering Chemistry Research, 48(23):10240–10246, 2009. 
[47]  S.H. Jenkins.  Standard Methods for the Examination of Water and Wastewater. Water Research, 16(10):1495–1496, 1982.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信