淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1507201912195400
中文論文名稱 利用含釕赤血鹽修飾玻璃碳電極偵測咖啡因
英文論文名稱 Determination of caffeine by ruthenium hexacyanoferrate modified glassy carbon electrode
校院名稱 淡江大學
系所名稱(中) 化學學系碩士班
系所名稱(英) Department of Chemistry
學年度 107
學期 2
出版年 108
研究生中文姓名 詹育維
研究生英文姓名 Yu-Wei Jhan
學號 605160042
學位類別 碩士
語文別 中文
口試日期 2019-06-12
論文頁數 72頁
口試委員 指導教授-林孟山
委員-呂晃志
委員-曾美郡
中文關鍵字 咖啡因  含釕赤血鹽  旋轉圓盤電極 
英文關鍵字 Caffeine  ruthenium hexacyanoferrate  Rotating disk electrode 
學科別分類 學科別自然科學化學
中文摘要 本研究目的是建立一個利用含釕赤血鹽(ruthenium hexacyanoferrate)來偵測咖啡因的系統。利用催化劑在pH 1環境中,將原本咖啡因的氧化電位約在1.54V下降至1.10V(vs.Ag/AgCl)。而催化劑的電位會受到環境pH值影響造成偏移,最低還可以下降至0.945V
(vs.Ag/AgCl)。此系統經最佳化探討後,操作電位1.15V下,其偵測線性範圍從0.2μM至10μM,靈敏度為 298.05nA/μM,本系統偵測極限為 42.27nM (S/N=3),對於1μM的咖啡因重複操作的相對標準偏差為2.86%(n=20)。最後利用HPLC將星巴克的美式咖啡分離出咖啡因,偵測器為本研究的催化電極, HPLC的分離條件為,流動相為75% 100mM pH 1 PBS和25%的70%乙腈混和,分離管柱為InertSustain AQ-C18 5um 4.6 x 250mm,流速為1ml/min,約7.7分鐘分離出來。
英文摘要 The purpose of this study was to establish a system that uses catalysts of ruthenium hexacyanoferrate to detect caffeine. The oxidation potential of caffeine with ruthenium hexacyanoferrate was reduced to about 1.10 V at about 1.54V (vs. Ag/AgCl) in pH 1. And the potential of ruthenium hexacyanoferrate is affected by the environmental pH, which can be reduce to 0.945V (vs. Ag/AgCl). After optimization of this system, the operating potential is 1.15V, the linear range is 0.2μM to 10μM, the sensitivity is 298.05nA/μM, and the detection limit is 42.27nM (S/N=3). The relative standard deviation of the 1 μM caffeine repeat operation was 2.86% (n=20). Finally, the caffeine was separated in sample of caffé Americano(starbucks) by HPLC. And the detector use the system of this study. The caffeine was separated by a mobile phase of 75% 100 mM pH 1 PBS and 25% 70% acetonitrile, the column was InertSustain AQ-C18 5um 4.6 x 250m and flow rate was 1 ml/min by HPLC. And the caffeine was separated in 7.7 minutes.
論文目次 總目錄
總目錄 iii
圖目錄 v
表目錄 vii
第一章 緒論..............................................1
1-1偵測咖啡因之重要性....................................1
1-2咖啡因(caffeine)(1,3,7-Trimethylpurine-2,6-dione)....2
1-3咖啡因的分離方法......................................5
1-4咖啡因的偵測方法......................................8
1-5高效液相層析系統.....................................14
1-6 混價化合物之赤血鹽..................................23
1-7 本研究之目的........................................25
第二章 實驗步驟.........................................25
2-1儀器................................................25
2-2藥品................................................26
2-3實驗步驟與設計.......................................27
2-3-1系統操作電位的探討.................................30
2-3-2初步電解質酸鹼值的探討.............................30
2-3-3電解質的濃度的探討.................................30
2-3-4修飾時KCl濃度的探討................................31
2-3-5修飾時pH值的探討...................................31
2-3-6分析特性評估.......................................31
2-3-7偵測咖啡因在HPLC上之應用評估........................32
第三章 結果與討論.......................................32
3-1工作原理的探討.......................................32
3-2最佳化條件的探討.....................................36
3-2-1系統操作電位.......................................43
3-2-2電解質酸鹼值.......................................45
3-2-3電解質的濃度.......................................47
3-2-4 修飾時KCl濃度.....................................48
3-2-5修飾時pH值.........................................49
3-2-6轉速的探討.........................................51
3-3分析特性的探討.......................................53
3-4偵測咖啡因在HPLC上之應用..............................61
3-5結論................................................66
參考文獻................................................68

圖目錄
圖 1咖啡因之化學結構.....................................4
圖 2電化學氧化咖啡因可能的氧化機制........................12
圖 3六向注射閥原理......................................17
圖 4滯留時間關係圖......................................19
圖 5分析物在分離管柱中之分散.............................20
圖 6解析度與波峰之關係圖.................................23
圖 7 ruthenium hexacyanoferrate的生成情形...............28
圖 8 ruthenium hexacyanoferrate玻璃碳電極的循環伏安法....29
圖 9 ruthenium hexacyanoferrate玻璃碳電極偵測咖啡因的循環伏安法...................................................29
圖 10 空白玻璃碳電極偵測咖啡因的循環伏安法................34
圖 11 ruthenium hexacyanoferrate玻璃碳電極的循環伏安法,在不同pH環境下..............................................35
圖 12 pH值對催化劑氧化電位作圖...........................35
圖 13 本系統所依據的偵測原理及反應機制....................36
圖 14 ruthenium hexacyanoferrate旋轉圓盤玻璃碳電極,pH 1.0環境下.................................................38
圖 15 ruthenium hexacyanoferrate旋轉圓盤玻璃碳電極,pH 2.0環境下.................................................39
圖 16 ruthenium hexacyanoferrate旋轉圓盤玻璃碳電極,pH 3.0環境下.................................................40
圖 17 ruthenium hexacyanoferrate旋轉圓盤玻璃碳電極,pH 4.0環境下.................................................41
圖 18 ruthenium hexacyanoferrate旋轉圓盤玻璃碳電極,pH 5.0環境下.................................................42
圖 19 ruthenium hexacyanoferrate旋轉圓盤玻璃碳電極,pH 7.0環境下.................................................43
圖 20咖啡因偵測系統之操作電位的探討......................45
圖 21電解質酸鹼值探討...................................46
圖 22咖啡因偵測系統之磷酸鹽電解質濃度的探討...............48
圖 23 探討修飾電極時不同KCl之濃度所形成的ruthenium hexacyanoferrate對咖啡因催化電流的影響...................49
圖 24探討修飾電極時不同pH值所形成的ruthenium hexacyanoferrate對咖啡因催化電流的影響...................51
圖 25 轉速的二分之一對電流作圖的探討......................52
圖 26圖轉速的負二分之一開根號對電流的倒數作圖的探討........53
圖 27 咖啡因偵測系統校正曲線.............................54
圖 28咖啡因偵測系統之再現性..............................55
圖 29 偵測系統之干擾物測試...............................57
圖 30偵測系統之混和干擾物測試............................58
圖 31偵測系統之混和干擾物測試長條圖.......................59
圖 32 咖啡因在干擾物中的偵測.............................62
圖 33 咖啡在HPLC中的偵測................................65
圖 34 咖啡和混和干擾物的疊圖在HPLC中.....................66
表目錄
表 1偵測咖啡因之氧化電位、線性及偵測極限比較...............56
表 2於最佳化條件下所得分析結果...........................60
參考文獻 1. Nehlig A, Daval JL, Debry G Brain Research. Brain Research Reviews. 1992, 17 (2), 139–170.
2. Derry CJ, Derry S, Moore RA. The Cochrane Library. 11/12/2014
3. Nawrot P., Jordan S., Eastwood J., Rotstein J., Hugenholtz A., Feeley M. Food Addit. Contam. 2003, 20, 1–30
4. N.a.A EFSA NDA panel (EFSA panel on dietetic products, scientific opinion on the safety of caffeine.) EFSA J. 2015;13:4102.
5. Food Addit Contam. 2003, 20 (1), 1-30.
6. Woodall B. Coroner Says South Carolina Teenager Died After Drinking Caffeine Quickly. https://www.reuters.com/article/us-south-carolina-death-caffeine-idUSKCN18C05O (Accessed 28 August 2017)
7. Pure and Highly Concentrated Caffeine. U.S. food and drug administration 09/21/2018
8. M.A. Heckman, J. Weil, E. Gonzalez de Mejia J. Food Sci., 2010, 75, 77-87
9. Cornelis, Marilyn C; El-Sohemy, Ahmed Current Opinion in Lipidology 2007, 18 (1), 13-19
10. Mitchell DC, Knight CA, Hockenberry J, Teplansky R, Hartman TJ. Food Chem Toxicol 2014, 63, 136–142
11. KL Johnston, MN Clifford, L M MorganThe American journal of clinical nutrition 2003, 78 (4), 728–733
12. H. Iso, C. Date,K. Wakai, M. Fukui,A. Tamakoshi Ann. Intern. Med. 2006, 144 (8), 554-562。
13. Ascherio, A., Zhang, S. M. and Hernan, M. A. Ann. Neurol.2001, 50, 56–63.
14. Blanchard J, Sawers SJ. Pharmacokinet Biopharm. 1983, 11, 109–126
15. Magkos F., Kavouras S.A. Crit. Rev. Food Sci. Nutr. 2005, 45, 535–562.
16. Arnaud M.J. Handb. Exp. Pharmacol. 2011, 200, 33–91
17. Sawynok J., Yaksh T.L. Pharmacol. Rev. 1993, 45, 43–85.
18. Institute of Medicine (US) Committee on Military Nutrition Research. Washington (DC): National Academies Press (US); 2001.
19. Callahan M.M., Robertson R.S., Arnaud M.J., Branfman A.R., McComish M.F., Yesair D.W. Drug Metab. Dispos. 1982, 10, 417–423
20. SS Verenitch, CJ Lowe, A Mazumder Journal of Chromatography A, 2006, 1116, 193–203
21. K Shrivas, HF Wu, Journal of Chromatography A, 2007, 1170 (1–2) 2, 9-14
22. PM Thomas, GD Foster Journal of Environmental Science and Health Part A Toxic/Hazardous Substances and Environmental Engineering. 2004, 39, 8
23. B Srdjenovic, V Djordjevic-Milic, N Grujic, N Grujic, R Injac, and Z Lepojevic Journal of Chromatographic Science, 2008, 46, 144–149
24. CI Rodrigues, L Marta, R Maia, M Miranda M Ribeirinho, C Máguas Journal of Food Composition and Analysis 2007, 20 (5), 440-448
25. JT Franeta, D Agbaba, S Eric, S Pavkov, M Aleksic S.Vladimirova Il Farmaco, 2002, 57 (9), 709-713
26. IK Bae, HM Ham, MH Jeong, DH Kim, HJ Kim - Food chemistry, 2015,172 (1), 469-475
27. E Schreiber-Deturmeny, B Bruguerolle - Journal of Chromatography B Biomedical Sciences and Applications 1996, 677 (2), 305-312
28. K Belguidoum, H Amira-Guebailia, Y Boulmokh O. Houache Journal of the Taiwan Institute of Chemical Engineers 2014, 45 (4), 1314-1320
29. H. Horie, K. Kohata J. Chromatogr. A 1998, 802, 219 –223
30. CHIA-NAN C, CHIA-MIN L, JUENG-RONG L,YAO-JEN T,JYH-SHYAN T, JEN-KUN L J. Agric. Food Chem. 2003, 51, 7495-7503
31. Y Zhao, CE Lunte. Journal of Chromatography B: Biomedical Sciences and Applications 1997, 688 (2), 265-274
32. T Hyötyläinen, H Sirén, ML Riekkola . Journal of Chromatography A, 1996, 735 (1-2), 439-447
33. H Horie, K Kohata. Journal of Chromatography A, 1998, 802 (1), 219-223
34. N Maeso, C Del Castillo, L Corne, M.García-Acicollar, L.F.Alguacil, C.Barbas. joJournal of Pharmaceutical and Biomedical Analysis. 2006, 41 (6), 1095-1100
35. Tapani T, Tom J, Kari R Clinical Chemistry 1999 ,45 (12), 2164–2172
36. Y Zuo, H Chen, Y Deng - Talanta 2002, 57 (2), 307-316
37. N. Spătaru, B. V. Sarada, D. A. Tryk and A. Fujishima, Electroanalysis 2002, (14), 721-728
38. R. S. Nunes, É. T. G. Cavalheiro, J. Brazil. Chem. Soc. 2012, 23 670
39. S. Guo, Q. Zhu, B. Yang, J. Wang and B. Ye, Food Chem. 2011, 129, 1311
40. S. Y. Ly, Y. S. Jung, M. H. Kim, I. K. Han, W. W. Jung and H. S. Kim, Microchim. Acta 2004, 146, 2073
41. J. Zhang, L. P. Wang and W. Guo, Int. J. Environ. Sci. Technol. 2011, 6 , 997
42. B. J. Sanghavi, A. K. Srivastava, Electrochim. Acta. 2010, 55, 8638
43. J. M. Zen, Y. S. Ting, Anal. Chim. Acta. 1997, 342, 175
44. J. M. Zen, Y. S. Ting and Y. Shih, Analyst 1998, 123, 1145
45. S. Y. Ly, C. H. Lee, Y. S. Jung, O. M. Kwon, J. E. Lee, S. M. Baek and K. J. Kwak, Bull. Korean Chem. Soc. 2008, 29, 1742
46. S. Y. Ly, C. H. Lee and Y. S. Jung, Neuromol. Med. 2009, 11, 20
47. M. Aklilu, M. Tessema and M. Redi-Abshiro, Talanta 2008, 76, 742
48. R. N. Goyal, S. Bishnoi and B. Agrawal, J. Electroanal. Chem. 2011, 655, 97
49. G. A. M. Mersal, Food Anal. Methods 2012, 5, 520
50. M. Amare, S. Admassie, Talanta 2012, 93, 122
51. Z. Wang, Z. Li and S. Zhou, Chin. J. Anal. Chem. 2004, 32, 305
52. G. Sontag, K. Kral, Mikrochim. Acta 1979, 1, 229
53. O. W. Lau, S. F. Luk and Y. M. Cheung, Analyst 1989,114 , 1047
54. B. Brunetti, E. Desimoni and P. Casati, Electroanalysis 2007, 19, 385
55. Y. Wei, L. Zhang, C. Shao and C. Li, Chem. Anal. 2009, 54, 607
56. S. Yang, R. Yang, G. Li, L. Qu, J. Li and L. Yu, J. Electroanal. Chem. 2010, 639, 77
57. F. Zhao, F. Wang, W. Zhao, J. Zhou, J. Liu, L. Zou and B. Ye, Microchim. Acta 2011, 174, 383
58. J. Y. Sun, K. J. Huang, S. Y. Wei, Z. W. Wu and F. P. Ren, Colloids Surf. B 2011, 84, 421
59. J. Y. Sun, K. J. Huang and S. Y. Wei, Can. J. Chem. 2011, 89, 697
60. A. Câmpean, M. Tertis and R. Sandulescu, Cent. Eur. J. Chem. 2011, 9, 688
61. A. J. Jeevagan, S. A. John, Electrochim. Acta 2012, 77, 137
62. W. J. R. Santos, M. Santhiago, I. V. P. Yoshida and L. T. K. Kubota, Sens Actuators B 2012, 166-167, 739-745
63. X. Kan, T. Liu, C. Li, H. Zhou, Z. Xing and A. Zhu, J. Solid State Electrochem. 2012, 16, 3207
64. X. C. Lu, K. J. Huang, Z. W. Wu, S. F. Huang and C. X. Xu, Chin. J. Anal. Chem. 2012, 3, 452
65. X. Q. Xiong, K. J. Huang, C. X. Xu, C. X. Jin and Q. G. Zhai, Chemical Industry and Chemical Engineering Quarterly 2013, 19 (3), 359-368
66. T. Alizadeh, M. R. Ganjali, M. Zare and P. Norouzi, Electrochim. Acta 2010, 55, 1568.
67. B. Habibi, M. Abazari and M. H. Pournaghi-Azar, Chin. J. Catal. 2012, 33, 1783
68. E. O. Faria, A. C. V. L. Junior, D. E. P. Souto, F. R. F. Leite, F. S. Damos, R. C. S. Luz, A. S. dos Santos, D. L. Franco and W. T. P. dos Santos, Electroanalysis 2012, 24, 1141
69. Ľ. Švorc, P. Tomčík, J. Svítková, M. Rievaj and D. Bustin, Food Chem. 2012, 135, 1198
70. B. C. Lourenção, R. A. Medeiros, R. C. Rocha-Filho and O. Fatibello-Filho, Electroanalysis 2010, 22, 1717
71. B. C. Lourenção, R. A. Medeiros, R. C. Rocha-Filho, L. H. Mazo and O. Fatibello-Filho, Talanta 2009, 78, 748
72. C. A. Martínez-Huitle, N. S. Fernandes, S. Ferro, A. De Battisti and M. A. Quiroz, Diamond Relat. Mater. 2010, 19, 1188
73. A. Pizzariello, J. Švorc, M. Streďansky and S. Miertuš, J. Sci. Food. Agric. 1999, 79, 1136
74. .J. L. F. C. Lima, C. Delerue-Matos, H. P. A. Nouws and M. C. V. F. Vaz, Food Addit. Contam. 1998, 15, 265.
75. V. R. Sarath Babu, S. Patra, N. G. Karanth, M. A. Kumar and M. S. Thakur, Anal. Chim. Acta 2007, 582, 329-334
76. .E. Akyilmaz, M. Turemis, Electrochim. Acta 2010, 55, 5195.
77. Skoog, D. A.; Holler, F. J.; Crouch, S. R. Principles of instrumental analysis, 6th ed.; Thomson Brooks/Cole: Belmont, CA, 2007.
78. J. Woodward, “Praeparatio Caerulei Prussiaci ex Germania missa ad Johannem Woodward,“ Philos. Trans. R. Soc. 1724, 33, 15-17.
79. J.F. Keggin, F.D. Miles Nature 1936, 137, 577–578
80. R .A. Marcus, N. Sutin, Biochimica et Biophysica Acta, 1985, 811, 265
81. K. Itaya, T. Ataka, S. Toshima, J. Am. Chem. Soc. 1982, 104, 4767
82. K. Itaya, N. Shoji, I. Uchida, J. Am. Chem. Soc. 1984, 106, 3423
83. S. Dong, F. Li, J. Electrochem. Chem. 1986, 210, 31
84. M. S. Lin, W. C. Shih , Analytica chimica acta 1999, 381, 183-189
85. H Miyasaka, N Matsumoto, H Ōkawa, N. Re, J. Am. Chem. Soc. 1996, 118 (5), 981-994
86. J. Joseph, H. Gomathi, G. P. Rao, J. Electroanal. Chem., 1991,304,263
87. L. F. Schneemeyer, S. E. Spengler, D. W. Murphy, Inorg. Chem. 1985, 24, 3044-3046
88. R Garjonyte, A Malinauskas - Sensors and Actuators B: Chemical 1999, 56, 93-97
89. J Narang, N Chauhan, International Journal of Biological Macromolecules 2013, 60, 45-51
90. S. Dong, Z. Jin, J. Electrochem. Chem. 1988, 256, 193
91. S. Dong, Z. Jin, J. Electrochimica Acta 1989, 34, 963-968
92. L. G. Shaidarova, S. A. Ziganshina, L. N. Tikhonova, and G. K. Budnikov, Journal of Analytical Chemistry, 2003, 58, 1144–1150
93. S. M. Chen, S. H. Hsueh, Journal of Electroanalytical Chemistry 2004, 566, 291-303
94. RC Peña, VO Silva, FH Quina, M Bertotti, Journal of Electroanalytical Chemistry 2012, 686, 1-6
95. RK Shervedani, HA Alinajafi-Najafabadi, International Journal of Electrochemistry 2011, Article ID 603135, 11
96. I. A. R. B. Dias W. M. Costa P. Cervini E. T. G. Cavalheiro A. L. B. Marques, Electroanalysis 2016, 28, 2136-2142
97. W. M. Costa, W. S. Cardoso, E. P. Marques, J. Braz. Chem. Soc. 2013, 24, 651-656
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2019-07-16公開。
  • 同意授權瀏覽/列印電子全文服務,於2019-07-16起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信