淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-1507201411353900
中文論文名稱 Bacillus cereus TKU034所生產之幾丁聚醣酶的純化與應用
英文論文名稱 Purification and application of a chitosanase from Bacillus cereus TKU034
校院名稱 淡江大學
系所名稱(中) 化學學系碩士班
系所名稱(英) Department of Chemistry
學年度 102
學期 2
出版年 103
研究生中文姓名 駱柏蒼
研究生英文姓名 Bo-Chang Lo
電子信箱 edward01162002@yahoo.com.tw
學號 601180184
學位類別 碩士
語文別 中文
第二語文別 英文
口試日期 2014-07-03
論文頁數 105頁
口試委員 指導教授-王三郎
委員-王三郎
委員-王全祿
委員-梁慈雯
中文關鍵字 Bacillus cereus  幾丁聚醣酶  烏賊軟骨 
英文關鍵字 Bacillus cereus  chitosanase  squid pen 
學科別分類 學科別自然科學化學
中文摘要 菌株Bacillus cereus TKU034係篩選自新北市三芝山區土壤之幾丁聚醣酶及蛋白酶生產菌,以含有1%烏賊軟骨粉、0.1% K2HPO4、0.05% MgSO4.7H2O之100mL液態培養基,於37°C中搖瓶(150 rpm)培養4天可得較高幾丁聚醣酶活性(0.68U)。
依較佳培養條件培養所得之發酵液,經離心、硫酸銨沉澱、DEAE-Sepharose及 Macro-PrepR DEAE Cartridge陰離子交換層析等步驟,以高純化度(441倍)以及高活性回收率(50.9%),純化出經SDS PAGE電泳測得分子量約為43 kDa之一種幾丁聚醣酶。此幾丁聚醣酶的最適反應pH為7、pH安定性為5~7.5 、最適反應溫度為50°C、於50°C以下皆具熱安定性,其活性會受到Fe2+、Ca2+、Cu2+、Zn2+、Mn2+及EDTA所抑制。
TKU034之發酵上清液或水解WSC之水解上清液具有DPPH自由基清除能力及亞鐵離子螯合能力,且其發酵上清液對格蘭氏陽性菌S. aureus及B. subtilis之生長具有抑制之效果。色素吸附方面,烏賊軟骨粉經過TKU034發酵後對於食用色素之吸附效果提高10%左右,對於分散染料則提高約40%,且吸附後之染料不易再被脫附之性質對於汙水處理方面有著潛力。
英文摘要 The chitosanase and protease producing strain, TKU034, was isolated from the soil in Sanzhi, Taiwan with squid pen powder (spp) as the sole carbon/nitrogen source and identified as Bacillus cereus.The optimized culture conditions for chitosanase production by B. cereus TKU034 was found when the organism was cultured at 37°C with 150 rpm for 4 days in 100 mL of medium containing 1% SPP、0.1% K2HPO4 and 0.05% MgSO4.7H2O.
The chitosanase (CHS) with 441-fold of purifying rate and 50.9% of activity yield was purified from the culture supernatant of B. cereus TKU034 by ammonium sulfate precipitation, DEAE-Sepharose and Macro-PrepR DEAE Cartridge chromatography. The molecular mass of CHS determined by SDS-PAGE was approximately to be 43 kDa. The optimum pH, pH stability , optimum temperature and thermal stability of CHS was pH 7, pH 5-7.5, 50°C, <50°C. The CHS was inhibited by Fe2+、Ca2+、Cu2+、Zn2+、Mn2+ and EDTA.
The antioxidation activities of culture supernatant of B. cereus TKU034 and hydrolyzates of water soluble chitosan were measured with DPPH radical scavenging capacity and ferrous ion chelating ability.The culture supernatant has inhibitory effect against S. aureus and B. subtilis TKU007.The pigments adsorption capacity of fermented SPP was better than that of unfermented SPP.
論文目次 目錄

中文摘要..................................................Ⅰ
中文摘要..................................................Ⅱ
目錄......................................................Ⅲ
圖目錄....................................................Ⅷ
表目錄....................................................Ⅺ

第一章 緒論................................................1
第二章 文獻回顧............................................3
2.1實驗菌種Bacillus cereus之簡介.........................3
2.2幾丁質及幾丁聚醣......................................4
2.3幾丁質酶及幾丁聚醣酶..................................9
2.4 N-乙醯幾丁寡醣及幾丁寡醣............................10
2.5蛋白酶...............................................11
2.6幾丁類物質吸附色素...................................11
第三章 材料與方法.........................................13
3.1 實驗菌株............................................13
3.2實驗材料.............................................13
3.3實驗儀器.............................................15
3.4實驗菌株之篩選.......................................16
3.5實驗菌株之生長曲線測定...............................16
3.6酵素活性之測定.......................................17
3.6.1幾丁聚醣酶之活性測定 ............................17
3.6.2懸浮態幾丁質之製備...............................17
3.6.3幾丁質酶之活性測定...............................18
3.6.4幾丁藍之活性測定.................................18
3.6.5蛋白酶之活性測定.................................19
3.7 幾丁聚醣酶及蛋白酶較適生產條件探討..................19
3.7.1 培養體積............................................19
3.7.2 碳/氮源種類及濃度...............................20
3.8 幾丁聚醣酶之分離純化................................20
3.8.1 粗酵素液之製備..................................20
3.8.2 陰離子交換層析(一)..............................20
3.8.3 陰離子交換層析(二) .............................21
3.9 蛋白質電泳分析......................................21
3.10 酵素之特性分析.....................................22
3.10.1 酵素最適反應溫度...............................22
3.10.2 酵素熱安定性...................................22
3.10.3 酵素最適反應pH.................................23
3.10.4 酵素pH安定性...................................23
3.10.5 金屬離子及化學藥品對酵素活性之影響.............23
3.10.6 界面活性劑對酵素活性之影響.....................24
3.10.7 酵素之基質特異性...............................24
3.11 幾丁聚醣酶水解基質及寡醣分析.......................25
3.11.1 基質水解.......................................25
3.11.2 還原糖量之測定.................................25
3.11.3 總糖量之測定...................................26
3.11.4 N-乙醯幾丁寡醣製備.............................26
3.11.5幾丁寡醣之組成分析..............................26
3.11.6 MALDI-TOF-MS分析寡醣...........................27
3.12 抗氧化活性測定.....................................27
3.12.1 DPPH自由基清除能力之測定.......................27
3.12.2 還原力之測定...................................28
3.12.3 酚類化合物之定量分析...........................29
3.12.4鐵離子螯合能力之測定............................29
3.13 抗菌試驗...........................................30
3.14 幾丁類物質對色素之影響.............................30
3.14.1 色素吸附.......................................30
3.14.2 色素脫附.......................................31
第四章 結果與討論.........................................32
4.1幾丁聚醣酶與蛋白酶生產菌之篩選與鑑定.................32
4.2 實驗菌株之生長曲線測定..............................34
4.3酵素較適生產條件探討.................................35
4.3.1 較適培養液體積..................................35
4.3.2 較適碳/氮源種類及濃度...........................35
4.3.3較適培養條件結果與比較...........................38
4.4 幾丁聚醣酶之分離純化................................42
4.4.1 粗酵素液之製備..................................42
4.4.2離子交換樹脂層析(一).............................44
4.4.3離子交換樹脂層析(二).............................46
4.4.4分離純化之綜合結果...............................48
4.5 幾丁聚醣酶分子量之測定與鑑定........................53
4.5.1 SDS-PAGE........................................53
4.5.2 幾丁聚醣酶胜肽質譜鑑定..........................53
4.6 幾丁聚醣酶之特性分析................................56
4.6.1 最適反應溫度及熱安定性..........................56
4.6.2 最適pH及pH安定性................................57
4.6.3 金屬離子及化學藥品對幾丁聚醣酶活性之影響........59
4.6.4 界面活性劑對幾丁聚醣酶活性之影響................59
4.6.5 幾丁聚醣酶之基質特異性..........................62
4.6.6基質特異性之比較.................................62
4.6.7綜合比較.........................................62
4.7 水解基質之探討......................................70
4.7.1 還原糖及總糖含量之分析..........................70
4.7.2 HPLC進行幾丁寡醣之組成分析......................72
4.7.3 MALDI-TOF-MS進行幾丁寡醣之組成分析..............75
4.8 抗氧化活性測定......................................81
4.8.1 DPPH自由基清除能力之測定........................81
4.8.2還原力之測定.....................................82
4.8.3 酚類化合物之定量分析............................83
4.8.4 鐵離子螯合能力之測定............................84
4.9 抗菌試驗............................................85
4.10幾丁類物質對色素之影響..............................87
4.10.1 色素吸附.......................................87
4.10.2 色素脫附.......................................90
第五章 結論...............................................93
第六章 參考文獻...........................................95


圖目錄

圖2.1 α-chitin與β-chitin 之結構..........................5
圖2.2 幾丁質、幾丁聚醣及纖維素之結構.......................7
圖4.1 Bacillus cereus TKU034之顯微鏡照片..................32
圖4.2 B. cereus TKU034之16S rDNA部分鹼基序列及API試驗分析結果........................................................33
圖4.3 B. cereus TKU034之生長曲線及幾丁聚醣酶活性..........34
圖4.4 培養液體積對B. cereus TKU034生產幾丁聚醣酶及蛋白酶之影響........................................................36
圖4.5 不同碳/氮源對B. cereus TKU034生產幾丁聚醣酶與蛋白酶之影響......................................................37
圖4.6 B. cereus TKU034所生產酵素之純化流程圖..............43
圖4.7 B. cereus TKU034 幾丁聚醣酶之DEAE-Sepharose CL-6B層析圖譜......................................................45
圖4.8 B. cereus TKU034 幾丁聚醣酶之Macro-PrepR DEAE Cartridge層析圖譜.........................................47
圖4.9 B. cereus TKU034幾丁聚醣酶之純化SDS-PAGE圖..........54
圖4.10 幾丁聚醣酶之最適反應溫度及熱安定性.................56
圖4.11 幾丁聚醣酶之最適pH值(A)及pH安定性(B)...............58
圖4.12水溶性幾丁聚醣經B. cereus TKU034 粗酵素液水解不同時間所得總糖及還原醣含量......................................71
圖4.13 WSC經B. cereus TKU034粗酵素液水解不同時間所得幾丁聚寡醣之HPLC分析圖............................................73
圖4.14 WSC經B. cereus TKU034粗酵素液水解不同時間所得幾丁聚寡醣之HPLC分析圖............................................74
圖4.15水溶性幾丁聚醣經B. cereus TKU034粗酵素液水解不同時間之MALDI-TOF-MS幾丁寡醣組成分析圖............................76
圖4.16 水溶性幾丁聚醣經B. cereus TKU034粗酵素液水解不同時間之MALDI-TOF-MS幾丁寡醣組成分析圖..........................77
圖4.17水溶性幾丁聚醣經B. cereus TKU034粗酵素液水解不同時間之MALDI-TOF-MS幾丁寡醣組成分析圖............................78
圖4.18 水溶性幾丁聚醣經B. cereus TKU034粗酵素液水解不同時間之MALDI-TOF-MS幾丁寡醣組成分析圖..........................79
圖4.19發酵上清液及水解上清液之DPPH自由基清除能力..........81
圖4.20發酵上清液及水解上清液之還原力測定..................82
圖4.21發酵上清液及水解上清液之酚類化合物定量分析..........83
圖4.22發酵上清液及水解上清液之鐵離子螯合能力..............84
圖4.23發酵及未發酵烏賊軟骨粉對於食用色素之吸附率..........88
圖4.24發酵及未發酵烏賊軟骨粉對於分散染料之吸附率..........89
圖4.25以不同溶液對SPP粉脫附食用色素R40效果之比較..........90
圖4.26發酵及未發酵烏賊軟骨粉對於分散染料之脫附率..........91
圖4.27發酵及未發酵烏賊軟骨粉對於分散染料之脫附率..........92


表目錄

表2.1蝦蟹殼與烏賊軟骨粉組成成份比較........................6
表2.2 幾丁質與幾丁聚醣之應用...............................8
表3.1 DNS試劑組成.........................................25
表4.1 B. cereus TKU034 酵素生產之較適培養條件.............38
表4.2以含幾丁質水產廢棄物為唯一碳/氮源之幾丁聚醣酶/幾丁質酶/蛋白酶酶生產菌之較適培養條件比較..........................39
表4.3上清液及硫酸銨沉澱後之幾丁聚醣酶及蛋白酶之活性比較...42
表4.4 B. cereus TKU034幾丁聚醣酶之純化總表................49
表4.5 B. cereus TKU034與其它幾丁聚醣酶生產菌純化總表之比較........................................................50
表4.6 B. cereus TKU034幾丁聚醣酶胜肽質譜鑑定結果..........55
表4.7金屬離子及化學品對B. cereus TKU034所產之幾丁聚醣酶之影響........................................................60
表4.8界面活性劑對B. cereus TKU034所產之幾丁聚醣酶之影響...61
表4.9 B. cereus TKU034所產之幾丁聚醣酶之基質特異性........63
表4.10基質特異性之比較....................................64
表4.11 微生物來源之幾丁聚醣酶、幾丁質酶及蛋白酶之特性比較.65
表4.12水溶性幾丁聚醣經B. cereus TKU034粗酵素液水解不同時間之MALDI-TOF-MS 幾丁寡醣組成分析.............................80
表4.13發酵上清液對Staphylococcus aureus、Bacillus subtilis TKU007、Escherichia. coli及Pseudomonas aeruginosa K187生長之影響......................................................86
參考文獻 黃稚婷 (2014) Bacillus cereus TKU033 所生產幾丁聚醣酶之純化及其應用。私立淡江大學化學所碩士論文。第51-62頁。

Aam BB, Heggset EB, Norberg AL, Sorlie M, Varum KM, Eijsink VGH (2010) Production of chitooligosaccharides and their potential applications in medicine. Marine Drugs, 8:1482-1517

Aiba S (1994) Preparation of N-acetylchitooligosaccharides by hydrolysis of chitosan with chitinase followed by N-acetylation. Carbohydrate Research, 256:323-328

Alves SP, Brum DM, Branco de Andrade EC, and Pereira Netto AD (2008) Determination of synthetic dyes in selected foodstuffs by high performance liquid chromatography with UV-DAD detection. Food Chemistry, 107: 489-496

Arslan S, Eyi A, Kucuksari R (2014) Toxigenic genes, spoilage potential, and antimicrobial resistance of Bacillus cereus group strains from ice cream. Anaerobe, 25:42-46

Bernfeld P (1955) Amylase, α and β. Methods of Enzymology, 1:149-158

Cabib E, Bowers B, Sburlati A, Silverman SJ (1988) Fungal cell wall synthesis: The construction of a biological structure. Microbiological Science, 5:370-375

Chang WT, Chen YC, Jao CL (2007) Antifungal activity and enhancement of plant growth by Bacillus cereus grown on shellfish chitin wastes. Bioresource Technology, 98:1224-1230

Chheda AH, Vernekar MR (2014) Improved production of natural food preservative ε-poly-L-lysine using a novel producer Bacillus cereus. Food Bioscience, 7:56-63

Chiang CL, Chang CT, and Sung HY (2003) Purification and properties of chitosanase from a mutant of Bacillus subtilis IMR-NK1. Enzyme and Microbial Technology, 32:260-267

Choi YJ, Kim EJ, Piao Z, Yun YC, and Shin YC (2004) Purification and characterization of chitosanase from Bacillus sp. strain KCTC 0377BP and its application for the production of chitosan oligosaccharides. Applied and Environmental Microbiology, 70:4522-4531

Combesb RD, Haveland-Smitha RB (1982) A review of the genotoxicity of food, drug and cosmetic colours and other azo, triphenylmethane and xanthene dyes. Mutation Research/Reviews in Genetic Toxicology, 98:101-243

Dolphen R, Sakkayawong N, Thiravetyan P, Nakbanpote W (2007) Adsorption of Reactive Red 141 from wastewater onto modified chitin. Journal of Hazardous Materials, 145:250-255

Dubois M, Gills KA, Hamilton JK, Rebers PA, Smith F (1956) colorimetric method for determination of sugar and related substances.
Analytical Chemistry, 28:350-356

Fitches E, Wilkinson H, Bell H, Bown DP, Gatehouse JA, and Edwards JP (2004) Cloning expression and functional characterization of chitinase from larvae of tomato moth (Lacanobia oleracea) : a demonstration of the insecticidal activity of insect chitinase. Insect Biochemistry and Molecular Biology, 34:1037-1050

Franca EF, Lins RD, Freitas LC, and Straatsma TP (2008) Characterization of chitin and chitosan molecular structure in aqueous solution. Journal of Chemical Theory and Computation, 4:2141-2149

Gao XA, Ju WT, Jung WJ, and Park RD (2008) Purification and characterization of chitosanase from Bacillus cereus D-11. Carbohydrate Polymers, 72:513-520

Ge L, Zhang H, Chen K, Ma L, and Xu Z (2010) Effect of chitin on the antagonistic activity of Rhodotorula glutinis against Botrytis cinerea in strawberries and the possible mechanisms involved. Food Chemistry, 120:490-495

Ghaouth AE, Arul J, Grenier J, and Asselin A (1992) Effect of chitosan and other polyions on chitin deacetylase in Rhizopus stolonifer. Experimental Mycology, 16:173-177

Gupta R, Beg QK, Lorenz P (2002) Bacterial alkaline proteases: molecular approaches and industrial applications. Applied Microbiology and Biotechnology, 59:15-32

Harish Prashanth KV and Tharanathan RN (2007) Chitin/chitosan: modifications and their unlimited application potential-an overview. Trends in Food Science & Technology, 18:117-131

Hirano S (1999) Chitin and chitosan as novel biotechnological materials. Polymer International, 48:732-734

Imoto T and Yagishita K (1971) A simple activity measurement by lysozyme. Agricultural and Biological Chemistry, 35:1154-1156

Jiang X, Chen D, Chen L, Yang G, Zou S (2012) Purification, characterization, and action mode of a chitosanase from Streptomyces roseolus induced by chitin. Carbohydrate Research, 355:40-44

Kendra DF, Hadwiger LA (1984) Characterization of the smallest chitosan oligomer that is maximally antifungal to Fusarium solani and elicits pisatin formation in Pisum sativum. Experimental Mycology, 8:276-281

Kim HB and An CS (2002) Differential expression patterns of an acidic
chitinase and a basic chitinase in the root nodule of Elaeagnus
umbellate. Molecular Plant-Microbe Interactions, 15:209-215

Kong CS, Kim JA, Ahn B, Byun HG, and Kim SK (2010) Carboxymethylations of chitosan and chitin inhibit MMP expression and ROS scavenging in human fibrosarcoma cells. Process Biochemistry, 45:179-186

Kurita K (2006) Chitin and chitosan: Functional biopolymers from marine crustaceans. Marine Biotechnology, 8:203-226

Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227:680-685

Lee YS, Park I H, Yoo JS, Chung SY, Lee YC, Cho YS, Ahn SC, Kim CM, and Choi YL (2007) Cloning, purification, and characterization of chitinase from Bacillus sp. DAU101. Bioresource Technology, 98:2734-2741

Lei H, Zhao H, Zhao M (2013) Proteases supplementation to high gravity worts enhances fermentation performance of brewer’s yeast. Biochemical Engineering Journal 77:1-6

Liang TW, Chen YY, Pan PS, Wang SL (2014) Purification of chitinase/chitosanase from Bacillus cereus and discovery of an enzyme inhibitor. International Journal of Biological Macromolecules, 63:8-14

Liang TW, Hsieh JL, Wang SL (2012) Production and purification of a protease, a chitosanase, and chitinoligosaccharides by Bacillus cereus TKU022 fermentation. Carbohydrate Research, 362:38-46

Liang TW, Kuo YH, Wu PC, Wang CL, Dzung NA, and Wang SL (2010) Purification and characterization of a chitosanase and a protease by conversion of shrimp shell wastes fermented by Serratia Marcescens subsp. sakuensis TKU019. Journal of the Chinese Chemical Society, 57:857-863

Liang TW, Liu CP, Wu C, Wang SL (2013) Applied development of crude enzyme from Bacillus cereus in prebiotics and microbial community changes in soil. Carbohydrate Polymers, 92:2141-2148

Liu CL, Lan CY, Fu CC, Juang RS (2014) Production of hexaoligochitin from colloidal chitin using a chitinasefrom Aeromonas schubertii. International Journal of Biological Macromolecules, 69:59-63

Liu CL, Lin TH, Juang RS (2013) Optimization of recombinant hexaoligochitin-producing chitinaseproduction with response surface methodology. International Journal of Biological Macromolecules, 62:518-522

Liu N, Chen X-G, Park H-Jb, Liu C-G, Liu C-S, Meng X-H, Yu L-J (2006) Effect of MW and concentration of chitosan on antibacterial activity of Escherichia coli. Carbohydrate Polymers, 64:60-65

Liu YL, Jiang S, Ke ZM, Wu HS, Chi CW, Guo ZY (2009) Recombinant expression of a chitosanase and its application in chitosan oligosaccharide production. Carbohydrate Research, 344:815-819

Lin YW, Hsiao YC, Chiang BH (2009) Production of high degree polymerized chitooligosaccharides in a membrane reactor using purified chitosanase from Bacillus cereus. Food Research International, 42:1355-1361

McCann D, Barrett A, Cooper A, Crumpler D, Dalen L, Grimshaw K, Kitchin E, and Stevenson J (2007) Food additives and hyperactive behaviour in 3-year-old and 8/9-year-old children in the community: a randomised, double-blinded, placebo-controlled trial. The Lancet, 370: 1560-1567

Mellegard H, Strand SP, Christensen BE, Granum PE, Hardy SP (2011) Antibacterial activity of chemically defined chitosans: Influence of molecular weight, degree of acetylation and test organism. International Journal of Food Microbiology, 148:48-54

Merzendorfer H (2011) The cellular basis of chitin synthesis in fungi and insects: Common principles and differences. European Journal of Cell Biology, 90:759-769

Mikkelsen H, Larsen JC, Tarding F (1978) Hypersensitivity reactions to food colours with special reference to the natural colour annatto extract (butter colour). Archives of Toxicology, 1:141-143

Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31:426-428

NavinChandran M, Iyapparaj P, Moovendhan S, Ramasubburayan R, Prakash S, Immanuel G, Palavesam A (2014) Influence of probiotic bacterium Bacillus cereus isolated from the gut of wild shrimp Penaeus monodon in turn as a potent growth promoter and immune enhancer in P. monodon. Fish & Shellfish Immunology, 36:38-45

Nguyen AD, Huang CC, Liang TW, Nguyen VB, Pan PS, Wang SL (2014) Production and purification of a fungal chitosanase and chitooligomers from Penicillium janthinellum D4 and discovery of theenzyme activators. Carbohydrate Polymers, 108:331-337

Nilegaonkar SS, Zambare VP, Kanekar PP, Dhakephalkar PK, Sarnaik SS (2007) Production and partial characterization of dehairing protease from Bacillus cereus MCM B-326, Bioresource Technology 98:1238-1245

Patil NS, Waghmare SR, Jadhav JP (2013) Purification and characterization of an extracellular antifungal chitinase from Penicillium ochrochloron MTCC 517 and its application in protoplast formation. Process Biochemistry, 48:176-183

Pleban S, Chernin L, Chet I (1997) Chitinolytic activity of an endophytic strain of Bacillus cereus. Letters in Applied Microbiology, 25:284-288

Pradeep GC, Choi YH, Choi YS, Suh SE, Seong JH, Cho SS, Bae M-S, Yoo JC (2014) An extremely alkaline novel chitinase from Streptomyces sp. CS495. Process Biochemistry, 49:223-229

Raval VH, Pillai S, Rawal CM, Singh SP (2014) Biochemical and structural characterization of a detergent-stableserine alkaline protease from seawater haloalkaliphilic bacteria. Process Biochemistry, 49:955-962
Ravi Kumar MNV (2000) A review of chitin and chitosan applications. Reactive and Functional Polymer, 46:1-27

Rinaudo M (2006) Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31:603-632

Saima, Kuddus M, Roohi, Ahmad IZ (2013) Isolation of novel chitinolytic bacteria and production optimization of extracellular chitinase. Journal of Genetic Engineering and Biotechnology, 11:39-46

Sakai K, Yokota A, Kurokawa H, Wakayama M, and Moriguchi M (1998) Purification and characterization of three thermostable endochitinases of a noble Bacillus strain, MH-1, isolated from chitin-containing compost. Applied and Environmental Microbiology, 64:3397-3402

Seo DJ, Lee JH, Song YS, Park RD, Jung WJ (2014) Expression patterns of chitinase and chitosanase produced from Bacillus cereus in suppression of phytopathogen. Microbial Pathogenesis, 73:31-36

Shahidi F, Arachchi JKV, JeonY-J (1999) Food applications of chitin and chitosans. Trends in Food Science & Technology 10:37-51

Sharma OP,Bhat TK (2009) DPPH antioxidant assay revisited. Food Chemistry, 113:1202-1205

Shen CR, Chen YS, Yang CJ, Chen JK, Liu CL (2010) Colloid chitin azure is a dispersible, low-cost substrate for chitinase measurements in a sensitive, fast, reproducible assay. Journal of Biomolecular Screening, 15:213-217

Sini TK, Santhosh S, Mathew PT (2007) Study on the production of chitin and chitosan from shrimp shell by using Bacillus subtilis fermentation. Carbohydrate Research, 342:2423-2429

Su C, Wang D, Yao L, Yu Z (2006) Purification, characterization, and gene cloning of a chitosanase from Bacillus species strain S65. Journal of Agricultural and Food Chemistry, 54:4208-4214

Sundararajan S, Kannan CN,Chittibabu S (2011) Alkaline protease from Bacillus cereus VITSN04: Potential application as a dehairing agent. Journal of Bioscience and Bioengineering, 111:128-133

Sun Y, Liu W, Han B, Zhang J, Liu B (2006) Purification and characterization of two types of chitosanase from a Microbacterium sp.Biotechnology Letters, 28:1393-1399

Suzuki K, Mikami T, Okawa Y, Tokoro A, Suzuki S, and Suzuki M (1986) Antitumor effect of hexa-N-acetylchitohexaose and chitohexaose. Carbohydrate Research, 151:403-408

Tokoro A, Tatewaki N, Suzuki K, Mikami T, Suzuki S, Suzuki M (1988) Growth-inhibitory effect of hexa-N-acetylchitohexaose and chitohexaose against Meth-A solid tumor. Chemical & Pharmaceutical Bulletin, 36:784-90

Todd EW (1949) Quantitative studies on the total plasmin and the trypsin inhibitor of human blood serum. Journal of Experimental Medicine, 39:295-308

Vaz M, Hogg T, Couto JA (2012) The antimicrobial effect of wine on Bacillus cereus in simulated gastro-intestinal conditions. Food Control, 28:230-236

Wang CL, Su JW, Liang TW, Nguyen AD, Wang SL (2014) Production, purification and characterisation of a chitosanase from Bacillus cereus.Research on Chemical Intermediates, 40:2237-2248

Wang J, Zhou W, Yuan H, Wang Y (2008) Characterization of a novel fungal chitosanase Csn2 from Gongronella sp. JG. Carbohydrate Research, 343:2583-2588

Wang SL, Kao TY, Wang CL, Yen YH, Chern MK, Chen YH (2006) A solvent stable metalloprotease produced by Bacillus sp. TKU004 and its application in the deproteinization of squid pen for β-chitin preparation. Enzyme and Microbial Technology, 39:724-731

Wang SL, Chen SJ, and Wang CL (2008a) Purification and characterization of chitinases and chitosanases from a new species strain Pseudomonas sp. TKU015 using shrimp shells as a substrate. Carbohydrate Research, 343:1171-1179

Wang SL, Peng JH, Liang TW, Liu KC (2008b) Purification and characterization of a chitosanase from Serratia marcescens TKU011. Carbohydrate Research, 343:1316-1323

Wang SL and Yeh PY (2008c) Purification and characterization of a chitosanase from a nattokinase producing strain Bacillus subtilis TKU007. Process Biochemistry, 43: 132-138

Wang SL, Chao CH, Liang TW, and Chen CC (2009a) Purification and characterization of protease and chitinase from Bacillus cereus TKU006 and conversion of marine wastes by these enzymes. Marine Biotechnology, 11:334-344

Wang SL, Chen TR, Liang TW, and Wu PC (2009b) Conversion and degradation of shellfish wastes by Bacillus cereus TKU018 fermentation for the production of chitosanases and bioactive materials. Biochemical Engineering Journal, 48:111-117

Wang SL, Liou JY, Liang TW, and Liu KC (2009c) Conversion of squid pen by using Serratia sp. TKU020 fermentation for the production of enzymes, antioxidants, and N-acetyl chitooligosaccharides. Process Biochemistry, 44:854-861

Wang SL, Chang TJ, and Liang TW (2010a) Conversion and degradation of shellfish wastes by Serratia sp. TKU016 fermentation for the production of enzymes and bioactive materials. Biodegradation, 21:321-333

Wang SL, Li JY, Liang TW, Hsieh JL, and Tseng WN (2010b) Conversion of shrimp shell by using Serratia sp. TKU017 fermentation for the production of enzymes and antioxidants. Journal of Microbiology and Biotechnology, 20:117-126

Wang SL, Lin BS, Liang TW, Wang CL, Wu PC, and Liu JR (2010c) Purification and characterization of chitinase from a new species strain, Pseudomonas sp. TKU008. Journal of Microbiology and Biotechnology, 20:1001-1005

Wang SL, Tseng WN, and Liang TW (2011) Biodegradation of shellfish wastes and production of chitosanases by a squid pen-assimilating bacterium, Acinetobacter calcoaceticus TKU024. Biodegradation, 22: 939-948

Wang SL, Liu CP, Liang TW (2012) Fermented and enzymatic production of chitin/chitosan oligosaccharides by extracellular chitinases from Bacillus cereus TKU027. Carbohydrate Polymers, 90: 1305-1313

Wan Ngah WS, Ariff NFM, Hanafiah MAKM (2010) Preparation, characterization, and environmental application of crosslinked chitosan-coated bentonite for tartrazine adsorption from aqueous solutions. Water, Air, and Soil Pollution, 206:225-236

Wu SJ, Pan SK, Wang HB, Wu JH (2013) Preparation of chitooligosaccharides from cicada slough and their antibacterial activity.
International Journal of Biological Macromolecules, 62:348-351

Wu Y, Wang Y, Luo G, and Dai Y (2009) In situ preparation of magnetic Fe3O4-chitosan nanoparticles for lipase immobilization by cross-linking and oxidation in aqueous solution. Bioresource Technology, 100:3459-3464

Yen MT, Yang JH, and Mau JL (2009) Physicochemical characterization of chitin and chitosan from crab shells. Carbohydrate Polymers, 75: 15-21

Zhang CM, Yu SH, Zhang LS, Zhao ZY, Dong LL (2014) Effects of several acetylated chitooligosaccharides on antioxidation, antiglycation
and NO generation in erythrocyte. Bioorganic & Medicinal Chemistry Letters, In Press.

Zhou W, Yuan H, Wang J, Yao J (2008) Production, purification and characterization of chitosanase produced by Gongronella sp. JG. Letters in Applied Microbiology, 46:49-54

Zhu XF, Wu XY, Dai Y (2003) Fermentation conditions and properties of a chitosanase from Acinetobacter sp. C-17. Bioscience, Biotechnology, and Biochemistry, 67:284-90
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2019-07-28公開。
  • 同意授權瀏覽/列印電子全文服務,於2019-07-28起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信