淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1507200923292800
中文論文名稱 鹽水濃度與組成對直接接觸式薄膜蒸餾膜結垢之影響
英文論文名稱 Effects of saline concentration and composition on membrane fouling in direct contact membrane distillation
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 97
學期 2
出版年 98
研究生中文姓名 韓知融
研究生英文姓名 Chih-Jung Han
學號 696400554
學位類別 碩士
語文別 中文
第二語文別 英文
口試日期 2009-06-30
論文頁數 100頁
口試委員 指導教授-鄭東文
委員-李篤中
委員-何啟東
委員-童國倫
委員-莊清榮
委員-鄭東文
中文關鍵字 直接接觸式薄膜蒸餾  結垢現象  溫度極化  濃度極化 
英文關鍵字 Direct contact membrane distillation  Fouling  Temperature polarization  Concentration polarization 
學科別分類
中文摘要 本研究採用Toyo公司之聚四氟乙烯(PTFE)薄膜以及GE osmonics公司之聚偏二氟乙烯(PVDF)薄膜,進行直接接觸式薄膜蒸餾,實驗操作分為薄膜通量測試及薄膜結垢測試。薄膜通量測試研究中為在不同氯化鈉水溶液濃度(4.5 wt%、10 wt%)與薄膜材料(PTFE薄膜、PVDF薄膜)下,探討操作參數(進料溫度、進料流率)對滲透通量及鹽阻隔之影響,並比較實驗透過率與理論預測透過率值之差異;薄膜結垢測試研究中固定溫度差及進料流率,進行24小時蒸餾操作,探討不同進料溶液組成下之透過率及溶質阻隔率,另量測實驗前後純水滲透通量之變化,並利用場發射槍掃描式電子顯微鏡、能量散佈X光分析儀及接觸角量測儀觀察薄膜結垢現象。
薄膜通量測試結果顯示,增加進料流量可以減緩濃度極化及溫度極化現象,進而提升滲透通量,在PTFE薄膜中所提升之滲透通量非常些微;而PVDF薄膜之滲透通量提昇則較明顯;增加進料溫度可以有效提升蒸氣通過薄膜孔洞之驅動力,而PTFE薄膜以及PVDF薄膜之滲透通量皆有明顯之提升情形,但使用PVDF薄膜時,滲透液之導電度值會隨著增大進料流量、進料溫度以及進料濃度有上升趨勢,造成使用PVDF薄膜操作中滲透通量液之含鹽量升高,而不符合實驗操作之期待。實驗隨操作進料濃度及進料流量變化之趨勢與理論模擬結果相似,但實驗值大於模擬理論值。
薄膜結垢測試之結果發現NaCl濃度及0.05 wt% BSA溶質對PTFE薄膜之實驗前後純水滲透通量並無明顯之下降,而CaSO4、MgSO4或MgCl2等溶質對降低薄膜純水滲透通量之影響較明顯。由場發射槍掃描式電子顯微鏡觀察得知,鹽之結晶只出現在薄膜表面上,且隨著NaCl濃度上升及種類的增加,結晶附著在薄膜表面的數目也會上升。接觸角量測儀之測量結果可顯示出當溶液加入0.05 wt% BSA溶質時,對PTFE薄膜之疏水性有較明顯之下降。
英文摘要 In this study, polymeric membranes were employed in a direct contact membrane distillation system to investigate the effects of solution concentrations, solution compositions and membrane properties on distillation flux. The experimental results and theoretical fluxes were discussed under various as feed flow rate and feed temperature. For the tests of membrane fouling, operations under different concentrations of NaCl solution and multiple saline compounds were conducted for flux and solute rejection. The FESEM, EDAX and contact angle instrument were also applied for the observation of membrane fouling.
The experimental results show that the flux increases with the increase of feed volume flow rate or feed temperature. However, the solute rejection by the PVDF membrane decreases at the high feed flow rate and feed temperature. The theoretical predicted fluxes agree with the experimental results in the same trend but having under estimation.
Membrane fouling tests show that the pure water permeability of PTFE membrane varied unapparently after the experiments using NaCl solutions or 0.05 wt% BSA solution, while the pure water permeability decreased significantly after the experiments using CaSO4, MgSO4, MgCl2 or their mixture compound solutions. From the observation of FESEM, the crystal of salt exited on the surface of PTFE membrane and its amount increased with the increase of NaCl. From the measurements of contact angle, it concentration the degree of hydrophobicity for PTFE membrane decreased apparently while 0.05 wt% BSA added to feed solution.

論文目次 目錄
中文摘要 Ⅰ
英文摘要 Ⅱ
目錄 Ⅳ
圖目錄 Ⅷ
表目錄 ⅩⅠⅠⅠ
第一章 緒論 1
1.1 前言 1
1.2 薄膜分離程序 2
1.3 薄膜蒸餾 5
1.4 研究目的 7
第二章 文獻回顧 10
2.1 薄膜蒸餾相關研究 10
2.2 薄膜蒸餾之種類 13
2.2.1 直接接觸式薄膜蒸餾 13
2.2.2 空氣間隙式薄膜蒸餾 13
2.2.3 空氣掃掠式薄膜蒸餾 14
2.2.4 真空式薄膜蒸餾 14
2.3 薄膜之性質 14
第三章 理論計算 18
3.1 直接接觸式薄膜蒸餾理論分析之假設 18
3.2 質量傳送 19
3.3 熱量傳送 23
3.4 極化現象之影響 25
3.4.1 溫度極化 25
3.4.2 濃度極化 26
3.5 熱質傳經驗方程式 28
第四章 實驗裝置與方法 34
4.1 實驗裝置 34
4.2 實驗設備 34
4.3 實驗藥品與薄膜材料 35
4.3.1 實驗藥品 35
4.3.2 薄膜材料 35
4.4 操作條件 36
4.4.1 系統操作條件 36
4.4.2 流量計校正與雷諾數計算 37
4.5 實驗步驟 37
4.5.1 薄膜通量測試 37
4.5.2 薄膜結垢測試 38
4.6 分析方法 39
4.6.1 分析儀器 39
4.6.2 鹽類的分析方法與條件 40
4.6.3 BSA的分析方法與條件 40
4.6.4 阻隔率之計算 40
第五章 結果與討論 46
5.1 薄膜純水滲透通量 46
5.2 薄膜通量測試 46
5.2.1 進料體積流率對滲透通量之影響 47
5.2.2 薄膜阻隔鹽類之效能 47
5.2.3 進料溫度對滲透通量之影響 48
5.2.4 進料濃度對滲透通量之影響 49
5.2.5 薄膜材質對滲透通量之影響 50
5.2.6 滲透通量估算 50
5.3 薄膜結垢測試 52
5.3.1 進料濃度對薄膜純水滲透通量之影響 52
5.3.2 進料組成對薄膜純水滲透通量之影響 52
5.3.3 薄膜表面結垢之觀察 53
第六章 結論 80
6.1 薄膜通量測試 80
6.2 薄膜結垢測試 81
符號說明 83
參考文獻 87
附錄A 91
附錄B 92
附錄C 93

圖目錄
Figure 1.1 The classification of membrane separation 8
Figure 1.2 Schematic diagram of membrane distillation 9
Figure 2.1 Schematic diagram of DCMD 16
Figure 2.2 Schematic diagram of AGMD 16
Figure 2.3 Schematic diagram of SGMD 17
Figure 2.4 Schematic diagram of VMD 17
Figure 3.1 Heat and mass transfer in DCMD 30
Figure 3.2 Mass transfer resistances for DCMD 31
Figure 3.3 Electrical analogical circuit for multipore size model 31
Figure 3.4 Heat transfer resistances for DCMD 32
Figure 4.1 The schematic diagram of DCMD experimental setup 41
Figure 4.2 The Schematic diagram of DCMD module 42
Figure 4.3 Real volume flow rate calibration curve of feed flow meter
flow meter 43
Figure 4.4 Real volume flow rate calibration curve of permeate
flow meter 44
Figure 5.1 Pure water fluxes at different feed volume flow rate for new
PTFE membrane (PTFE , Pure water) 55
Figure 5.2 Pure water fluxes at different feed volume flow rate for new
PVDF membrane (PVDF, Pure water) 55
Figure 5.3 Fluxes at different feed volume flow rate for PTFE
membrane (PTFE, 4.5 wt% NaCl) 56
Figure 5.4 Fluxes at different feed volume flow rate for PTFE
membrane (PTFE, 10 wt% NaCl) 56
Figure 5.5 Fluxes at different feed volume flow rate for PVDF
membrane (PVDF, 4.5 wt% NaCl) 57
Figure 5.6 Fluxes at different feed volume flow rate for PVDF
membrane (PVDF, 10 wt% NaCl) 57
Figure 5.7 Conductivities and concentrations of NaCl at different feed
volume flow rate for PTFE membrane (PTFE, 4.5 wt%
NaCl) 58
Figure 5.8 Conductivities and concentrations of NaCl at different feed
volume flow rate for PTFE membrane (PTFE, 10 wt%
NaCl) 58
Figure 5.9 Conductivities and concentrations of NaCl at different feed
volume flow rate for PVDF membrane (PVDF, 4.5 wt%
NaCl) 59
Figure 5.10 Conductivities and concentrations of NaCl at different feed
volume flow rate for PVDF membrane (PVDF, 10 wt%
NaCl) 59
Figure 5.11 Fluxes at different feed temperature for PTFE membrane
(PTFE, 4.5 wt% NaCl) 60
Figure 5.12 Fluxes at different feed temperature for PTFE membrane
(PTFE, 10 wt% NaCl) 60
Figure 5.13 Fluxes at different feed temperature for PVDF membrane
(PVDF, 4.5 wt% NaCl) 61
Figure 5.14 Fluxes at different feed temperature for PVDF membrane
(PVDF, 10 wt% NaCl) 61
Figure 5.15 Fluxes at different feed concentrations for PTFE membrane
(PTFE, ΔT=20 K) 62
Figure 5.16 Fluxes at different feed concentrations for PTFE membrane
(PTFE, ΔT=25 K) 62
Figure 5.17 Fluxes at different feed concentrations for PTFE membrane
(PTFE, ΔT=30 K) 63
Figure 5.18 Fluxes at different feed concentrations for PVDF membrane
(PVDF, ΔT=20 K) 63
Figure 5.19 Fluxes at different feed concentrations for PVDF membrane
(PVDF, ΔT=25 K) 64
Figure 5.20 Fluxes at different feed concentrations for PVDF membrane
(PVDF, ΔT=30 K) 64
Figure 5.21 Fluxes at different feed concentrations for PTFE and PVDF
membrane (PTFE and PVDF, ΔT=20 K, 4.5 wt% NaCl) 65
Figure 5.22 Fluxes at different feed concentrations for PTFE and PVDF
membrane (PTFE and PVDF, ΔT=25 K, 4.5 wt% NaCl) 65
Figure 5.23 Fluxes at different feed concentrations for PTFE and PVDF
membrane (PTFE and PVDF, ΔT=30 K, 4.5 wt% NaCl) 66
Figure 5.24 Fluxes at different feed concentrations for PTFE and PVDF
membrane (PTFE and PVDF, ΔT=20 K, 10 wt% NaCl) 66
Figure 5.25 Fluxes at different feed concentrations for PTFE and PVDF
membrane (PTFE and PVDF, ΔT=25 K, 10 wt% NaCl) 67
Figure 5.26 Fluxes at different feed concentrations for PTFE and PVDF
membrane (PTFE and PVDF, ΔT=30 K, 10 wt% NaCl) 67
Figure 5.27 Flow diagram of algorithm used for model calculations
68
Figure 5.28 Fluxes at different feed volume flow rate of experimental
and theoretical for PTFE membrane (PTFE, 4.5 wt% NaCl)
68
Figure 5.29 Fluxes at different feed volume flow rate of experimental
and theoretical for PTFE membrane (PTFE, 10 wt% NaCl)
69
Figure 5.30 Temperature polarization coefficient at different feed
volume flow rate of experimental for PTFE membrane
(PTFE, 4.5 wt% NaCl) 70
Figure 5.31 Temperature polarization coefficient at different feed
volume flow rate of experimental for PTFE membrane
(PTFE, 10 wt% NaCl) 70
Figure 5.32 Membrane fouling tests for PTFE membrane (PTFE, Qf=0.6
L/min, ΔT=30 K, test 1 and test 2) 71
Figure 5.33 Membrane fouling tests for PTFE membrane (PTFE, Qf=0.6
L/min, ΔT=30 K, test 3, test 4 and test 5) 71
Figure 5.34 Membrane fouling tests for PTFE membrane (PTFE, Qf=0.6
L/min, ΔT=30 K, test 6 and test 7) 72
Figure 5.35 Conductivities and BSA Rejection of test 7 for PTFE
membrane (PTFE, Qf=0.6 L/min, ΔT=30 K, test 7) 72
Figure 5.36 SEM micrographs of Brand new PTFE membrane at 50KX
73
Figure 5.37 SEM micrographs of test 1 for PTFE membrane at 50KX 73
Figure 5.38 SEM micrographs of test 2 for PTFE membrane at 50KX 74
Figure 5.39 SEM micrographs of test 3 for PTFE membrane at 50KX 74
Figure 5.40 SEM micrographs of test 4 for PTFE membrane at 50KX 75
Figure 5.41 SEM micrographs of test 5 for PTFE membrane at 50KX 75
Figure 5.42 SEM micrographs of test 6 for PTFE membrane at 50KX 76
Figure 5.43 SEM micrographs of test 7 for PTFE membrane at 50KX 76
Figure A.1 Calibration curve of BSA 91
Figure B.1 Calibration curve of NaCl solution 92
Figure C.1 SEM micrographs of Brand new PTFE membrane at 25KX
93
Figure C.2 SEM micrographs of test 1 for PTFE membrane at 25KX 93
Figure C.3 SEM micrographs of test 2 for PTFE membrane at 25KX 94
Figure C.4 SEM micrographs of test 3 for PTFE membrane at 25KX 94
Figure C.5 SEM micrographs of test 4 for PTFE membrane at 25KX 95
Figure C.6 SEM micrographs of test 5 for PTFE membrane at 25KX 95
Figure C.7 SEM micrographs of test 6 for PTFE membrane at 25KX 96
Figure C.8 SEM micrographs of test 7 for PTFE membrane at 25KX 96
Figure C.9 EDAX analysis of Brand new PTFE membrane 97
Figure C.10 EDAX analysis of test 1 for PTFE membrane 97
Figure C.11 EDAX analysis of test 2 for PTFE membrane 98
Figure C.12 EDAX analysis of test 3 for PTFE membrane 98
Figure C.13 EDAX analysis of test 4 for PTFE membrane 99
Figure C.14 EDAX analysis of test 5 for PTFE membrane 99
Figure C.15 EDAX analysis of test 6 for PTFE membrane 100
Figure C.16 EDAX analysis of test 7 for PTFE membrane 100

表目錄
Table 1.1 The classification of driving force in different operation process 8
Table 3.1 Property of Sodium Chloride aqueous solution 33
Table 4.1 The list of the BSA characteristics 45
Table 4.2 The list of the flat sheet membranes characteristics 45
Table 5.1 Errors between experimental result and theoretical calculation for 4.5 wt% NaCl solution 77
Table 5.2 Errors between experimental result and theoretical calculation for 10 wt% NaCl solution 78
Table 5.3 Contact Angle of Brand new and test for PTFE membrane
79
參考文獻 Bird, R.B., W.E. Stewart and E.N. Lightfoot, “Transport phenomena”, 2nd ed., Wiley, (2002)
Cath, T.Y., V.D. Adams and A.E. Childress, “Experimental study of desalination using direct contact membrane distillation a new approach to flux enhancement”, J. Membr. Sci., 228, 5-16 (2004)
Cheryan, M., “Ultrafiltration and Microfiltration Handbook”, 2nd ed., Technomic Publishing Inc., Pennsylvania (1998)
Del Rio, C., M.C. Ojeda, J.L. Acosta, M.J. Escudero, E. Hontanon and L. Daza, “New polymer bipolar plates for polymer electrolyte membrane fuel cells Synthesis and characterization”, J. appl. polym. sci., 18, 2817-2822 (2002)
Findley, M.E., “Vaporization through porous membranes”, I&EC Process Design and Development., 6, 226-230, (1967)
Findley, M.E., V.V. Tanna, Y.B. Rao and C.L. Yeh, “Mass and heat transfer relations in evaporation through porous membranes”, AIChE J., 15, 483-489 (1969)
Geankoplis, C.J., “Transport Process and Unit Operation”, 4th ed., Pearson Education, (2003)
Gryta, M., J. Grzechulska and A.W. Morawski, “Membrane distillation of NaCl solution containing natural organic matter”, J. Membr. Sci., 223, 11-21 (2003)
Gryta, M., “Fouling in direct contact membrane distillation process”, J. Membr. Sci., 325, 383-394 (2008)
Hsu, S.T., K.T. Cheng and J.S. Chiou, “Seawater desalination by direct membrane distillation”, Desalination., 143, 279-287 (2002)
Incropera, F.P. and D.P. Dewitt, “Fundamentals of heat and mass transfer”, 5th ed., Wiley, (2002)
Jiao, B. and A. Cassano and E. Drioli, “Recent advances on membrane process for the concentration of fruit juices:a review”, J. food eng., 63, 303-324 (2004)
Lawson, K.W. and D.R. Lloyd, “review membrane distillation”, J. Membrane Sci., 124, 1-25 (1997)
Martinez-Diez, L., and M.I. Vazquez-Gonzalez, “Temperature and concentration polarization in membrane distillation of aqueous salt solutions,” J. Membrane Sci., 156, 265-273, (1999)
Martinez-Diez, L., F.J. Florido-Diaz and M.I. Vazquez- Gonzalez, “Study of evaporation efficiency in membrane distillation,” Desalination., 126, 193-198, (1999)
Martinez, L., and J.M. Rodriguez-Maroto, “Characterization of membrane distillation modules and analysis of mass flux enhancement by channel spacers,” J. Membrane Sci., 274, 123-137, (2006)
Martinez, L., and J.M. Rodriguez-Maroto, “Membrane thickness reduction effects on direct contact membrane distillation performance”, J. Membrane Sci., 312, 143-156, (2008)
Michaels, A.S., “New separation technique for the CPI”, Chem. Eng Prog., 64, 31-35 (1968)
Nasef, M.M., “Structural investigation of polystyrene grafted and sulfonated poly(tetrafluoroethylene) membranes”, Eur. polym. j., 38, 87-95 (2002)
Perry, R.H., “Perry’s chemical engineers’ Handbook”, 6th ed., McGraw-Hill, New York (1997)
Phattaranawik, J., R. Jiraratananon and A.G. Fane, “Heat transport and membrane distillation coefficients in direct contact membrane distillation”, J. Membr. Sci., 212, 177-193 (2003)
Phattaranawik, J., R. Jiraratananon and A.G. Fane, “Effect of pore size distribution and air flux on mass transport in direct contact membrane distillation”, J. Membr. Sci., 215, 75-85 (2003)
Schofield, R.W., A.G. Fane and C.J.D. Fell, “Heat and mass transfer in membrane distillation”, J. Membr. Sci., 33, 299-313 (1987)
Schofield, R.W., A.G. Fane, C.J.D. Fell and R. Macoun, “Factors affecting flux in membrane distillation”, Desalination., 77, 279-294 (1990)
Smolders, K. and A.C.M. Franken, “Terminology of Membrane Distillation”, Desalination., 72, 249-262 (1989)
Smith, J.M., H.C. Van Ness and M.M. Abbott, “Introduction to chemical engineering thermodynamics”, 4th ed., McGraw-Hill, New York (2001)
Srisurichan, S., R. Jiraratananon and A.G. Fane, “Mass transfer mechanisms and transport resistances in direct contact membrane distillation process”, J. Membr. Sci., 277, 186-194 (2006)
Tomaszewska, M., M. Gryta and A.W. Morawski, “A Study of Separation by the Direct-contact membrane distillation process”, Sep. Technol., 4, 244-248 (1994)
Yun, Y., R. Ma, W. Zhang, A.G. Fane, and J. Li, “Direct contact membrane distillation mechanism for high concentration NaCl solutions”, Desalination., 188, 251-262 (2006)
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2010-07-28公開。
  • 同意授權瀏覽/列印電子全文服務,於2010-07-28起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信