淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1507201018410000
中文論文名稱 篩選具防護馬兜鈴酸腎病之天然物
英文論文名稱 Screening of the chemopreventive componds against aristolochic acid-induced nephropathy from natural products
校院名稱 淡江大學
系所名稱(中) 生命科學研究所碩士班
系所名稱(英) Graduate Institute of Life Sciences
學年度 98
學期 2
出版年 99
研究生中文姓名 丁玉如
研究生英文姓名 Yu-Ju Ding
學號 697180023
學位類別 碩士
語文別 中文
口試日期 2010-06-23
論文頁數 95頁
口試委員 指導教授-陳曜鴻
委員-劉秉慧
委員-曾琬芳
委員-陳曜鴻
中文關鍵字 斑馬魚  腎臟  馬兜鈴酸  急性腎衰竭 
英文關鍵字 zebrafish  kidney  aristolochic acid  acute renal failure 
學科別分類 學科別醫學與生命科學生物學
中文摘要 馬兜鈴酸 (Aristolochic acid) 是馬兜鈴科植物中特有的成分,過去研究顯示含馬兜鈴酸的中草藥會引發人體腎臟病變,但相關毒理研究多著重於成體毒性之探討。由於馬兜鈴酸的胚胎毒性及毒理機制目前仍不清楚,本研究以斑馬魚胚胎來探討馬兜鈴酸對胚胎發育之影響。首先,我們以馬兜鈴酸(10 ppm)浸泡處理24 hpf的斑馬魚胚胎7小時,發現馬兜鈴酸對48 hpf的胚胎腎臟 (原腎小管、原腎輸送管及主要影響部位為腎絲球) 及心臟 (構型異常、心包腔腫大和卵黃下方積血) 皆造成嚴重損傷,且72 hpf的胚胎存活率僅剩下14.2%。進一步觀測斑馬魚胚胎之腎絲球過濾率,發現浸泡馬兜鈴酸3小時後之斑馬魚腎功能剩下71.5±18.8%,而浸泡5小時後之腎功能僅有39.4±15.9%,表示馬兜鈴酸造成原腎損傷而導致腎臟功能喪失及存活率下降。此外,分析細胞死亡情形,馬兜鈴酸處理後會導致細胞凋亡(apoptosis)情況。觀察紅血球與白血球表現量,發現馬兜鈴酸處理後48hpf之斑馬魚,紅血球靜止不動及堆積在腎管及腸道附近,且紅、白血球數明顯變少。以 real-time PCR 分析馬兜鈴酸所引起之發炎反應,發現馬兜鈴酸會誘導 TNF-α、cox2及mpo 這些與發炎相關之基因表現量上升。在浸泡馬兜鈴酸之前以白藜蘆醇或熊果酸處理12小時,可抑制馬兜鈴酸所引發之發炎反應而減緩腎臟衰竭,但無法完全修復馬兜鈴酸造成的腎臟損傷。綜上所述,馬兜鈴酸毒性之細胞與分子機制可能是經由引發發炎反應造成腎臟損傷,引起造血功能異常,進而導致心臟及腎臟嚴重損傷,以致腎功能喪失,最終導致腎衰竭。
英文摘要 Aristolochic acid (AA) occurs naturally in Aristolochiaceae plants, and toxicological studies have shown the role of AA in human aristolochic acid nephropathy (AAN). Most studies have focused on the adult toxicity of AA, but the embryonic toxicity and toxicological mechanisms are still not clear. Therefore, we used zebrafish embryos to investigate the effects of AA on embryonic development and toxicity. After 24-hpf embryos were treated with AA (10 ppm) for 7 hours, the 48-hpf embryo kidney (glomeruli, pronephric tubules, and pronephric ducts) and heart (deformed heart, swollen pericardial cavity,and hemorrhagic yolk sac) were severely damaged, and the 72-hpf survival rate was decreased to 14.2%. The glomerular filtration rate (GFR) of embryos was further examined after AA treatment. The GFR of embryos after 3-h AA treatment decreased to 71.5 ± 18.8%, while that after 5-h AA treatment decreased to 39.4 ± 15.9%. Taken together, AA caused renal injury and dysfunction, as well as reduced survival rate of zebrafish embryos. Besides, AA-induced apoptosis was observed. A significant decrease in the amount of erythrocytes and leukocytes was observed in AA-treated embryos. Moreover, erythrocytes became stationary in blood flow and even accumulated in renal tubules and intestinal tract. Based on quantitative PCR, mRNA expression of inflammatory genes (TNF-α, cox2, and mpo) was upregulated in AA-treated embryos. 12-h treatment (12-24 hpf) of resveratrol or ursolic acid before AA treatment (24-31 hpf) was found to inhibit AA-induced inflammation and attenuate but not completely reverse AA-induced renal injury. In summary, the cellular and molecular mechanisms of AA toxicity may result in inflammatory renal injury and hematopoietic dysfunction, severe defects of heart and kidney, and ultimately lead to kidney dysfunction and failure.
論文目次 中文摘要 ………………………………………………………………I
英文摘要 ……………………………………………………………III
目錄……………………………………………………………………IV
圖表目錄 ……………………………………………………………IX
縮寫表…………………………………………………………………XI

壹、前言…………………………………………………………………1
一、馬兜鈴酸其結構及特性…………………………………………2
二、馬兜鈴酸之分佈…………………………………………………2
三、馬兜鈴酸之代謝…………………………………………………3
四、馬兜鈴酸之藥理特性……………………………………………4
五、馬兜鈴酸所造成之腎臟病變……………………………………5
六、馬兜鈴酸之動物試驗……………………………………………8
七、馬兜鈴酸之毒理機制……………………………………………9
八、馬兜鈴酸之抗發炎反應機轉…………………………………10
九、熊果酸之相關資料……………………………………………11
十、白藜蘆醇之相關資料…………………………………………13
十一、斑馬魚的優勢………………………………………………14
十二、斑馬魚之腎臟發育…………………………………………15
十三、斑馬魚之心臟發育…………………………………………16
十四、本篇論文之動機與目的……………………………………17

貳、實驗材料與方法 ………………………………………………19
一、實驗用斑馬魚( Danio rerio )之飼養 ………………………20
二、基因轉殖魚介紹………………………………………………20
三、斑馬魚胚胎收集………………………………………………21
四、馬兜鈴酸浸泡條件篩選………………………………………21
五、半數致死濃度( Median Lethal Concentration,LC50 ) ……21
六、免疫抗體螢光染色( Whole-mount immunostaining )………22
七、胚胎包埋及冷凍切片…………………………………………22
八、蘇木紫和伊紅染色法 ( Hematoxylin and Eosin Stain, H&E
Stain )…………………………………………………………23
九、TUNEL ( Terminal deoxynucleotidyl transferase-mediated dU
TPbiotil nick end labeling ……………………………………23
十、YO-PRO and PI 染色法 ……………………………………25
十一、斑馬魚RNA萃取及cDNA合成…………………………25
十二、定量聚合酶鍊鎖反應(real-time quantitative PCR,Q-PCR).26
十三、探針( riboprobe )合成 ……………………………………27
十四、DNA接合反應 ……………………………………………27
十五、勝任細胞( competent cell )製備與大腸桿菌( Escherichia coli )轉型 ………………………………………………………27
十六、小量質體萃取………………………………………………28
十七、聚合酶鍊鎖反應( polymerase chain reaction,PCR ) ……29
十八、原位雜交法( whole-mount in situ hybridization )………29
十九、腎功能分析-腎絲球過濾率( Glomerular filtration rate, GFR )………………………………………………………31
二十、myeloperoxidase (MPO) staining …………………………31
二十一、Whole-mountο-dianisidine staining……………………32
二十二、設備………………………………………………………32

叁、實驗結果…………………………………………………………33
一、馬兜鈴酸的浸泡濃度,浸泡時間與導致腎臟之損傷情形成正比………………………………………………………………34
二、馬兜鈴酸對斑馬魚胚胎的半致死濃度(LC50)………………35
三、馬兜鈴酸造成斑馬魚腎臟之損傷……………………………36
四、原腎管細胞並未受到馬兜鈴酸影響而造成破裂……………37
五、馬兜鈴酸導致腎臟功能下降…………………………………37
六、馬兜鈴酸會引發急性腎衰竭…………………………………38
七、馬兜鈴酸引起急性發炎反應…………………………………38
八、馬兜鈴酸影響造血功能異常…………………………………39
九、馬兜鈴酸導致腎臟及心臟損傷………………………………40
十、白藜蘆醇及熊果酸可減緩馬兜鈴酸造成之腎臟損 傷 ……………………………………………………………41
十一、白藜蘆醇及熊果酸無法完全修復馬兜鈴酸造成之腎臟損傷 …………………………………………………………42

肆、討論………………………………………………………………44
一、不同時期之胚胎浸泡馬兜鈴酸所導致毒性影響之差異……45
二、馬兜鈴酸導致腎臟損傷其主要影響為腎絲球體 …………45
三、發炎反應誘發產生ROS,導致器官功能異常………………47
四、馬兜鈴酸會引起急性發炎反應,而導致腎臟衰竭 ………47
五、馬兜鈴酸導致斑馬魚造血功能之異常 ……………………48
六、馬兜鈴酸對於心臟的影響屬於晚期 ………………………50
七、紅血球浸潤導致器官異常…………………………………51
八、馬兜鈴酸對斑馬魚胚胎之毒理機制 ………………………52
九、白藜蘆醇和熊果酸減緩馬兜鈴酸所導致之發炎反應 ……………………………………………………………52
十、結論及未來展望 ……………………………………………54

伍、參考文獻…………………………………………………………55
陸、圖表………………………………………………………………65
柒、附錄………………………………………………………………90
參考文獻 Abel RM, Abbott WM, Fischer JE (1971). Acute renal failure. AMA Arch Surg, 103(4):513-514.
Antia, P and Chandrima, S (1977). Effect of a swsquiterpene from aristolochic indica Linn on fertility in female mice. Experientia, 12: 1498-1499.
Arlt VM, Schmeiser HH, Pfeifer GP (2001). Sequence-specific detection of aristolochic acid-DNA adducts in the human p53 gene by terminal transferase-dependent PCR. Carcinogenesis, 22(1): 133-140.
Arlt VM, Stiborova M and Schmeiser HH (2002). Aristolochic acid as a probable human cancer hazard in herbal remedies: a review. Mutagenesis, 17(4):265-277.6.
Ackermann GE and Paw BH (2003). zebrafish: a genetic modle for vertebrate organogenesis and human disorders. Frontiers in Bioscience, 8:1277-1253.
Barger AC, Muldowney FP, and Liebowitz MR (1959). Role of the kidney in the pathogenesis of congestive heart failure. Circulation, 20:273-285.
Balanehru S and Nagarajan B (1991). Protective effect of oleanolic acid and ursolic acid against lipid peroxidantion. Biochem. Int., 24: 981-990.
Baek JH, Lee YS, Kang CM, Kim J-A, Kwon KS, Son HC, Kim K-W (1997). Intracellular Ca2+ release mediates ursolic acid-induced apoptosis in human leukemic HL-60 cells. Int. J. Cancer, 73:725–728.
Bieler CA, Stiborova M, Wiessler M, Cosyns JP, C van Ypersele de Strihou and Schmeiser HH (1997). 32P-post-labelling analysis of DNA adducts formed by aristolochic acid in tissues from patients with Chinese herbs nephropathy. Carcinogenesis, 18(5):1063-1067.
Beis D, Bartman T, Jin SW, Scott IC, D'Amico LA, Ober EA, Verkade H, Frantsve J, Field HA, Wehman A, Baier H, Tallafuss A, Bally-Cuif L, Chen JN, Stainier DY, Jungblut B (2005). Genetic and cellular analyses of zebrafish atrioventricular cushion and valve development. Development , 132:4193-204.
Chang CC, Wang CK, Li CC, Pei YC, Chiang MY, Li T and Hsu TC (1964). Pharmacological studies on magnoflane, a hypotensive principle from Tu Qing Mu Xiang. Acta. Pharm. Sin, 1: 1142-1149.
Cluzel M, Damon M, Chanez P, Bousquet J, Crastes de Paulet A, Michel FB, Godard P (1987). Enhanced alveolar cell liminol-dependent chemiluminescence in asthma. J Allergy Clin. Immunol, 80:195-201.
Cosyns JP, Dehoux JP, Guiot Y, Goebbels RM, Robert A, Bernard AM, van Ypersele de Strihou C (2001). Chronic aristolochic acid toxicity in rabbits: a model of chinese herbs nephropathy kidney. Int, 59: 2164-2173.
Cosyns JP (2002). When is "aristolochic acid nephropathy" more accurate than "Chinese herbs nephropathy"Kidney Int, 61:1178.
Cosyns JP (2003). Aristolochic acid and 'Chinese herbs nephropathy': a review of the evidence to date. Drug Saf, 26:33-48.
Christine L. Hostetter, Jessica L. Sullivan-Brown, and Rebecca D. Burdine (2003). Zebrafish pronephros: A model for understanding cystic kidney disease. Developmental Dynamics , 228: 514-522.
Cui M, Liu ZH, Qiu Q, Li H and Li LS (2005). Tumour induction in rats following exposure to short-term high dose aristolochic acid I. Mutagenesis, 20(1):45-49.
Chen SM, Fan MY, Tseng CC, Yih H, Hsu KY (2007). Pharmacokinetics and nephrotoxicity of aristolochic acid in rabbits. Toxicon, 50:180-188.
Drummond IA, Majumdar A, Hentschel H, Elger M, Solnica-Krezel L, Schier AF, Neuhauss SCF, Stemple DL, Zwartkruis F, Rangini Z, Driever W, Fishman MC (1998). Early development of the zebrafish pronephros and analysis of mutations affecting pronephric function. Development , 125:4655-4667.
Drummond IA (2000). The zebrafish pronephros: a genetic system for studies of kidney development. Pediatr Nephrol, 14:428-435.
Drummond IA (2003). Making a zebrafish kidney : a tale of two tubes. Trends in Cell biology, 13(7):357-365.
Ganshirt H (1953). Isolation of aristolochic acid from various Aristolochiaceae and its quantitative determination. Pharmazie, 8 (7):584-92.
Gadhi CA, Weber M, Mory F, Benharref A , Lion C, Jana M, Lozniewski A (1999). Antibacterial activity of aristolochia paucinervis pomel. Journal of Ethnopharmacology, 67 :87-92.
Grollman AP, Shibutani S, Moriya M, Miller F, Wu L, Moll U, Suzuki N, Fernandes A, Rosenquist T, Medverec Z, Jakovina K, Brdar B, Slade N, Turesky RJ, Goodenough AK, Rieger R, Vukelić M, and Jelaković B (2007). Aristolochic acid and the etiology of endemic(Balkan) nephropathy. PNAS, 12129-12134.
He LX and Xue HZ (1980). Studies on constraceptive constituent of Aristolochia mollissima. Yaoxue Tongbao, 15: 44-48.
Hao Z, Huang B and Wang Y (1989). Hypoglycemic effect of oleanolic acid. Zhougguo Yooke Daxue Xuebao, 22: 210-212.
Hinou J, Demetzos C, Harvala C and Roussakis C (1990). Cytotoxic and antimicrobial principles from the roots of aristolochia longa. Pharmaceutical Biology, 28(2):149-151.
Haruna AK and Choudhury MK (1995). In vivo antisnake venorn activity of a furanoid diterpene from aristolochia albida. Indian J. Pharm. Sci, 57: 222-224.
Hsu HY, Yang JJ and Lin CC (1997). Effects of olanolic acid and ursolic acid on inhibition tumor growth and enhancing the recovery of hematopoietic system postirradiation in mice. Cancer Lett, 111: 7-13.
Hollosy F, Meszaros G, Bokonyi G, Idei M, Seprodi A, Szende B, Keri G.Cytostatic (2000). Cytotoxic and protein tyrosine kinase inhibitory activity of ursolic acid in A431 human tumor cells. Anticancer Res, 20:4563-4570.
Hove JR, Köste RW, Forouhar AS, Acevedo-Bolton G, Fraser SE and Gharib M (2003). Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature Publishing Group, 421:172-177.
Hentschel DM, Park KM, Cilenti L, Zervos AS, Drummond IA, and Bonventre JV (2004). Acute renal failure in zebrafish: a novel system to study a complex disease. AmJ Physiol Renal Physiol, 288: 923-929.
Huang CC, Chen PC, Huang CW, and Yu J (2007). Aristolochic acid induces heart failure in zebrafish embryos that is mediated by inflammation. Toxicological Sciences, 100 (2):486-494.
Ibarra MO, Campos ONM, Gonz´alez DJS´, Mart´ınez CMM, S´anchez EF, Santamar´ıa A, Ramirez V, Bobadilla NA, Chaverri JP (2007). Evaluation of oxidative stress in d-serine induced nephrotoxicity. Toxicology, 229:123-135.
Ishikawa JO, Griffin KJP, Banerjee U, and Herschman HR (2007). The zebrafish genome contains two inducible, functional cyclooxygenase -2 genes. Biochem Biophys Res Commun, 352(1): 181-187.
Liu J (1995). Review article, pharmacology of oleanolic acid and ursolic acid. Journal of Ethnopharmacology, 49:57-68.
Lauthier F, Taillet L, Trouillas P, Delage C, Simon A (2000). Ursolic acid triggers calcium-dependent apoptosis in human Daudi cells. Anti-Cancer Drugs , 11(9): 745-757.
Komatsu N, Nawata H, Kimino T, Tsunoda H, Nagumo N, Koike K, Shoji J and Tada A (1973). Biological activity of aristolochic acid. Showa Igakkai Zasshi, 33: 776-782.
Krumbiegel G, Hallensleben J, Mennicke WH, Rittmann N, Roth HJ (1987). Studies on the metabolism of aristolochic acids I and II. Xenobiotica, 17:981-991.
Kimmel CB, Ballard WW, Kimmel SR, Ullmann B and Schilling TF (1995). Stages of embryonic-development of the zebrafish. Developmental Dynamics, 203: 253-310.
Kashiwada Y, Wang HK, Nagao T, Kitanaka S, Yasuda I, Fujioka T, Yamagishi T, Cosentino LM, Kozuka M, Okabe H, Ikeshiro Y, Hu CQ, Yeh E, and Lee KH (1998). Anti-AIDS agents. 30. Anti-HIV activity of oleanolic acid, pomolic acid, and structurally related triterpenoids. J. Nat. Prod, 61:1090-1095.
Kermani A, and Garg A (2003). Thiazolidinedione-associated congestive heart failure and pulmonary edema. Mayo cinic proceedings, 78:1088-1091.
Kaplow LS and Charlotte L (1965). Simplified myeloperoxidase stain using benzidine dihydrochloride. Blood, 26:215-219.
Lajide L, Escoubas P, and Mizutani J (1993). Antifeedant activity of metabolites of aristolochia albida against the tobacco cutworm, spodoptera iitura. J. Agric. Food chem, 41(4):669-673.
Liu Z, Wang D, Wang S, Ha S and Li P (1994). Oleanolic acid in decreasing hyperglycemia. Chinese pharmaceut. J, 29: 725-726.
Liu J (1995). Pharmacology of olanolic acid and ursolic acid. J. Ethnopharmacol, 49 :57-68.
Loft S and Poulsen HE (1996). Cancer risk and oxidative DNA damage in man. Journal of Molecular Medicine, 74: 297-312.
Lord GM, Hollstein M, Arlt VM, Roufosse C, Pusey CD, Cook T, Schmeiser HH (2004). DNA adducts and p53 mutations in a patient with aristolochic acid-associated nephropathy. Am J Kidney Dis, 43(4): e11-17.
Lin CC, Hui MN, and Cheng SH (2007). Toxicity and cardiac effects of carbaryl in early developing zebrafish (Danio rerio) embryos. Toxicol Appl Pharmacol, 222:159-168.
Mose JR and Lukas G (1961). The action of Aristolochia clematitis. Arzneimittel forsch, 11: 33-36.
Maness PF and Edelman GM (1978). Inactivation and chemical alteration of mating factor a by cells and spheroplasts of yeast. Proc. Nati. Acad. Sci. , 75(3):1304-1308.
Mengs U, Lang W and Poch JA (1982). The carcinogenic action of aristolochic acid in rats. Arch. Toxicol, 51, 107-119.
Mix DB, Guinaudeau H, Shamma M (1982). The aristolochic acids and aristolactams. J Nat Prod, 45:657-666.
Mengs U (1987). Acute toxicity of aristolochic acid in rodents. Arch Toxicol, 59:328-331.
Mengs U and Stotzem CD (1993). Renal toxicity of aristolochic acid in rats as an example of nephrotoxicity testing in routine toxicology. Arch. Toxicol, 67: 307-311.
Michel D, Damme B, Houte K, and Vanherweghem JL (1994). Pathologic aspects of a newly described nephropathy related to the prolonged use of Chinese herbs. Am. J. Kidney Dis., 24: 172-180.
Nishino H, Nishino A, Takayasu J, Iwashima A, Hirabayashi K, Iwata S and Shibata S (1988). Inhibition of the tumor-promoting action of 12-O-tetradacanoy-phorbol-13-acetate by some oleanane -type triterpenn- oid compounds. Cancer res. 48: 5210-5215.
Nortier JL, Martinez MC, Schmeiser HH, Arlt VM, Bieler CA, Petein M, Depierreux MF, De Pauw L, Abramowicz D, Vereerstraeten P, Vanherweghem JL (2000). Urothelial carcinoma associated with the use of a Chinese herb (Aristolochia fangchi). N Engl J Med, 342(23): 1686-1692.
Sheu SY, Liu C and Chiang HC (1984). The hypoglycemic principle of Mesona procumbens and Orthosiphon stamineus. Taiwan Ko Hsueh, 38 : 26-31.
Schmeiser HH, Pool BL, Wiessler M (1986). Identification and mutagenicity of metabolites of aristolochic acid formed by rat liver. Carcinogenesis, 7:59-63.
O'Byrne KJ and Dalgleish AG (2001). Chronic immune activation and inflammation as the cause of malignancy. Br J Cancer, 85(4): 473–483.
Pettersson RF, Majumdar A, Stiborova M, Frei E, Arlt VM, Schmeiser HH (2009). The role of biotransformation enzymes in the development of renal injury and urothelial cancer caused by aristolochic acid : urgent questions and difficult answers. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 153(1):5-12.
Perner B, Englert C, Bollig F (2007). The Wilms tumor genes wt1a and wt1b control different steps during formation of the zebrafish pronephros. Developmental Biology, 309 :87-96.
Perner B, Englert C, Bollig F (2007). The Wilms tumor genes wt1a and wt1b control different steps during formation of the zebrafish pronephros. Developmental Biology, 309:7-96.
Robisch G, Schimmer O, Goggelmann W (1982). Aristolochic acid is a direct mutagen in Salmonella typhimurium. Mutat res, 105:201-204.
Recio MC, Giner RM, Manez S, Gueho J, Julien HR, Hostettmann K and Rios JL (1995). Investigations on the steroidal anti-inflammatory activity of triterpenoids from diospyros leucomelas.Planta Med, 61: 9-12.
Rodriguez B, Torre MC, Simoes F, Batista O, Nascimento J, Duarte A and Mayer R (1995). Revision of the structure of an aristoolane swsquiterpene aldehyde isolated from the root of Aristolochia albida. Phytochemistry, 38: 905-907.
Rastrilli L, Capasso A, Pizza C and Tommasi ND (1997). New protopine and benzyltetrahydroprotoberberine alkaloids from aristolochia constricta and their activity on isolated guinea-pig ileum. J. Nat. Prod., 60: 1065-1069.
Renshaw SA, Loynes CA, Trushell DMI, Elworthy S, Ingham PW and Whyte MKB (2006). A transgenic zebrafish model of neutrophilic inflammation. Blood, 108:3976-3978.
Rohr S, Bit-Avragim N, Abdelilah-Seyfried S (2006). Heart and soul/ PRKCi and nagie oko/Mpp5 regulate myocardial coherence and remodeling during cardiac morphogenesis. Development, 133(1): 107-15.
Raschperger E, Etienne PA Neve, Wernerson A, Hultenby K (2008). The coxsackie and adenovirus receptor (CAR) is required for renal epithelial differentiation within the zebrafish pronephros. Developmental Biology, 313:455-464.
Snyckers FQ and Fourle TG (1984). Ulcer prevention and treatment with oleanoic acid. Chem, Abs, 100: 39613k.
Schmeiser HH, Pool BL and Wiessler M(1986). Identification and mutagenicity of metabolites of aristolochic acid formed by rat liver. Oxford journals life sciences & Medicine carcinogenesis 7(1):59-63.
Singh GB, Singh S, Bani S, Gupta BD and Banerjee SK (1992). Anti-inflammatory activity of oleanolic acid in rats and mice. J. Pharm. Pharmacol, 44: 456-458.
Stainier DY and Fishman MC (1992). Patterning the zebrafish heart tube: acquisition of anteroposterior polarity. Dev Biol 153, 91-101.
Stainier DY, Lee RK. and Fishman MC (1993). Cardiovascular development in the zebrafish. I. Myocardial fate map and heart tube formation. Development, 119, 31-40.
Stiborová M, Fernando RC, Schmeiser HH, Frei E, Pfau W, Wiessler M (1994). Characterization of DNA adducts formed by aristolochic acids in the target organ (forestomach) of rats by 32P-postlabelling analysis using different chromatographic procedures. Carcinogenesis, 15(6): 1187-1192.
Schmeiser HH, Bieler CA, Wiessler M, van Ypersele de Strihou C, Cosyns JP (1996). Detection of DNA adducts formed by aristolochic acid in renal tissue from patients with Chinese herbs nephropathy. Cancer Res, 56(9): 2025-2028.
Suh N, Honda T, Finaly HJ, Barchowsky A, Williams C, Benoit NE, Xie QW, Nathan C, Gribble GW and Sporn MB (1998). Novel triteroenoids suppress inducible nitric oxide synthase(iNOS) and inducible cyclooxygenase(COX-2) in mouse macrophages. Cancer Res. 58:717-723.
Serluca FC and Fishman MC (2001). Pre-pattern in the pronephric kidney field of zebrafish. Development, 128: 2233-41.
Sato N, Takahashi D, Chen S-M, Tsuchiya R, Mukoyama T, Yamagata S-i, Ogawa M,Yoshida M, Kondo S, Satoh N, Ueda S (2004). Acute nephrotoxicity of aristolochic acids in mice. J Pharm Pharmacol, 56:221-229.
Tsai LH, Yang LL and Chang C (1980). Inactivation of formosan snake venoms in vivo by aristolochic acid, the chemical component of Aristolochia radix. Taiwan Ko Hsueh, 34: 40-44.
Thuong PT, Jin WY, Lee JP, Seong RS, Lee Y.M, Seong YH, Song KS and Bae KH (2005). Inhibitory effect on TNF-α-induced IL-8 production in the HT29 cell of constituents from the leaf and stem of weigela subsessilis. Arch pharm Res, 28(10): 1135-1141.
Vasilenko YK, Ponomarev VD and Oganesyan ET (1981). Comparative study of the hypolipemic properties of triterpenoids. Chemical Abs, 91: 49279r.
Vasilenko YK, Lisevitskaya LI, Frolova LM, Parfenteva EP, Skulte IV, Vasilenko AY, Kozharskii VV and Voskayan VL (1982). Hypolopemic properties of triterpenoids. Farmacol. Toxicol, 45: 66-70.
Vishwanath BS, Kini RM, Gowda TV (1987). Characterization of three edema-inducing phospholipase A2 enzymes from habu (Trimeresurus flavoviridis) venom and their interaction with the alkaloid aristolochic acid. Toxicon, 25:501-515.
Vishwanath BS, Fawzy AA, Franson RC (1988). Edema-inducing activity of phospholipase A2 purified from human synovial fluid and inhibition by aristolochic acid. Inflammation, 12:549-561.
Vanherweghem JL, Depierreux M, Tielemans C, Abramowicz D, Dratwa M, Jadoul M, Richard C, Vandervelde D, Verbeelen D, Vanhaelen -Fastre R, et al. (1993). Rapidly progressive interstitial renal fibrosis in young women: association with slimming regimen including Chinese herbs. Lancet, 341:387-391.
Vanhaelen M, Vanhaelen-Fastre R, But P, Vanherweghem JL (1994). Identification of aristolochic acid in Chinese herbs. Lancet, 343:174.
Vasconcelos FC, Gattass CR, Rumjanek VM, Maia RC (2007). Pomolic acid-induced apoptosis in cells from patients with chronic myeloid leukemia exhibiting different drug resistance profile. Invest eew drugs, 25:525-533.
Wang WH and Zheng JH (1984). Pegnancy-terminating effect and toxicity of an active compound of Aristolochic amollissima. Yaoxue Xuebao, 19: 405-409.
Wrzeciono U, Malecki I, Budzianowski J, Kierylowicz H, Zaprutko L,Beimvik E and Kostepska H (1985). Nitrogenous triterpene derivatives.Part 10; Hemisuccunates of ome derivatives of oleanoic acid ad their antiulcer effects. Pharm, 40: 542-544.
Wang XH and Han GQ (1993). The chemical constituents of Aristolochia Kunmingensis. Acta Bot. Yunnan, 15: 306-308.
Wu TS, Ou LF and Teng CM (1994). Aristolochic acids, Aristolactam alkaloids and amides from Aristolochia kankauensis. Phytochemistry, 36: 1063-1068.
Xue HZ, Zhang J and He LX (1985). Isolation and identification of the constituents soluble in petreleum ester from Aristolochia versiolar. Nanjing Yaoxueyuan Xuebao, 19: 7-9.
Xu LZ and Sun NJ (1984). Studies on chemical constituents of Aristolochia moupinesis.Yaoxue Xuebao, 19: 48-55.
Yelon D, Horne SA and Stainier DY (1999). Restricted expression of cardiac myosin genes reveals regulated aspects of heart tube assembly in zebrafish. Dev Biol ,214:23-37.
Yang L, Li X and Wang H (2007). Possible mechanisms explaining the tendency towards interstitial fibrosis in aristolochic acid-induced acute tubular necrosis. Nephrol Dial Transplant, 22: 445-456.
Yeh YH, Lee YT, Hsieh HS, Hwang DF (2008). Short-term toxicity of aristolochic acid, aristolochic acid-I and aristolochic acid- II in rats. Food and Chemical toxicology, 46: 1157-11 63.
Yaqoob N, Holotta M, Prem C, Kopp R, Schwerte T (2009). Ontogenetic development of erythropoiesis can be studied non-invasively in GATA-1:DsRed transgenic zebrafish. Comp Biochem Physiol A Mol Integr Physiol, 154(2):270-8.
Zaletova NI, Shchavlinskii AN, Tolkachev ON (1986). Preparation of some derivatives of ursolic acid and their antimicrobial activity. Chem.Abs,106: 18867e.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2015-07-21公開。
  • 同意授權瀏覽/列印電子全文服務,於2015-07-21起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信