淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1507201310433900
中文論文名稱 含有不良品並且不完美檢驗的兩個倉庫存貨模型
英文論文名稱 The inventory models for two warehouses with defective items and imperfect inspection
校院名稱 淡江大學
系所名稱(中) 管理科學學系碩士班
系所名稱(英) Master’s Program, Department of Management Sciences
學年度 101
學期 2
出版年 102
研究生中文姓名 陳昶宏
研究生英文姓名 Chang-Hung Chen
學號 600620313
學位類別 碩士
語文別 中文
口試日期 2013-06-24
論文頁數 48頁
口試委員 指導教授-歐陽良裕
委員-和家慧
委員-婁國仁
中文關鍵字 存貨  兩個倉庫  不良品  檢驗錯誤  延遲付款 
英文關鍵字 Inventory  Two warehouses  Defective items  Inspection error  Delay in payments 
學科別分類
中文摘要 由於全球企業競爭激烈與經營型態的改變,有效的存貨管理已成為企業的重要課題。過去相關研究通常假設零售商有一個無容量限制的倉庫,但實務上,零售商可能為了取得更優惠的價格,訂購超出自有倉庫所能容納的貨品數量,此時必須向外租用倉庫存放多出的貨品。
此外,由於製造商生產過程不完備或運送過程不小心等因素,致使零售商收到的貨品中含有部分的不良品,零售商為維持良好聲譽,會在出貨前對貨品進行檢驗,以降低消費者收到不良品的機率。但零售商的檢驗過程未必完善,可能會出現誤判的情況:將良品誤判為不良品 (稱為型 檢驗錯誤)與將不良品誤判為良品 (稱為型 檢驗錯誤)。
本研究主要探討兩個存貨模型,第二章探討零售商租用外租倉庫並且對貨品檢驗時發生錯誤的情況。第三章為延續第二章的研究,另外加入製造商提供延遲付款的優惠。對第二和第三章所建立的存貨模型,均以單位時間總利潤函數最大化為目標,其目的在於決定零售商的最適訂購量。最後舉數值範例說明求解過程,並進一步做敏感度分析,以瞭解參數值變動對最適訂購量的影響。

英文摘要 Nowadays, inventory management is an important issue for companies in a competitive market. In past, inventory model run on the assumption that retailer owns a single warehouse without capacity limitation. To get the better price, retailer will order larger quantity, due to the limited capacity of the own warehouse, one extra warehouse must be required.
Besides, the machine deteriorate or delivery process careless, it might cause defective products. To maintain the reputation, the retailer would inspection these products before sale. However, the inspection process might be imperfect, it include type inspection error and type inspection error.
This thesis develops two retailer’s inventory models. In chapter 2, retailer includes type inspection error and type inspection error in two warehouses inventory model. In chapter 3, we continuous before chapter model and add permissible delay in payments. The goal of thesis inventory models are maximize the total profit per unit time. The target decides the optimal order quantity. Finally, numerical examples are presented to demonstrate the proposed models and solution procedure. The sensitivity analysis is conducted to illustrate the effect of the change of the parameter values on the optimum solution.
論文目次 目 錄
頁次
目 錄 I
圖 目 錄 III
表 目 錄 IV

第一章 緒論 1
1.1研究目的與動機 1
1.2 文獻探討 2
1.2.1兩個倉庫 2
1.2.2產品檢驗 3
1.2.3 延遲付款 5
1.3 研究架構 6
第二章 含有不良品且有不完美檢驗的兩個倉庫存貨模型 7
2.1前言 7
2.2符號與假設 8
2.3模型建立 11
2.4模型求解 17
2.5數值範例 18
2.6 小結 21
第三章 延遲付款下含有不良品且不完美檢驗的兩個倉庫存貨模型 22
3.1前言 22
3.2符號與假設 23
3.3模型建立 23
3.4模型求解 30
3.5數值範例 35
3.6小結 38
第四章 結論 39
4.1主要研究成果 39
4.2未來研究方向 40
參考文獻 42

圖 目 錄
圖2.1貨品全部檢驗完畢時間是在外租倉庫貨品售完之前( ) 13
圖2.2貨品全部檢驗完畢時間是在外租倉庫貨品售完之後( ) 15
圖3.1當 零售商利息賺得的累積量 26
圖3.2當 零售商利息賺得與資金積壓成本的累積量 27

表 目 錄
表2.1 零售商對外租倉庫貨品檢驗的結果 10
表2.2 零售商對自有倉庫貨品檢驗的結果 11
表2.3 型 檢驗錯誤 值的敏感度分析 18
表2.4 型 檢驗錯誤 值的敏感度分析 19
表2.5 不良率p值的敏感度分析 20
表2.6 趨勢因子 值的敏感度分析 21
表3.1型 檢驗錯誤比例 值的敏感度分析 36
表3.2型 檢驗錯誤比例 值的敏感度分析 37
表3.3不良率p值的敏感度分析 37
參考文獻 [1] Agrawai, S., Banerjee, S. and Papachristos, S. (2013). Inventory model with deteriorating items, ramp-type demand and partially backlogged shortages for a two warehouse system. Applied Mathematical Modelling. http://dx.doi.org/10.1016/j.apm2013.04.026.
[2] Ben, D. M. and Norman, S. M. (2008). Integrated inventory and inspection policies for stochastic demand. European Journal of Operation Research, 185(1), 159-169.
[3] Bhowmick, J. and Samanta, G. P. (2012). Optimal inventory policies for imperfect inventory with price dependent stochastic demand and partially backlogged shortage. Yugoslav Journal of Operational Research, 22(2). 199-223.
[4] Bhunia, A. K. and Maiti, M. (1998). A two warehouse inventory model for deteriorating items with a linear trend in demand and shortages. Journal of the Operational Research Society, 49(3), 287-292.
[5] Chan, W. M., Ibrahim, R. N. and Lochert, P. B. (2003). A new EPQ model: integration lower pricing, rework and reject situations. Production Planning & Control, 14(7), 588-595.
[6] Chang, H. J. and Dye, C. Y. (2001). An inventory model for deteriorating items with partial backlogging and permissible delay in payments. International Journal of Systems Science, 32(3), 345-352.
[7] Chen, L. H. and Kang, F. S. (2007). Integrated vendor–buyer cooperative inventory models with variant permissible delay in payments. European Journal of Operational Research, 183(2), 658-673.
[8] Chen, L. H. and Kang, F. S. (2010). Integrated inventory models considering permissible delay in payment and variant pricing strategy. Applied Mathematical Modelling, 34(1), 36-46.
[9] Chen, L. H. and Ouyang, L. Y. (2006). Fuzzy inventory model for deteriorating items with permissible delay in payment. Applied Mathematics and Computation, 182(1), 711-726.
[10] Chung, K. J., Her, C. C. and Lin, S. D. (2009). A two-warehouse inventory model with imperfect quality production processes. Computers & Industrial Engineering, 56(1), 193-197.
[11] Govindaraju, K. and Ganesalingam, S. (1997). Sampling inspection for resubmitted lots. Communications in Statistics – Simulation and Computation, 26(3), 1163-1176.
[12] Hartley, R. V. (1976). Operations Research: A Managerial Emphasis. Good Year Publishing Company, chapter 12, 315-317.
[13] Hsu, J. T. and Hsu, L. F. (2013). Two EPQ models with imperfect production processes, inspection errors, planned backorders, and sales returns. Computers & Industrial Engineering, 64(1), 389-402.
[14] Jain, D. and Aggarwal, K. K. (2010). Optimal ordering policy with inspection errors and learning curve consideration on imperfect quality items. Annual Conference of the ORSNZ, 45th.
[15] Khan, M., Jaber, M. Y. and Bonney, M. (2011). An economic order quantity (EOQ) for items with imperfect quality and inspection errors. International Journal of Production Economics, 133(1), 113-118.
[16] Kumar, S. and Rajput, U. S. (2013). An inventory model for Weibull deteriorating items with linear demand and permissible delay in payments under inflation. International Journal of Statistika and Mathematika, 5(3), 45-50.
[17] Kumar, B. R., Sarkar, B. and Goswami, A. (2012). A two-warehouse inventory model with increasing demand and time varying deterioration. Scientia Iranic, 19(6), 1969-1977.
[18] Lee, C. C. and Hsu, L. H. (2009). A two-warehouse production model for deteriorating inventory items with time-dependent demands. European Journal of Operational Research, 194(3), 700-710.
[19] Liang, Y. and Zhou, F. M. (2011). A two-warehouse inventory model for deteriorating items under conditionally permissible delay in payment. Applied Mathematical Modelling, 35(5), 2221-2231.
[20] Liao, H. C., Tsai, C. H. and Su, C. T. (2000). An inventory model with deteriorating items under inflation when a delay in payment is permissible. International Journal of Production Economics, 63(2), 207-214.
[21] Ma, W. N., Gong, D. C. and Lin, G.C. (2010). An optimal common production cycle time for imperfect production processes with scrap. Mathematical and Computer Modelling, 52(5-6), 724-737.
[22] Min, J., Zhou, Y. W., Liu, G. Q. and Wang, S. D. (2012). An EPQ model for deteriorating items with inventory-level-dependent demand and permissible delay in payments. International Journal of Systems Science, 43(6), 1039-1053.
[23] Musa, A. and Sani, B. (2012). Inventory ordering policies of delayed deteriorating items under permissible delay in payments. International Journal of Production Economics, 136(1), 75-83.
[24] Ouyang, L.Y., Chang, C. T. and Shum, P. (2012). The EOQ with defective items and partially permissible delay in payments linked to order quantity derived algebraically. Central European Journal of Operations Research, 20(1), 141-160.
[25] Ouyang, L. Y., Teng, J. T., Goyal, S. K. and Yang, C. T. (2009). An economic order quantity model for deteriorating items with partially permissible delay in payments linked to order quantity. European Journal of Operational Research, 194(2), 418-431.
[26] Ouyang, L. Y., Wu, K. S. and Yang, C. T. (2006). A study on an inventory model for non-instantaneous deteriorating items with permissible delay in payments. Computers & Industrial Engineering, 51(4), 637-651.
[27] Panda, D., Maiti, M. K. and Maiti, M. (2010). Two warehouse inventory models for single vendor multiple retailers with price and stock dependent-demand. Applied Mathematical Modelling, 34(11), 3571-3585.
[28] Panda, D., Rong, M. and Maiti, M. (2013). Fuzzy mixture two warehouse inventory model involving fuzzy random variable lead time demand and fuzzy total demand. Central European Journal of Operations Research. DOI 10.1007/s10100-013-0284-9.
[29] Rong, M., Mahapatra, N. K. and Maiti, M. (2008). A two warehouse inventory model for a deteriorating item with partially/fully backlogged shortage and fuzzy lead time. European Journal of Operation Research, 189(1), 59-75.
[30] Sarkar, B. (2013). An EOQ model with delay in payments and time varying deterioration rate. Mathematical and Computer Modelling, 55(3-4), 367-377.
[31] Sarma, K. V. S. (1987). Deterministic order-level inventory model for deteriorating items with two storage facilities. European Journal of Operational Research, 29(1), 70-73.
[32] Teng, J. T., Chang, C. T. and Goyal, S. K. (2005). Optimal pricing and ordering policy under permissible delay in payments. International Journal of Production Economics, 97(2), 121-129.
[33] Teng, J. T., Yang, H. L. and Chern, M. S. (2013). An inventory model for increasing demand under two levels of trade credit linked to order quantity. Applied Mathematical Modelling. http://dx.doi.org/10.1016/j.apm2013.02.009.
[34] Wee, H. M. (2005). Two-warehouse Inventory models with partial backordering and Weibull distribution deteriorating under inflation. Journal of Chinese Institute of Industrial Engineers, 22(6), 451-462.
[35] Wu, K. S. and Ouyang, L. Y. (2000). Defective units in (Q,r,L) inventory model with sub-lot sampling inspection. Production Planning & Control, 11(2), 179-186.
[36] Wu, K. S., Ouyang, L. Y. and Ho, C. H. (2007). Integrated vendor--buyer inventory system with sublot sampling inspection policy and controllable lead time. International Journal of Systems Science, 38(4), 339-350.
[37] Yadav, D., Singh, S. R. and Kumar, R. (2013). Inventory model with learning effect and imprecise market demand under screening error. OPSEARCH.
DOI 10.1007/s12597-012-0118-x.
[38] Yang, H. L. (2004). Two-warehouse Inventory models for deteriorating items with shortages under inflation. European Journal of Operational Research, 157(2), 344-356.
[39] Yang, H. L. (2012). Two-warehouse partial backlogging inventory models with three-parameter Weibull distribution deterioration under inflation. International Journal of Production Economics, 138(1), 107-116.
[40] Yoo, S. H., Kim, D. and Park, M. (2009). Economic production quantity model with imperfect-quality items, two-way imperfect inspection and sales return. International Journal of Production Economics, 121(1), 255-265.
[41] Yoo, S. H., Kim, D. and Park, M. (2012). Inventory models for imperfect production and inspection processes with various inspection options under one-time and continuous improvement investment. Computer & Operation Research, 39(9), 2001-2015.
[42] Zhou, Y. W. (2003). A multi-warehouse inventory model for items with time-varying demand and shortages. Computer & Operation Research, 30(14), 2115–2134.
[43] Zhou, Y. W., Liu, G. Q. and Wang, S.D. (2012). An EPQ model for deteriorating items with inventory-level-dependent demand and permissible delay in payments. International Journal of Systems Science, 43(6), 1039-1053.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2015-07-23公開。
  • 同意授權瀏覽/列印電子全文服務,於2015-07-23起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信